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1. Introduction. Every class ¢ of algebras of common similarity
type (with operations of finite rank) generates a variety, or equational
class, #° = HSP(X'), i.e., the class of all homomorphic images of sub-
algebras of direct products of members of >¢". By an equational basis for
2 we mean a set 2 of identities such that & is the class of all models
of X, and we say that X is finitely based if there exists a finite equational
basis for . Equivalently, X is finitely based iff £ is a strictly elementary
class. If ¢ consists of a single algebra A, then an equational basis for
X is also referred to as an equational basis for 4, and A4 is said to be
finitely based if o is finitely based.

Lyndon [6] made the rather surprising discovery that a finite algebra
of finite type need not be finitely based, and since then many other such
examples have been found. However, there have also been some important
positive results. In particular, Oates and Powell showed in [10] that every
finite group is finitely based, and McKenzie proved in [8] that every finite
lattice with finitely many additional operations is finitely based. Shortly
afterwards, Baker made the remarkable discovery that the only property
of lattices that is needed is the fact that their congruence lattices are
distributive, i.e., he showed that every finite algebra of a finite similarity
type that generates a congruence distributive variety is finitely based.
He also generalized McKenzie’s result in other ways, proving the following
theorem:

THEOREM 1.1 (Baker [1]). Suppose that
(i) ¥ i8 a congruence distributive variety;
(ii) ¥ = A" for some strictly elementary positive universal class ’;
(iii) ¥ ggr 48 strictly elementary.
Then ¥ is finitely based.
Here ¥'pg; is the class of all finitely subdirectly irreducible members
of ¥". In the particular case where ¥ is congruence distributive and of
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a finite similarity type, and 7" is generated by a finite algebra A, the
class X = HS(A) satisfies (ii), and (iii) also holds because ¥ g is equal
to o 'ggr, and is therefore up to isomorphism just a finite set of finite
algebras.

Baker’s proof of his theorem is rather involved. After a preliminary
version of his results had been made available, Herrmann [4] provided
another proof for lattices, and Makkai [7] gave another proof for finite
algebras in a congruence distributive variety. Actually, both these results
influenced the final version of Baker’s proof. Two shorter proofs were
later given by Taylor [11] and Burris [2], both for finite algebras of
a finite similarity type in a congruence distributive variety. In this note
we give a sufficient condition for a variety to be finitely based, that does
not involve congruence distributivity, and from this a generalization of
Baker’s theorem is obtained. In fact, it is shown that hypothesis (ii)
in that theorem is redundant. The proof of our first theorem is almost
trivial, consisting of a straightforward application of a standard model-
-theoretic technique. The proof of the generalization of Baker’s theorem
is obtained by borrowing four lemmas from his paper. In order to make
our presentation idependent of Baker’s paper, we give detailed proofs
of these lemmas.

It has been pointed out to us by Baker that our results can be used
to give a new proof of a theorem due to McKenzie [9], which is used
in showing that para-primal varieties are finitely based, and with his
kind permission this is included. It seems likely that other applications
to non-congruence distributive varieties can be found.

2. A sufficient condition. A basic theorem in model theory states
that an elementary class of structures is strictly elementary iff its com-
plement is closed under ultraproducts (see, e.g., [3], Theorem 4.1.12,
P. 173). This complement can be taken either relative to the class of all
structures of the same similarity type or relative to some strictly elemen-
tary subclass. We make use of this fact in the sequel.

THEOREM 2.1. Suppose that ¥~ is a variety of algebras and % is a strictly
elementary class that contains ¥ . If there exists an elementary class € such
that Bg; = € and ¥ NE 8 sirictly elementary, then V¥ is finitely based.

Note that %g; is the class of all subdirectly irreducible members
of 4.

Proof. If ¥ is not finitely based, then there exists an algebra 4 € ¥
that is an ultraproduct of algebras B; € #— ¥ (¢ € I) modulo some ultra-
filter U on I. Each B, has as a homomorphic image a subdirectly irreduc-
ible algebra B; that is not in %7, and the ultraproduct 4’ of the algebras
B; modulo U is in ¥, since it is a homomorphic image of 4. The algebras
B; need not all be in &, but 4’ is in ¥", and therefore certainly in 4. Since
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A is strictly elementary, the set {i € I: B; € #} belongs to U. We may
therefore assume that every B; belongs to #, and hence to ¥. Consequently,
A’ e ¥ n¥. However, this is a contradiction, for ¥ N ¥ is strictly ele-
mentary, and A’ is an ultraproduct of algebras that are not in ¥ Nn¢.
Thus ¥ must be finitely based.

CorOLLARY 2.1. Suppose that ¥~ is a variety of algebras in which
principal congruences are definable. If either ¥ ygr or ¥y 48 strictly ele-
mentary, then ¥ 18 finitely based.

Proof. To say that principal congruences are definable in ¥~ means
that there exists a first order formula @(z, v, 2, #) such that, for all A € ¥~
and a,b,¢,d € A,

(¢, d) econ(a, d) iff A F &(a,d,c,d),
where con(a, b) is the smallest congruence relation on A that identifies
a and b. It is not hard to see that @ can always be so chosen that the
backward implication holds in every algebra of the same similarity type,
i.e., so that the set

Ey(a, b) = {(c, d): A F P(a, D, ¢, d)}

is contained in con(a, b). We then take # to be the class of all algebras
A such that & defines congruence relations in A, i.e.,

A € # iff, for all a,b € A, Ry(a, b) is a congruence relation on 4.
Then £ is strictly elementary, and so are #pg; and £g;, for

AeBypy iff Ae® and for all a,b,a,b' e A with a #b and
a’ # b’ there exist ¢, d € A such that ¢ # d, A F &(a, b, ¢, d), and
A F D(a’, by e, d)

and

A e By iff AeB and there exist c,de A with ¢ #d such that
A F &(a, b, ¢, d) whenever a,be A and a # b.

The conclusion now follows from the preceding theorem by taking
€ = Bys1 O € = RBg;, depending on which one of the classes ¥ 'pg; and
¥ g1 18 strictly elementary.

COROLLARY 2.2 (McKenzie [9]). Suppose that ¥ is a variety of algebras
of a finite similarity type, in which principal congruences are elementarily
definable. If ¥ has, up to isomorphism, only finitely many subdirectly
irreducible algebras all of which are finite, then ¥~ is finitely based.

3. Projective radius. We recall here the definition and basic prop-
erties of the 2-radius of an algebra or of a class of algebras. Since we do
not need Baker’s more general notion of an n-radius, we refer to the
2-radius simply as the (projective) radius. Given an algebra 4, a map
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ffrom A to A is called a 0-translation if f is either constant or the identity
map, and f is called a 1-translation if it is obtained from one of the basic
operations of A by freezing all except one of the variables. A k-translation,
for k > 1, is a composition of k 1-translations, and a map is called a irans-
lation if it is a k-translation for some natural number %.

For a, b € A let I, (a, b) be the set of all ordered pairs (¢, d) such that
{c, @} = {f(a), f(b)} for some k-translation f of 4, and let I'(a, b) be the
union of the relations I (a,d) for £ =0,1,2,... We say that (a,bd)
and (a’, b’) are bounded if I'(a, b))NnI'(a’y b’) # 0, where 0 is the identity
relation on 4, and we say that (a, b) and (a’, b’) are k-bounded if I';(a, b)N
NnIy(a’yb’) = 0. If there exists a natural number % such that, for all
a,b,a,b €A,

con(a, b)ncon(a’, b’) # 0 = I'y(a,b)nI}(a’ydb’) #0,

then the smallest such % is called the projective radius of A (in symbols,
R(A) = k) but if no such % exists, then we let R(4) = oo. For a class
X of algebras we let B (") be the supremum of E(A4) for 4 € X.

Suppose that ¥ is a congruence distributive variety of a finite similari-
ty type. By [5], there exist ternary polynomials %, t,,...,%, such that
the following identities hold in ¥:

hiz,y,2) =2, t,(2,y,2) =2 Y(@=Yy,2) =2forin,
t(z,2,2) =t,,(r,2,2) for i<m, ¢ even,
ti(®,2,2) =1t,,(,2,2) for t<n, i odd.

‘Let ¥", be the class of all algebras satisfying these identities. Thus
¥, i8 a finitely based congruence distributive variety that contains ¥.
This notation will be in effect throughout the next four lemmas. For
convenience we assume that the polynomials #; are among the basic
operations of the variety. (Alternatively, we could modify the definition
of a 1-translation.)

LEMMA 3.1. If Ae ¥y, €yy61y....6, €A and e, # ¢,, then there
exists an © < m such that (e, €,) and (e;, €;,,) are 1-bounded.

Proof. Consider the matrix with entries e;; = (e, ¢, €,), < m,
j<n. Let ¢ be the smallest index such that the elements ¢,, are not
all equal to ¢,. Such a ¢ exists because ¢;,, =e¢,,, and ¢ > 0 because
€0 = €. If ¢ is 0dd, then ¢, = ¢, ,_, = ¢, and we can therefore choose
p<mn so that e, , = €, #¢€,,,,. In this case let ¢ =¢, and d = ¢,,, 4,
and consider the 1-translations f(x) = t,(€o, €., %) and g(x) = t,(ey, &, €,)
In the alternative case, where ¢ is even, and therefore e, , = €, ,_, = €,
choose p < m so that e,, # €, = €,,,4, and let ¢ =¢,,, d = ¢y, f()
= t,(€0y €,y ) and g(x) = t,(¢y, 2, ¢,,). In either case we have

{cy d} = {f(eo)y flen)} = {g(€p)y 9(€p11)}s
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and hence (¢, d) € I'y(¢y, €,) N I'y(e,, €,,,), 80 that (e, e,) and (e, ¢,,,)
are 1l-bounded.
LeEMMA 3.2. For all A e ¥, and a,b,a’,b’' € ¥,

con(a, b)ncon(a’, d’) 0 = I'(a, b)nI'(a’, b’) # 0.

Proof. Suppose that con(a, b) and con(a’, b’) identify two distinet
elements ¢ and d. Then there exists a sequence ¢ = é,, € €5y ..., 6, = @
such that (e, e.,,) € I'(a,d) for i <m. As in the preceding proof, let
€.; = (e, €, €y), and choose p <m and ¢ <n so that the elements
¢ =e,, and d' =e¢,,,, are distinct. Then (¢, d’) € I'(a’, b’), and we
also have (¢’, d’) € con(a’, b’), since con(a’, b’) identifies every one of the
elements ¢, ; with (¢, €y ¢;) = ¢,. Thus there exists a sequence ¢’ = €0
€1y .00y by = d' with (€}, €,,)el(a’,b’) for i<m'. By the preceding
lemma, there exists an ¢ < m’ such that (¢’, d’) and (¢;, ¢;,,) are 1-bounded,
and we conclude that (a, b) and (a’, b’) are bounded, i.e., that I'(a, d)Nn
NnI'(a’,b’) #0.

LEMMA 3.3. For any elementary subclass € of ¥y, €ys; 18 elementary
iff R(%FBI) < 00,

Proof. For each k€ we construct a first order formula g, («, y, #', ¥')
such that, for all A € ¥ and for all a,b,a’,b' € A, A F ¢,(a, b, a’, b’)
iff (a, b) and (a’, b’) are k-bounded. (It is essential here that the similarity
type of ¥, is finite.) By Lemma 3.2, an algebra A € ¥, is FSI iff it
satisfies the infinite formula that is the disjunction of the equations
o = y and 2’ = y' and of the formulas ¢, (2, ¥, &', ¥’') with k € w. It follows
that if ¥pg is elementary, and therefore closed under ultraproducts,
then it must satisfy the disjunction of finitely many of these formulas.
In fact, since the formulas ¢, decrease in strength as %k grows larger,
€ps; must satisfy the disjunction of z =y, ¢’ =y’ and one formula
ox(®y y, @’y y'). The smallest such % is clearly the radius of @yg;.

Conversely, if R(€gg;) = k < oo, then @pg; is precisely the class
of those algebras A € ¥ which satisfy the disjunction of ¢ =y, o' =9’
and ¢.(x, vy, 2', ¥'), and therefore €yg; is elementary.

LeMMA 3.4. If R(¥ 5g1) = k< o0, then R(¥") < k+2.
Proof. Consider any A € ¥ and a,, b, a,, b, € 4, and suppose that

K(e, d) e con(a,, by)Ncon(a,, b,) and o #d.

There exists an epimorphism of 4 onto an SI-algebra A’ which maps
¢ and d onto distinct elements. It follows that a, # b, and a, # b;, where
the primes denote images in 4’. Therefore, (a,, b;) and (a;, b;) are k-bounded,
say

(u, v) € I (ag, bo)NTi(ay, b;) and  w #o.
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It is easy to see that there exists (v;, v,) € I';(a,, b;) such that w; = u
and v; = v. In fact, suppose that f’ is a k-translation in 4’ with f'(a;) = u
and f’'(b;) = v. The corresponding k-translation of A is then obtained by
replacing each element of A’ that is used in the construction of f' by
one of its counterimages in A, and we let w; = f(a,) and v; = f(b,).

We now choose a j < n so that the elements u* = #,(u,, u,, v,) and
v* = {;(%,, vy, v,) are distinet. This can be done because in A’ we cannot
have #;(u, w, v) = (4, v,v) for all j <mn, since this would imply that

U =to(uy u,v) =t (u, u, v) =1t,(u, v, 0) =1 (u v 0) =1ly(u, v, v)
= ty(u, u,v) =... =t,(u,v,0) =0.

Observe that (u*, v*) € I'y(u,, v,) and (u*, u,), (%o, v*) € I'y (%, V,), a8
is seen by considering the 1-translations ?(u,, @, v,), %(%,, %, ) and
t(ugy vy, 7). Applying Lemma 3.1 to the sequence u*, u,, v*, we see that
either (u*, v*) and (u*, w,) are 1l-bounded or else (u*, v*) and (u,, v*)
are 1-bounded. In either case, (u,,v,) and (u,,?,) are 2-bounded, and
therefore (a,, b,) and (a,, b,) are (k- 2)-bounded.

4. Principal theorem. The promised generalization of Baker’s the-
orem is now easily proved.

THEOREM 4.1. If ¥ 48 a congruence disiributive variety of a finite
similarity type, and if ¥ pgr 18 sirictly elementary, then ¥~ i8 finitely based.

Proof. By Lemma 3.3, R(¥gg) = k is finite, and hence R(7¥")
< k42 by Lemma 3.4. We let # be the class of all A € ¥, with R(A)
< k+2. Bince ¥, is strictly elementary and the condition R(4) < k+2
can be expressed by a first order formula, # is a strictly elementary class.
Obviously, R(®pg;) < k+2, and SBypg; is therefore strictly elementary
by Lemma 3.3. Since ¥"'n®Bpg; = ¥ per i8 strictly elementary by hypo-
thesis, we can apply Theorem 2.1 with € = @pq;, and we conclude that
¥ is finitely based.
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