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1. Introduction. Harary and Rosen [3] consider the old result that
a connected simplicial 2-complex has an imbedding in the 2-sphere if
and only if it contains no subset homeomorphic to K, to K, 4, or to F?,
where K and K; , are the Kuratowski non-planar graphs [5] and F* is the
thumbtack-shaped subset of R*, called a disk with feeler, defined as follows:

P = {(,9,0): 22 +92 < 1}U{(0,0,2): 0 <2z <1},

Such a 2-complex is planar, moreover, if and only if it contains no
2-sphere.

Observing that this characterization of planar 2-complexes is topolo-
gical, Harary and Rosen ask at the end of their paper for a completely
combinatorial characterization of planar 2-complexes (P 988). In two
counterexamples containing topological copies of the Kuratowski graphs,
they demonstrate that it is not sufficient to require that the 2-complex
be locally planar and its 1-skeleton planar. Harary and Rosen also prove
that a 2-complex is locally planar if and only if it contains no disk with
feeler. .
It is the purpose of this note* to provide a purely combinatorial
characterization of spherical and planar 2-complexes. This combinatorial
characterization also yields a new proof of the topological characterization
of spherical 2-complexes mentioned above. In a sequel, Gross and Rosen [2]
derive an esgsentially optimal algorithm to decide whether a 2-complex
is planar.

* The research of the first-named author was partially supported by NSF
Contract MC8 76 05850 at the Columbia University.
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2. Augmenting the 1-skeleton. In this section it is proved that it can
be decided whether a locally planar 2-complex € has an imbedding in the
2-sphere by constructing a graph from C and then deciding whether that
graph is planar. It was noted in the previous section that the 1-skeleton
of C would not be a satisfactory graph for this purpose. However, it will
be shown that by retaining from C not only the 1-skeleton, but also an
appropriate 1-dimensional subset of the interior of each 2-cell, an appropri-
ate graph is obtained. In what follows, the first barycentric subdivision
of a complex K is denoted by K’, and its 1-skeleton by K®,

THEOREM 1. Let C be a compact commected simplicial 2-complex. Then
C may be imbedded in the 2-sphere if and only tf C 8 locally planar and the
1-skeleton C'® of its first barycentrio subdivision is planar.

Proof. Any imbedding of the 2-complex C in the 2-sphere §? induces
an imbedding of the 1-complex ¢'" into 8%, so the “only if” part of the
theorem is obvious.

Conversely, suppose that f: '™ — & is an imbedding. Let R be any
2-gimplex of O, and let # be the vertex of 0’ at the barycenter of E. The
image f(bd (R')) of the boundary of the subdivision of R is & simple circuit
separating 8 into two disks Dy and Eg. Let D, be the disk containing
the vertex image f(x).

If the imbedding f : '™ — 8 places no edges of O'"") into the interior
of the disk Dy except for the 6 edges incident on the barycenter « of the
2-gimplex R, then the imbedding f may be extended so that it maps the
subdivided 2-simplex R’ onto the disk Dg. In this case, the disk Dy is
called uncluttered. Otherwise, it is called cluttered.

If for every 2-simplex of the 2-complex C the associated disk in &
containing the image of its barycenter is uncluttered, then there is no
problem in extending the imbedding f: ¢'® —> §% to an imbedding of C’,
thereby inducing an imbedding of €. On the other hand, if some disks
are cluttered, then one must first remove their clutter by modifying the
imbedding f before extending the imbedding to all of C’. The rest of the
proof is concerned with establishing the validity of the modification
procedure illustrated in Fig. 1. '

The clutter removal begins with the selection of a 2-simplex R of
the 2-complex C such that the disk Dy in 8% is maximal, that is, not con-
tained in the disk Dy for any other 2-simplex @ of the 2-complex C. Let
u, v, and w be the vertices of the 2-simplex R, let a, b, and ¢ be the mid-
points of the edges uv, vw, and wu, respectively, and let # be the barycen-
ter of R. This is illustrated in Fig. 1, with % denoting f(«), ¥ denoting
f(»), ete.

Let uax denote the 2-simplex of C’ with vertices «, a, and «, and let
|waZ| denote the subdisk of D, bounded by f(bd(uax)). Now suppose
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that X is the clutter in the interior of |uax|. If # € cl(X), where cl(X) de-
notes the closure of X, it would be impossible to remove the clutter from
Dy, since some clutter would necessarily be attached to the interior point .
If @ € cl(X), it might be possible to flip the clutter over the edge image
|wa|, provided z ¢ cl(X). However, if some other 2-simplex @ of the 2-com-
plex C meets the 2-simplex R in the edge wv, then flipping the clutter
over |u@| would result in that clutter being placed inside the disk Dg.

Fig. 1. A component T of the clutter in

a maximal disk is attached only at one

corner, and it is removed from the disk
by rotating it into a free sector

Accordingly, the immediate goal is to prove that cl(X)nbd|zaz| = &,
after which it is to be established that the clutter can be rotated out of
the disk D, into a “free sector”, that is, a location not inside any
disk Dj,.

Since X is all of the clutter in |%az|, there is a subgraph T of the
1-complex C'") whose image f(T) coincides with cl(X). Since the clutter
X lies in the interior of |#az|, we have

f(T)nbd |waz| < {=, a, z}.

Moreover, it follows that the graph T contains no edge of the sub-
divided 2-simplex R'®.

Since the “preclutter” T contains no edge from R'™W, T contains none
of the 6 edges incident on the vertex x at the barycenter of the 2-simplex R.
Thus ¢ T.

Now suppose that a € T. Since the clutter X lies in the interior of
|waz), it is clear that @ e cl(X)—{%}. Thus, there is an edge ad in the
preclutter T such that the point image d lies in the interior of |%az|. The
edge ad of C'™ does not arise from a 1-simplex of C, because the only two
such edges with the endpoint a are ua and va, both in R'", so they cannot
be in the preclutter 7. Nor can ad be any other edge of R\, so that the
edge ad must come from some Q'", where Q is a 2-gimplex of the 2-complex
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C such that Q "R = wwv. Accordingly, the vertex d must be the barycenter
of the 2-simplex Q. Since d lies in the interior of |%az|, it follows that
bd |zaZz| separates the point d from the point 7 in 8? and, consequently,
that bd(uax) separates the vertex d from the vertex v in the 1-complex
0'®, which is a contradiction, because there is an edge »d in the subdi-
vided 2-simplex Q' that does not meet bd (xax). Thus a ¢ T.

Since '™ is connected, it is now evident that cl(X)Nbd |zaz| = &,
exactly as illustrated in Fig. 1. The remaining problem is to find a free
sector incident on #% into which the clutter may be moved.

Introduction of the notion of a link is to gimplify the remainder of
the exposition. First, for any vertex p of a complex K, one defines star(p, K)
to be the subcom'plex of K determined by the collection of all the simplexes
of K incident on the vertex p. Then, one defines link(p, K) to be the
subcomplex of star(p, K) consisting of all simplexes ¢ such that p Ng
is the empty set. For example, if p were a vertex of a triangulated closed
surface, then its star would be a triangulated disk with p in the middle,
and its link would be the simple circuit which is the rim of that disk.

Now suppose ue¢ is an edge of the preclutter T, so that ¢ € link (u, 0')NT.
In f(C'M) — {w}, the point & is clearly separated from bd |#az| — {u}. Thus,
star(u, C') —{u} has ¢ and bd(uax)—{%} in separate components. Thus,
the vertex % is a cutpoint of the graph star(u, C')". Since star(u, C') — {u}
has link(u, 0') a8 a deformation retract (or, alternatively, directly from
the combinatorial definitions of star and link), link (4, C’) is not connected.
From the topological invariance of stars and links under subdivision
(or, alternatively, directly from the combinatorial definitions of star and
link) it follows that link (u, C) also is not connected. From Theorem 3 of
Harary and Rosen [3] it now follows that link(u, C) consists of a finite
number of mutually disjoint edge-paths and vertices.

Next, let B be the subcomplex of C that contains every 2-simplex
Q of C such that the associated disk D, is maximal, and that contains
every l-simplex and 0-simplex of ¢ whose image under the imbedding
f does not intersect the interior of any maximal disk Dg,. In other words,
the subcomplex B is the result of discarding from the complex C the
preimage of all of the clutter in all of the maximal digks.

The 2-sphere S8* may be triangulated so that the restriction of the
imbedding f to the subcomplex B is a simplicial map, that is, so that the
image under f of every simplex of B is a simplex in the triangulation of §8*.
With respect to this triangulation, link (%, §%) is a closed circuit. It follows
that there is an edge J in link (%, 8%) whose interior does not meet f(C’'®).
The sought after free sector is the 2-simplex #%*J in star(%, 8%) containing
the vertex % and the edge J. The interior of the free sector %#J contains
no point of the image of the 1-complex C'\), Moreover, it contains no
point of any maximal disk Dy and, consequently, no point of any other
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disk Dp. Thus, the clutter X may be rotated out of |#az| into the free
sector, thereby completely decluttering |w@z| without putting clutter
into any other disk Dp.

More precisely, there exists an imbedding g: T — int(Z«J)U{u}
such that g(w) = %. Define a new imbedding f,: 0'® — 8§ go that f, coin-
cides with f at all points of ') — T and f, restricted to T coincides with g.

Continuing in this manner for at most 6 steps, one for each 2-simplex
of R', it is possible to obtain an imbedding of ¢’ into 8% such that the disk
Dy, is completely decluttered, and such that no new clutter has been intro-
duced into any other disk Dy. Moreover, this decluttering process may
then be applied to another maximal disk, and reiterated until every disk
D, contains only points of £.(Q'™), i.e. there is no clutter at all, where Ia
is the imbedding ultimately obtained in this iteration. Then f, may
be extended to imbed the entire 2-complex C’ into §°. This completes
the proof of Theorem 1.

There is no difficulty in obtaining the following result as a corollary:

THEOREM 2. Let C be a compact simplicial 2-complew. Then C is planar
if and only if C is locally planar, the 1-skeleton C'V) of its first barycentrio
subdivision is planar, and C contains no 2-sphere.

Since Theorem 3 of Harary and Rosen [3] states that a complex ¢
is locally planar if and only if, for every vertex v of O, link(v, 0) imbeds
in. 8%, it follows that the characterization of planarity just obtained is
completely combinatorial. It is used by Gross and Rosen [2] along with
a “depth-first search” to construct a planarity algorithm whose execution
time is bounded by a quantity proportional to the number of vertices
in the 2-complex, thereby generalizing the well-known result of Hopcroft
and Tarjan [4] for graphs.

As mentioned in the Introduction, Theorem 1 may be used to obtain
a new proof of the old topological characterization of spherical 2-complexes.

THEOREM 1'. Let C be a compact connected 2-complex. Then C may bde
tmbedded in §* if and only if C contains no subset homeomorphic to K,
to K, 4, or to F*.

- Proof. If ¢ may be imbedded in 8%, the necessity of these restrictions
is obvious.

Now suppose, conversely, that C contains none of the forbidden sets.
Since € does not contain F?, it is locally planar. Since C'") does not contain
K or K, ,, it follows that 0'® is planar. The existence of an imbedding
of ¢ in §? follows from Theorem 1.

3. On nonsimplicial cell complexes. Some topologically routine
extensions of Theorems 1 and 2 may be of interest for applications in com-
binatorics and in computer science.

5 — Colloquium Mathematicum XLIV32
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THEOREM 3. Let C be a compact connected, possibly momsimplicial,
cell complex. Then C may be imbedded in the 2-sphere if and only if C is locally
planar and the 1-skeleton of its third baryceniric subdivision is planar.

Proof. The (n-+41)-st barycentric subdivision of a cell complex
is the barycentric subdivision of the #-th barycentric subdivision of the
complex. The second barycentric subdivision of any cell complex is a sim-
plicial complex that is planar if and only if the original complex is planar.
Thus, the result is an immediate consequence of Theorem 1.

THEOREM 4. Let C be a compact, possibly nonsimplicial, cell 2-complex.
Then C is planar if and only if C is locally planar, the 1-skeleton of the third
barycentric subdivision of C is planar, and C contains no 2-sphere.

Proof. This is an immediate corollary to Theorem 2, if one again
uses the fact that the second barycentric subdivision of any cell complex
is a simplicial complex.

Remark 1. If one wishes to determine whether a given nonsimplicial
cell 2-complex C is planar, one need not consider such a possibly clumsy
object as the 1-skeleton of the third barycentric subdivision of C. It is
gsufficient to test the planarity of the 1-skeleton of the barycentric subdivi-
sion of any simplicial subdivision of C.

Remark 2. In applying Theorems 1 and 2, one need not take a full
barycentric subdivision. It is not necessary to subdivide an edge of the
2-complex unless it is a face of some 2-simplex.

Remark 3. Ion Filotti observes that the genus of a locally planar
2-complex is computable by considering those rotation systems (see [1])
for the 1l-skeleton that are consistent with the prescribed 2-cells in the
2-complex.

QUESTION. Does the genus of C'\") (or of some similar construction)
for a locally planar 2-complex C equal the minimum genus of any surface
in which C can be imbedded? (P 1209)
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