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1. Introduction. In this paper we investigate some applications of
geometry of Banach spaces to harmonic analysis. We will focus in particular
on the stability of absolutely continuous linear forms on subspaces of L>°(G)
with respect to w*-limits of weak Cauchy sequences.

Our work is a natural continuation of the three consecutive papers
([PSW], [K], [He]), of the Mooney—Havin theorem on L!/H! ([M], [Hav])
and its extensions ([G1], [G2]). The techniques from harmonic analysis
we use are classical; the use of Baire category methods in this context
might be less classical. A precursor for our approach is Bishop’s gener-
alized Rudin—Carleson theorem ([B]; see [P], p. 19), which is dual to the
result of Heard [He] which we extend.

Let us now describe the content of this paper. In Section II we recall some
previous abstract results of the first author [G3], namely Theorems II.1 and
Corollary I1.2 for which we give easy and self-contained proofs. Theorem II.1
is a result on sequential “very weak” completeness for subspaces L of dual
spaces X * which are fixed spaces of isometric bijections. From Theorem II.1
we derive Theorem II.3, which extends a result of [He]. Let us mention
that the isometries we use in the applications are £!-symmetries, for which
some proofs can be simplified. However, the more general statements of
Section II still have simple proofs and could be used in more general — e.g.
noncommutative — situations.

In Section III we apply Theorem II.3 to multipliers; our main result is
Theorem IIL.5: if G is a compact abelian group with G = I'and if A C I' is
such that

(*) Me(G) = L}y(G) ® (M,) 4<(G)
then any multiplier LY (G) — C4(G) is the restriction to LY of the con-
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volution with an L! function. The condition (*) is shown to hold in many
situations. Corollary III.7 extends a result of Dressler and Pigno [DP].

In Section IV we compare different approaches to proving the Mooney-
Havin theorem, stating that L!/H! is weakly sequentially complete (and
the abstract extensions of this result). One approach uses Corollary I1.2.

In Section V we gather some remarks and problems.

Notation. Throughout this paper G denotes an abelian metrizable com-
pact group and I' = G its discrete dual group. A trigonometric polynomial
is a finite linear combination of characters y € I'. L!(G) is the space of
integrable functions with respect to the Haar measure of G. An approzi-
mate identity {¢,} in L1(G) is a sequence of positive functions of norm 1
in L'(G) such that for every g € L!(G)

lim [lon * g — glls = 0.

An example is given by ¢, = m(V,))"11y, where {V,,} is a basis of neigh-
borhoods of 0 in G.
If Ais a subset of I', L} (G) denotes the space

Ly(G)={f € LN(G)| f(n)=0 Vne I\4}.

We define similarly LY (G), C4(G) and (M,)4(G), the space of measures
singular with respect to Haar measure whose Fourier transform is supported
by A; the letter G will often be omitted. We write f, = f(z+-). The duality
between L!(G) and L*®(G) is given by

(f,9)= [ f()g(~t)dm(t).

We set I'\A = A°. We recall that A is a Riesz set if Ms(G) = LY(G),
and a Rosenthal set if LY (G) = C4(G). The weak-star topology on a dual
space X* is denoted by w*. If A C X, the orthogonal of A in X* is AL; if
H C X*, the (pre-)orthogonal of H in X is H;. The closed unit ball of a
Banach space Y is denoted by Y;.

The other notations are classical or will be defined before use.

II. Two basic results. Our first statement follows from ([G3], Prop. 8).
For the sake of completeness we will give an easy and self-contained proof.

THEOREM II.1. Let X be a Banach space, and let S : X* — X* be
an isometric bijection. Let {y,} be a weak Cauchy sequence of fized points
under S. Then y = w*-limy, is also a fized point.

Proof. By assumption, we have S(y,) = y, for every n and we have to
show that S(y) = y. We let ¢ denote the limit of {y,} in (X***, w*); this
limit exists since {y, } is weak Cauchy; clearly, the restriction of ¢ to X is y;
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hence Ker (y — t) N X7 is w*-dense in X™* since it contains X;. It is even
a w*-dense G of X{* since we have

Ker(y-1t) = n {zeX*|Ip2n:|2(y—yp)l <K'}
n,k2>1

Since S(yn) = yn for every n, $**(t) = t; therefore
S(y)—-t=S(y)-S*"(@t)=S"(y-1),

hence
Ker(S(y) - t) = (S*)7"(Ker(y - 1))

and since (§*)~! = (§~1)* is w*-continuous, it follows that Ker (S(y) —t)N
X1* is also a w*-dense G5 of X*. Now by Baire’s theorem,

2 = Ker(S(y)—t)NKer(y - t)

is also w*-dense in X{*; as 2 is contained in Ker (S(y) — y), Ker(S(y)—y)
is w*-dense in X}, hence S(y) — y = 0 since S(y) — y is continuous on
(X71*,w*). This concludes the proof. =

Theorem II.1 implies the following corollary ([G3], Prop. 10):

COROLLARY I1.2. Let Y be a Banach space. If there exists an isometric
bijection S : Y** — Y** such that Ker(S — I) = Y then Y is weakly
sequentially complete.

Proof. We apply Theorem II.1 to X = Y*: let {z,} be a weak Cauchy
sequence in Y and z = limz, in (Y**,w*). {z,} is also a weak Cauchy
sequence in Y**, hence, by II.1, z is a fixed point for S,i.e. 2€Y. m

In the applications § is a symmetry whose set of fixed points is Y
(see [G1]).

Our next statement is an extension of a result of [He]. An example
where this result applies is X = C(T), A = A(D) the disc algebra and
7: M(T) — LY(T) the Radon-Nikodym projection. Note that r*(AL1)
is isometric to H*°(D) and a stronger result holds since L(T)/H}(D) is
weakly sequentially complete (see Section IV below). However, Theorem I1.3
is optimal—take for instance 7 = I.

Note that S = 27 — I is a symmetry (in particular an isometric bijection)
which is naturally associated to .

THEOREM I1.3. Let X be a Banach space, and let A be a closed subspace
of X. Let m: X* — X* be a linear projection such that ||2x — I|| = 1, and
such that AL = 7(AL)®(I-x)(AL). Let H = n*(A*+), and let y, € 7(X™)
be such that

lim 2(yn)

n—0oo
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ezists for every z € H. Then (I — n)(y) € AL for every w*-cluster point y
of {yn}. Moreover, there ezists y € 7(X*) such that

Jim_ya(z) = y(<)
for every z € A.

Note that for A = X, Theorem II.3 is a particular case of Theorem II.1.
Theorem I1.3 will be a consequence of Theorem II.1 applied to A* = X*/AL.

Proof. First we notice that
(1) A" = X"/A = x(X*)/x(A%) @ (I - )(X7)/(I - )(A%).
Hence 7 induces a projection # from A* onto 7(X*)/m(AL); we let § =
2r - I.

We check that ||S]| = 1; indeed, if § = 9, + 92 is the decomposition of
y € A given by (1), we have S(§) = 91 — 2, and

51 — 92ll = inf{|lya — 92 + ¥'|l | ¥’ € A*}

= inf{llys — 92 + 91 + v3ll | 41 € 7(A1), y; € (I - 7)(A1)}.

Since ||27 — I|| = 1, we have

lyn —v: + 1+ w2l =l + 92 + 11 - wall,
and the same computation shows
91 = g2l = lldn + gll-
We now describe the predual of H; since
H=r(aY) =7(A) ",
we have for y € X*,
yEH, &2(y)=0 Vzen*(A)
& (r(y),z)=0 Vze A
o w(y) e AL
and thus
Hy =771 (AY) =x(AY) & (I - 7)(X™),
H=(X*/H.)" =~ (n(X*)[x(AL))".
Therefore the assumption we made on {y,} means that the corresponding
sequence {y»} in A* is a weak Cauchy sequence. . .

We may now apply Theorem II.1 to the isometry S to get S(%) = %o,
where 9o = w*-limy, in (A*,w*). If y is any w*-cluster point of {y,} in
X*, we have § = g, and thus S(§) = y = (27 — I)(9), hence (7 - I)(y) = 0,
and this means exactly that (I — 7)(y) € AL.
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To conclude the proof, we note that the sequence {y,} is weak Cauchy
in A* and therefore bounded in A*; thus we may find a bounded sequence
{y5.} in X* such that y, = y.,. Now we may pick a cluster point y' of
{v..}. What precedes applies to {y;,}, and thus we have #(g') = ¥'; if we let
y = 7(y'), we have

y(z) = lim y,(z)
for every z € A, and of course y € 7(X*). m
Theorem I1.3 applies as soon as we have nontrivial isometric symmetries
in dual spaces, and this happens in a variety of situations (C*-algebras,
Banach lattices, M-ideals, ...). In the next section it will be applied to

harmonic analysis, and the projections 7 will stem from the Radon-Nikodym
decompositions of measures.

III. Applications to multipliers. Throughout this section, G will
denote a metrizable compact abelian group, and A a subset of the dual
group I'. We recall

DEFINITION III.1. A bounded operator T : LP(G) — LF(G) is called
a multiplier if there exists a sequence {a. | 7 € A} of complex numbers such
that

T(h)(7) = ayh(7)
for every h € LY and every v € A.

In particular, T'(h;) = (T(h)), for every z € G; i.e. T commutes with
translations.

The following result is well known (see for instance [Har]). We outline a
proof for completeness.

LEMMA II1.2. Let T : LY(G) — LY(G) be a bounded linear operator.
The following assertions are equivalent:

(i) T is a multiplier, |
(ii) there ezists a measure p € M(G) such that T(h) = u * h for every
h € LY(G).

If these conditions are satisfied then
IT: L — LF|| = lllimay/mae-

More>ver, T is compact iff there ezists g € L(G) such that T(h) = g * h
for every h € LY(G).

Proof. (ii) = (i) follows immediately from the fermula

p*h(y) = i(7)h(7)-
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(i) = (ii). We note first that every v € A is an eigenvector of T and thus
the space of trigonometric polynomials supported by A is stable under T; it
follows that T is a bounded operator C4 — Cj.

We observe now that if ¥ € A, ji(vy) depends only on the coset i of y in
M(G)/M 4c; therefore the notation ji(y), or ji * f for f € LY, makes sense.
The operator

T* : M(G)/Mgc - M(G)/M 4
satisfies _
T*(i)(7) = ayp(v)
for every v € A and every ji; in particular, by taking i = ép we find
V= T"(éo) such that for every vy € A, 13(7) = a,. It follows that for every
v € A and every h € LY,

T(h)(7) = azh(7) = 5 % h(3),
which proves that T(h) = » * h; that is, every measure p € v represents T

in the sense of (ii).
Finally, we note that

12l m(GyMpe = IT: Ca—= Call < ||IT : LT — L],
and on the other hand

17+ hllLe <ol micy/maellbllLe

for every h € LY; this completes the proof of (i) = (ii).

Every trigonometric polynomial defines a finite-dimensional ranged mul-
tiplier on LY, hence every ¢ € L!(G) defines a compact multiplier on LY.
Conversely, let i € M(G)/M 4 define a compact multiplier on LY. It also
defines a compact multiplier on L(G)/LY.; let {¢,} be an approximate

identity in L!(G); then p* @n(7) — fi(y) for every v € A and {(p * )} is
norm-converging in L1(G)/LY., hence s € L}(G)/L}.. =
We now consider multipliers LP(G) — C4(G).

LEMMA II1.3. Let T(h) = h * p be a multiplier on LY(G) and 41 €
M(G)/M4< be the coset of p. The following assertions are equivalent:

(ii) for every approzimate identity {p,}-in L}(G), {(n ¥ ©¥n)} is a weak
Cauchy sequence in L(G)/L}..

In what follows we will use only the easier implication (i) = (ii).

Proof. (i) = (ii). By assumption i *xh € C, for every h € LY. It
follows that for every approximate identity {¢,} one has

Lm ||g*h*@p — fi % bl = 0.

n—0o
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In particular, for every h € LY,
i G+ h(0) = (% Pn, h) — s h(0)
and thus {1 * ¢, } is a weak Cauchy sequence in the predual L(G)/L}. of
LP(G).
(ii) = (i). Let g € M(G)/M < and let f € LP(G) be such that g * f
is not continuous; then for any approximate identity {¢,} in L'(G), the
sequence {1 * f *x o} does not converge uniformly. Hence we may find:

a) e > 0;
b) two sequences {nx}, {n}.} of integers such that ny < n}, < ng41;
c) a sequence {tx} in G such that
"“ * f * (‘obm - 9011;)"00 =| (l‘ * (¢nk - ‘Pnﬁ) * 6tnf) IZ €.
By taking a subsequence and replacing f by a translate we may and do
assume that {¢x} converges to 0. If we let now
'/’Zk = Pn, ¥ 6tg ’ 1p2k-l-l = ‘Pni * 6t.a

the sequence {¢x} is an approximate identity in L1(G) but {j % ¥} is not
a weak Cauchy sequence in L!(G)/LY.. =

Though we will not use it we mention the following result:

LEMMA II14. Let AC I'. LetT : LY — L be a bounded linear operator
which commutes with translations. The following assertions are equivalent:
(i) T: LY — Cy;
(ii) T has a separable range.
Proof. (i) = (ii) is obvious. Let f € LY and h = T(f); by (ii),
{hz}zec = {T(fz)}zec is norm-separable in L>°(G). Hence h is continuous
by ([E], Corollary 1). m

It follows from Lemma II1.3 that if L! /LY. is weakly sequentially com-
plete then every multiplier LY — Cj is a convolution with g € L'(G). The
finer property of I1.3 will be used to show

THEOREM IIL5. Let G be a metrizable compact abelian group, and let A
be a subset of I'. If

(*) MAc(G)z Llc(G)Q(M,)Ac(G)

then every multiplier T from LY (G) to C4(G) is the restriction to LY (G)
of the convolution with a function in L1(G).

Proof. By assumption, we have

Ca(G)t = Mse(G) = L (G) ® (M,) 4<(G).
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If * denotes the Radon—Nikodym projection from M(G) onto L!(G), then
|27 — I|} = 1 since the norm is additive on orthogonal measures; moreover
LP(G) is isometric to 7*(C4(G)*4).

Let now u € M(G) be a measure, provided by Lemma III.2, such that
T(h) = h*pu. We let now y,, = p*p,, where {¢, } is an approximate identity
in L'(G). By Lemma IIL.3, the assumptions of Theorem I1.3 are satisfied,
with A = C4(G) and X = C(G); thus there is g € L'(G) such that

lim (p* ¢n, f) = (9, f)
for every f € C4; applying this to f = v (y € A) leads to
lim p%on(y) = A7) = §(7)
and this concludes the proof. =

Remark III.6. Note that (*) implies
M(G)/Mc = LN(G)/ LY. & M,(G)/(M,) s

and the norm in this decomposition is additive by the proof of Theorem II.3.
Note also that for any A, M(G)/M - is the space of multipliers of LY and
LY(G)/L}. is the space of compact multipliers of LY (Lemma II1.2).

We now give examples where Theorem III.5 applies.
ExaMpLEs III.7.

1. If A€ is a Riesz set, that is, if M4c = LY., then (%) trivially holds. In
this case, Theorem IIL.5 follows from the result of Heard ([He]; see [DP]).

2. Recall that the Bohr topology is the topology induced on I' C C(G)
by pointwise convergence on G. The property (*) of IIL.5 is “local” in the
following sense: if A C I' is such that every ¥ € A has a neighborhood V,
for the Bohr topology such that V, N A€ satisfies (x), then A satisfies (*).
The proof goes as in [Me]: we have to show that for every y € Myc, pu, €
M .. Pick v € A; since the algebra (£1(G), *) is regular, there is a discrete
measure » on G such that 7(y) = 1 and #(y’) = 0 for every v/ ¢ V,,. We
have

HxV € MV,' NAc-
By assumption it follows that (u*v), € My, nsc. But clearly (u*v), = pa*v,
and thus fi,(y) = pg * v(7) = 0; this shows p, € M ..

The above proof shows in particular that any subset A of I" which is open
for the Bohr topology satisfies the conclusion of IIL.5: take V., = A for every
v € A; then V, N A° = ( satisfies (*). In this special case, however, more
can be said (see 3 below). We refer to ([Me], [LP2], [G2]) for arithmetical
examples involving the Bohr topology.
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3. Every set A which is closed for the Bohr topology is “nicely placed”
in the sense of [G1], that is, the unit ball of L), is closed for the topology
of convergence in measure. If A€ is “nicely placed”, then (%) holds: indeed,
if {¢n} is an approximate identity in L}(G), then lim ||y * ¢, — p|l1 = 0
if p is absolutely continuous, and lim||p * |, = 0if 0 < p < 1 and p is
singular ([BO]); if now 4 € My e, the bounded sequence {u * ¢,} in L.
converges in measure to u, and thus p, € LY.. However, if A° is nicely
placed, then L!/L%, is weakly sequentially complete ([G2], Lemma 1.8) and
then Lemma III.3 implies immediately the conclusion of Theorem II1.5. We
refer to [G2] for examples of nicely placed sets; let us mention that there
are Riesz sets, and even Rosenthal sets, which are not nicely placed ([G2],
Example 3.8).

4. We conclude this list by examples where the conclusion of II1.5 does
not hold. Recall that A is called a Rosenthal set if LY(G) = C4(G) (see
[Ro), [DP], [LP1], [G4]); if A is Rosenthal then clearly any u € M(G) will
define by convolution a multiplier from LY to Cj4; in particular, if A is
Rosenthal and infinite, the identity operator is a multiplier which does not
stem from a function f € L!(G)since f € Co(G) for f € L. It is possible to
elaborate on this example: for instance, if Ag is a Rosenthal infinite subset
of 2Z and A = Ag U {2Z + 1}, then the operator T(f) = f(z) + f(z + «) is
a multiplier from LY to LY = Cy4, C C4 which is not given by g € L.

We now give an application. The following corollary improves a result
of Dressler and Pigno ([DP]) and was proved by the authors in ([G4], Ap-
pendix).

COROLLARY II1.8. Let Ag be a Rosenthal subset of I', and let A be such

that
My = L}i D (MJ)A'
Then
MAoUA = L]AoUA e (M')A'

Proof. Since every subset of a Rosenthal set is Rosenthal, we may and

do assume that A9 N A = 0. We pick p € M4,u4, and we define
Cu:LE = LY =Chy CChe

by C,(h) = p*h. By our assumption on A Theorem IIL.5 provides g € L}(G)

such that u«h = g * h for every h € LR; in particular, ji(y) = §(v) for
every ¥ € A° and thus (4 — g) € M4. Since p € Myy,,, it follows that

g€ A N Maugp, = L}iudo;
moreover, u — g = ¢' + v with ¢’ € LY and v € (M,), and therefore
p=(g+9")+v
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belongs to LY, & (M,)4.

IV. Around the Mooney-Havin theorem. Within the setting of Ba-
nach algebras, results of weak sequential completeness are classically shown
by using “peak sets” (see [A], [Chl, 2], [P]). In fact, they can also be obtained
through Corollary I1.2. Indeed, the following holds:

PRroPosSITION IV.1. Let (S,X,u) be a probability space, and let H be
a subalgebra of L°°(u) containing the constants such that for every closed
subset F' of the spectrum L of L*°(u) satisfying i(F) = 0, there is f € H
with ||f|| = 1, fir = 1 and i{|f| = 1} = 0. Then for every H-submodule M
of L*°(p), one has

Mt = (M0 L' (p) & (M N M,(R).
Here we denote by ji the probability measure induced by x on L and
M,(iz) the space of measures on L which are singular with respect to ji.

Proof. Pick v € M1, and write v = v, + v,, with v, € L(ji) and
vs € M(L) orthogonal with respect to ji. Since i is a normal measure, there
is a closed subset F of L with i(F) = 0 and |vs|(L\F) = 0. Let f € H be
such that ||f|| = 1, fir = 1 and i({|f| = 1}) = 0. Replacing f by (1+ f)/2
if necessary, we may assume that {|f| = 1} = {f = 1} and we denote this
set by A. Then clearly

1A= lim f"

n—-00
pointwise on L. Now for every z € M, we may write

ve(z) = v(laz)=v (nlmgo fa)
and by Lebesgue’s theorem,

:/(nlin.}° faz) = nlingo v(faz)=0
and thus v, € ML,

COROLLARY IV.2. In the notation of PropositionIV.1, if M is w*-closed,
then

(i) the unit ball of the space My = L' N M~ is closed for the topology
of convergence in measure;
(ii) the predual M, = L1 /M, is weakly sequentially complete.

Proof. We set X = L! n ML+ = M, ; then by the bipolar theorem
X4+ = ML, and thus by IV.1

(1) X+ = X @ (M(B)n X*L).

It follows from (1) and a theorem of Bukhvalov-Lozanovskii [BL] that the
unit ball of X is closed in measure, which is (i). For (ii), we observe that (1)
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implies that
M* = L®*[M* = L' [M, &1 M,(5)/M,(a)n M+

and thus the predual M, = L!/M, is £'-complemented in M*; therefore
there is an isometric bijection S—in fact, a symmetry—of M* with Ker (S5 —
I) = M,; and then Corollary II.2 shows that M, is weakly sequentially
complete. m

Let us mention that it is proved in [G1] by using the converse implication
in [BL] that (i) implies (ii); this provides a direct approach to the theorem of
Mooney-Havin and its extensions ([G1], [G2]) which does not use peak sets,
when it is possible to prove (i) without using them; it is so for instance when
H = H*(D) [G1]. Note also that Proposition IV.1 applies to H = H>(u)
when g is a unique representing measure for a uniform algebra.

We described here a short way to get weak sequential completeness;

more information on L!/M, can be obtained if peaksets are studied more
carefully (see e.g. [Ch2], [P], [G2]).

V. Miscellaneous remarks and questions

V.1. Let us assume that L! /L. does not contain a subspace isomorphic
to €1(N). Then by Odell-Rosenthal’s theorem [OR] for every approximate
identity {¢n} in L'(G), {¢n} has a weak Cauchy subsequence in L!/L};
moreover, every element in (L$)* is w* of the first Baire class. In particular,
for every it € M(G)/Mye, {2 * pn} has a weak Cauchy subsequence in
LY(G)/LY.. This does not imply a priori that { + ¢,} is a weak Cauchy
sequence (which, in view of Lemma III.3, would imply that every multiplier
LY — LY is a multiplier L — Cj4, hence by considering u = §p that

% = C,, i.e. Ais a Rosenthal set). We ask again

QuesTioN 1 [LP1]). If L'/LY. does not contain £!(N) as a closed
subspace, is A a Rosenthal set?

Under this assumption, A is a Riesz set [LP1] and every f e LY
Riemann integrable ([LPS], Corollary IV 4).
Question 1 can be strengthened as follows:

DEFINITION V.1. A C I has property (p) if there exists p € LP* such
that

(i) p is Borel on (LY*, w*);
(ii) p(f) = f(0) for every f € Cj4.

Note that if L! /LY. does not contain £! as a closed subspace A has prop-
erty (p). (Take for p a cluster point of {¢,} where {¢,} is an approximate
identity in L1(G).)
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QUESTION 2. If A has property (p), is A a Rosenthal set?

PROPOSITION V.2. Let A C I'" and assume that A has property (p). Then
A is a Riesz set.

Proof. Pick 4 € M4, and consider
C,:L*® > LY, f— f*p.

Clearly, the multiplier C,, is (w*-w*)-continuous, and thus po C, is a w*-
Borel linear form in L**. Now by a result of Christensen ([C], Th. 5.8),
po C, is w*-continuous; that is, there is ¢ € L such that p(u * f) = (g, f)
for every f € L. It follows that 4 = § and thus g = g is absolutely
continuous. =

There are Riesz sets for which such a lifting p does not exist. For in-
stance, if A = N then L!/L%. (= L'/H}) has the property (X) [GT] and
thus any p € H°* which is w*-Borel is given by g € L! (see IV.2); and since
g € co, g cannot coincide on A(D) with a Dirac measure.

Let us consider the families F; (respectively F2) of subsets A of I" such
that L/LY. does not contain ¢! (resp. A has property (p)). Then F; C F,
and F; contains the family of Rosenthal sets. As F; is contained in the
family of Riesz sets the assumptions of ([G4], Theorem 2) are satisfied,
hence neither F; nor F; is an analytic subset of 27,

V.2. There exist means on L*°(G) (G is a compact infinite abelian
group), i.e. translation invariant linear forms ¢ with ||¢|| = ¢(1) = 1, which
are distinct from the Haar measure [Ru]. It follows that there exist opera-
tors from L*°(G) to C(G), with rank one, which commute with translations
and which are not multipliers. In fact, it is well known and easy to show
that multipliers are exactly those operators which commute with convolu-
tions with continuous functions. In some cases, however, any “reasonable”
operator from L to C4 which commutes with translations is a multiplier.
Here, “reasonable” means that f — T(f)(0) € LY* is w*-Borel. In fact, if
L'/LY. has property (X) (see [GT]) then there is a function ¢ € L! such
that T'(f)(0) = (f, g), hence T(f) = f*g. It will be so e.g. if I'\A is a A(1)
set (by [G1], Th. 30), and if A = N since L!/H?! has (X) [GT]. Such sets
A are quite “big”; on the other hand, if A is Sidon, then LP = C4 =~ £1(A)
and it is easily seen that every operator on LY which commutes with trans-
lations is a multiplier. So it is not clear whether “reasonable” translation
invariant operators from LY to C4 are always multipliers.

V.3. Theorem II.1 and Corollary II.2 have been sufficient so far for
applications but they are not optimal. For instance, if § : X* — X™* is such
that Ker (5) and S(X7) are w*-closed, then for any weak Cauchy sequence
{vn}, S(w*-limy,) = w*-lim S(y») ([G5], Th. VII.4). Also, by using the
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ball topology ([GK], Th. 3.3 and the proof of Th. 9.3), it can be shown that
if X CY C X** and if S is an isometric bijection of Y whose restriction
to X is the identity, then §(z) = z for every z € Y which is the limit in
(X**,w*) of a weak Cauchy sequence in X.
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