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1. Introduction. In this paper we investigate metric spaces which admit
so-called «-zero-bases (¢ is a cardinal number cofinal to w) — a
generalization of zero-bases introduced by A. Lelek in [9], p. 12-23, and
further discussed by A. Lelek in [10] and by R. Duda and R. Telgarsky in
[4]. In our consideration we use the results of A. H. Stone on absolutely
Borel and a-analytic sets ([11], [12]). We generalize here some theorems of
A. H. Stone. We also consider some other cover properties of metrizable
spaces.

The author is very much indebted to the referee for his valuable
suggestions.

2. Preliminaries. Metric spaces are denoted by ordered pairs of the form
(X, d). If (X, d) is a metric space, then we use the notation:

B(x,e)={yeX: d(x,y)<e} and B(x,¢)={yeX: d(x,y) <e).

If X is a topological space, then w(X) is the weight of X. If B is an
ordinal number, then cf(B) denotes its cofinality. If g is a cardinal number,
then B* denotes the first cardinal number greater than g.

In this paper a always denotes a cardinal number of the cofinality w.
If a is given, then we assume that a sequence {a,: n <} is also given, in
such a way that each a, is a cardinal number less than a, a, <a,,,; and
Ya, =lima, =a.

3. a-zero-bases. Let (X, d) be a metric space. A family ¢ of subsets of X
is called an a-zero-family if

(i) |« <a, and

(i) for each ¢ > 0 we have |[{Aeo/: diamA4 > ¢}| < a.

If moreover &/ is a covering of X (resp. a basis for the topology of X),
then we call it an a-zero-covering (resp. a-zero-basis) of (X, d). Clearly, N,-
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zero-basis coincides with a zero-basis. If a metric space (X, d) admits an a-
zero-covering (resp. a-zero-basis) and Y < X, then also (Y, d) admits an a-
zero-covering (resp. a-zero-basis).

We say that a metric space (X, d) is a-totally bounded if for each ¢ > 0
there is a set D — X such that |D| < « and if xe X is any point, then there is
ye D such that d(x, y) <e. In the case « = X, we get the notion of totally
bounded metric spaces.

THEOREM 1 (a generalization of [4], (5.7), p. 79). If (X, d) is an a-totally
bounded metric space, then it admits an a-zero-basis.

Proof. For each positive integer n let D, be such a subset of X that |D,|
< a and for each point xe X there is ye D, such that d(x, y) < 1/n. Then the
family {B(y, 1/n): yeD,, 0 < n < w} is easily seen to be an a-zero-basis of
(X, d).

Lemma 1 below is a generalization of [5], Theorem 4.3.3, p. 334, and
the proof of it is a simple modification of the proof given in [5] for the case
o = Np:

Lemma 1. Let {(X,, ¢,): n <} be a family of nonempty metric spaces
such that each metric ¢, is bounded by 1. The Cartesian product []{X,:
n <) with the metric ¢ defined by the formula

Q(xa y) = Z 2—nQn(xm yn)

(where x = (xq, Xy, ...) and y = (yo, ¥1, -..) is a-totally bounded if and only if
all spaces (X,, 0, are a-totally bounded.

Let I denote the closed unit interval [0, 1] of real numbers and let S be
any infinite cardinal number. For each y < f put I, = I x {7} and let R be an
equivalence relation in the set {J {I,: y < B} the only nondegenerate class of
which is {(0,y): y <B}. The quotient set J, =) {l,: y <B}/R can be
metrized by the formula
Flei=xl if oy =9,

30 +x) if oy #72
We consider J; as a topological space, the topology of which is

introduced by ;. The space J; is called the hedgehog of spininess B (see [5],
Example 4.1.5, p. 314-315).

Lemma 2. If a >N, then J,xJ,x ... can be embedded into J, x
XJgy X ...
ay

Proof. It suffices to show that

(») J, can be embedded into J‘,k1 xJ

65 ([x1> 711, [¥2, 72]) = {

aiy X ...for any 0 <k, <k, <...

Indeed, if we take any partition of {1,2,...} into an infinite family
[tky, k5, ...}: i=1,2,...} of infinite sets, then (by (*)) J, xJ, x ... can be
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embedded into
H{Jakil XJak.‘zx =120,

But the last space is homeomotphic to J, xJ,, x ..
To show () we put o, =ao and

[x, 8]  if B<u,
X, 1 if B>,

for 0 < n < w. It should be clear that mappings f,: J, » J, are continuous

and, moreover, the family {f,: 0 <n < w) separates points and closed sets
([5], p. 110). By [5], Theorem 2.3.20, p. 114, the mapping f: J, —Jy X

XJay ) X S SO =i, £2(0), ...), is an embedding. .

Note that f(J,) is not closed in J‘,,k1 mek2 x ... Indeed, {[1,a ]: 0 <n
< w} is a sequence which does not converge in J, and {f([1, o ]): 0<n
< w} is a sequence which converges to a point ([1, o], [1, a1, [1, %,], -..)
of Jakl ><Jc,k2 X ..

ProBLem 1. Is J, xJ, x ... homeomorphic to J,, xJ,, x ...7 (P 1307)

THEOREM 2. If X is a metrizable space of the wezght o > Wo, then there
is a metric d such that the space (X, d) admits an a-zero-basis. If, moreover, X
is topologically complete, we may choose a metric d such that (X, d) is
complete and admits an a-zero-basis.

Proof. By [5], Theorem 449, p. 353, X is embeddable into J, x
xJ, x ..., so by Lemma 2, we can consider X as a subset of Jay XJay X ...
Since w(J,,)) <a, we see that each (J, , é,) is a-totally bounded. By Lemma

1, the space (J,, xJ,, X ..., J;), Where

f;n([xs ﬁ]) = {

O (x4, X2, .. ), (X}, X5, ..)) = Zl 27", (Xn, X3,

is also a-totally bounded, so by Theorem 1, it admits an x-zero-basis and
therefore so does its subspace (X, d,). To obtain the second statement we
repeat the above consideration for the space J, xJ,,x ... xRxRx ...(R

is the real line), because, if X is a topologically complete subspace of a
metrizable space Y, then X is homeomorphic to a closed subset of YxR x
xR x ... (see [5], Lemma 4.3.22, p. 341).

ProBLEM 2. Does R xR x ... admit a complete metric d such that there
exists an ¥,-zero-basis of (R xR x ..., d)? (P 1308)

THeOREM 3. If a metric space (X, d) udmits an a-zero-basis, then for any
dense subset Y of X and any sequence (¢, > 0: n < w} such that lim ¢, =0,

n—wo

the basis B = {B(x, ¢,): xe Y, n <) contains some a-zero-basis #' of (X, d).
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Moreover, we can represent #' as a union \J{#,: n < w}, where |#,| <a and
B, < |B(x,¢&): xeY).

Proof. We may assume that X contains no isolated point (because
w(X)<a and hence |{x: x is an isolated point of X}/ <a) and that
Eg>& > ...

Let of be an a-zero-basis of (X, d). Put

Ao ={Ae: diamA4 > g}
and
A, ={AeA: ¢,_, >diamA >¢,} for O<n<o.

Since </ is an a-zero-basis, we may index elements of </, in such a manner
that o, = {45: B <a,} for some cardinal number a, < a. Moreover, for each
n <w the farmly U{: k = n) is still a basis for the topology of X. Let
xe A8 nY be any point, for 0 <n<ow, f <a,, so A5 = B(xf, ¢,_,). Put

B ={B(xh,¢e,1): 0<n<ow,p<a,,

so #' is an a-zero family. We show that #’ is a basis. Let us take any xe X
and & > 0. There is n < w such that ¢, < ¢/2 and there is Ae) {,: k > n}
such that xeAd < B(x, ¢,). Hence A = A% for some m >n, B <a,. This
means that

xeB(x, e¢m-1)  B(x, 2¢,) < B(x, ¢).

THeOREM 4. Let (X, d) be a metric space such that X =) {X,: n < ®},
where each (X,, d) admits an a-zero-basis. Then (X, d) also admits an a-zero-
basis.

Proof. Let n < w be fixed. By Theorem 3, the space (X,, d) admits an

a-zero-basis #" such that

B = (B 0<k <o),
where
#; = {Bx, (X2 (B), 1/k): B <} for some ¥} <a.
The family {By(xi(f), 1/k): k>n,n<w, p <y} is an a-zero-basis
of (X, d).
Theorem 4 is a generalization of [4], (5.2), p. 77.

ProsLEM 3. Does (X, d) admit an a-zero-basis provided X = |J {X,:
B <a}, where each (X, d) admits an a-zero-basis? (P 1309)

THEOREM 5. Let (X, d) be a complete metric space such that for each ¢ > 0
there is n > 0 such that, for each xe X,

(i) the ball B(x, €) contains a set D, |D| =a and for any y, y'eD, if y # ¥,
then d(y, y) = n.

Then (X, d) does not admit an a-zero-basis.
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Proof. We may assume that w(X) =a. By (i) we get a sequence
{e.: n < w} of positive real numbers such that ¢, = 1 and for each n < @ and
each xe X the ball B(x, ¢,) contains a set D} such that |[Df| = a and for any
y,yeDy, if y#y, then d(y,y)=Se,+,. Therefore ¢,> S¢,,; and
lim ¢, = 0.

n—®o

Now we inductively define sets A, ={a;,. 45,€X: Bo, ..., Bn <o} for

each n < w. If a is any fixed point of X, then put 4, = D?. Suppose that 4,
is already defined for some n < w and put

Ap+1 = U {D3: xeA,},
where
D:ﬂo---ﬁn = {ag,..54: B <a} for any B, ..., B, <.

For any n <w, B, ..., B. <a put

Bpo...p,, = CI(U {B(aﬂo...p,,...p,,+,,,, Enim+1): M <@, Buiyy ooy Ppam < a}).
We have
Bpo...p,, < B(aﬂo...ﬂ,,a Sen+1/4)
by the triangle inequality for the metric d. Hence if xe By, yeBg, 4 and
Bm # B for some m, 0 < m< n, then
d(X, ) 2 (5—2tms1 > 26msq = 2,

In this way we have obtained the following statement:
there is no ball B(z, ¢€,,,), ze X, such that both

() Bg,.p5,"B(z, &441) # O and By, 5. N B(z, €444) # D for any n < o,
Bo Bo, -- -5 B, B <@, B # B for some 0 < m < n.

Let us suppose that the basis # = {B(x,¢,): xeX,0<n<w} of X
contains some a-zero-basis #' of (X, d). We have #' = ) {#,: 0 <n < w)},
where 8, < {B(x, &,): xe X} and hence |#,| < «. Therefore by (ii) there is y,
<a such that B,  n ()&, = O. Let us suppose that we have already defined
all yo, ..., 7, for some n <w. By (ii) there is y,,, <a such that

Byo...y,,y,,+ 1 N UQ:H-Z =0.
We have B, o B, , > ...; B, ., is closed for n <w, and
lim (diamB,  ,) < lim ¢,,,5/4 =0,

so by the completeness of (X, d), the intersection (){B,, ., : n <} is a single
point x,. Since xo€B,, ,, we see that xo¢(J4,., for each n <w, so

xo¢ (J#'. This means that #' is not even a covering of X. By Theorem 3
(X, d) does not admit an a-zero-basis.
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CoroLLARY 1. Let X be a Banach space and let d be a metric on X induced
by its norm. Then dim X < oo if and only if (X, d) admits a zero-basis.

Proof. If dim X < oo, then X is locally compact and separable. Thus X
is o-compact, so by [4], (5.8), p. 79, (X, d) admits a zero-basis.

~ If dimX = oo, then X is not locally compact at any point, so if xe X,
then there is no totally bounded neighbourhood of x (since (X, d) is
complete). This shows that (X, d) fulfils the assumptions of Theorem $
(because each Banach space is metrically homogeneous).

Remark 1. Corollary 1 can be obtained with the use of [3]. Theorem
on p. 143, [3], Remarks on p. 145, and the fact that each open ¥,-zero-
covering of a metric space contains a locally finite subcovering ([10], p. 211).

Example. Let D, denote a discrete space of the cardinality g > N,.
Then (Bg. dg) is a metric space, where

By = |(do, d;, ...): dye Dy, n < w)
and
dg((do, dy, ...), (do, dy, ..)) =(min |n: d, #d, +1)"!

for distinct points of By. It is easy to verify that Bg is homeomorphic to the
countable product of Dy with itself and that (By, dg) is a complete space. For
the properties of (B, dp) see [11], p. 5-8.

(a) From Theorem 5 it follows that (B,, d,) does not admit an a-zero-
basis.

(b) Suppose that a > N,. By [11], 24 (1), p. 7, the product space
C,=[]{D,,: n<w} with the metric o, is a complete metric space

homeomorphic to B,, where
0u((do, dy, ..), (do, dy, ..)) = (min {n: d, # d} +1)""
for distinct points of C,. The family

doy - dpydpyyy ..): dyyr€D d,.,eD L

an+1° n+2° )

n<o,dyeD,,...,d,eD, }

ag’
is an a-zero-basis of (C,, d,).

CoroLLARY 2. If a metrizable space X contains a closed subset Y
homeomorphic to B,, then there is a metric d on X such that (X, d) does not
admit an a-zero-basis. If X is topologically complete, we may assume that
(X, d) is complete.

Proof. It follows from the part (a) of our Example and [6] (see also
[5], Exercise 4.5.20 (c), p- 369). The second statement follows in the same way
from Example and [2] (see also [S], Exercise 4.5.20 (f), p. 369).

4. a-nucleus. Suppose that a >N, and let X be a metrizable space.
We say that
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() X is a-scarce, if X =) {X,: n <w}, where w(X,) <a;

(i) X is a-scarce at the point x, if there is an open set U, xeU c X,
such that U is a-scarce.

If, moreover, w(X) < a, then we define an a-nucleus n,(X) of X as a set
of all points of X at which X is not a-scarce. Therefore n,(X) is a closed
subset of X and if Y < X, then n,(Y) < n,(X).

The notion of an a-scarce space is quite similar to the notion of a space
g-locally of weight < a introduced by A. H. Stone ([12], p. 251) and an a-
nucleus of a space is the same as a “nowhere olw (< a) kernel” (ifw(X) < a)
([12], p. 254).

THEOREM 6. If X is a metrizable space such that w(X) < a > ¥N,, then

(@ if X=U{Xs: Bp<a} and n,(Xp) =, for each B <a, then X is
a-scarce

(b) if @# U cn,(X) is open in n,(X) and U =) {Up: B <a}, then
there is Bo <o such that n,(Ug ) # 9;

() n(X)=0 if and only if X is a-scarce;

(d) n,(n (X)) = ny(X);

(e) if, moreover, X is topologically complete, then X = n,(X) if and only
if for each nonempty open subset U of X we have w(U) = a.

Proof. (a) Since w(X;) < w(X)<a, we see (by [5], Theorem 1.1.14,
p. 34) that there is an open (in X;) covering ,Uj}: y <a} of X, such that
Up=UU}" n<w} and w(U}") <a, <a for each y, B <a. Hence

X=U{U" vy, B<a; n<w}.
Put .
Y=U!Uy: n<k; B,y <a,) for k<o,

so w(¥) <o ok and X =) |Y;: k < w} because lima, = a.
(b) If such B, does not exist, then by (a) U is a-scarce, i.e.,

U=U!U, n<a), where w(U,<a.

Since U is open in n,(X), there is a set V open in X such that
U = n,(X)n V. Since V\U < X \n,(X) is open and w(V\U) < a, we can find
(by [5], Theorem 1.1.14, p. 34) an open (in X) covering {V}: f <a} of V\U
by a-scarce sets. Therefore n,(V;) = O for f < a, n,(U,) = O for n < w. By (a)
V is an «-scarce set, so U < V < X\n,(X) — a contradiction.

(c) follows from (a). (d) follows from (b) and (c). (e) is an easy corollary
to [12], 2.2 (7), p. 255.

Remark 2. The part (a) of Theorem 6 shows that [12], Theorem 3,
p- 260, is true for uncountable cardinals of cofinality w, without the assump-

tion of Generalized Continuum Hypothesis (compare it with [12], Remark,
p- 261).
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From Theorem 6 (e) we obtain

CoroLLARY 3. (a) n,(B,) = B, for a > N,.

(b) If X is a Banach space, w(X) = a > N,, then n,(X) = X.

We say that a metrizable space X is absolutely a-analytic (o > N,) if X is
a continuous image of B,. It follows that each absolutely Borel metrizable
space of the weight < a is absolutely a-analytic (see [11], Corollary 3.6, p.
15). For other properties of absolutely a-analytic spaces see [11].

THEOREM 7. If a > N, and X is an absolutely a-analytic space such that
n,(X) # O, then X contains a closed subset T homeomorphic to B,.

Proof. Put Y =n,(X), so Y is an absolutely a-analytic set (as a closed
subset of X). Therefore there is a continuous map f from B, onto Y. Let g be
a fixed metric on Y. Let P be the set of all finite nonempty sequences of
points of D,. If ¢ =(d,, ..., d,)e P, then put [(6) =n and

Ba = {(0', d,.+1, d"+2, ) =(d1, ceey d,', dn+1, .-.)GBa: d"+1, d,,+2, ...GD,}.

Let R be the set of all finite sequences (including the empty sequence O)
r={(e, ..., e, such that e,eD,,, for 1 <k < n, and let Q be the set [] {D,,:

0 <k <w)]. If reR, then let I(r) be its length.

If u and v are sequences such that either u, ve P or ueR, ve Ru Q, then
u<v denotes the fact that v is an extension of u (so, in particular,
I(u) < 1(v)).

We inductively construct families {¢, > 0: reR} and {g,€ P: reR\ {O}}
such that:

@) & < 1/(I(N+1);
(i) if ry, rye R\{@}, ry <ry, l(r;) <l(ry), then

o, <o,, and I(o,) <l(o,,);
@iii) if r, ry, r,eR, ry #ry, r<ry, r<ry and l(ry) = l(r;) = I(r)+1, then
o(f(B(a,). f (B(s,))) > &;

in particular,

(iiiy B(s, ) B(o,,) = B;

(iv) if re R\{@}, then n,(f(B(0,)) # B.

Let us suppose that for some n < we have already defined ¢, and o, ,
for each r, r eR, I(r) = n = I(r,)—1, such that (i}iv) hold. Let r, eR, I(r,)
=n+1, be fixed and let re R be the unique sequence from R such that
r<r, and I(r) = n. By (iv) the set A = n,(f(B(s,,))) is nonempty, so w(A)
=a and hence we can find 0 <¢g, <1l/n+2) and a set

D = la;: deD,  ,} < A

such that g(a, @) > 3¢, for a, a'eD, a+# a'. Let a;eD be fixed. Since f is
continuous and a,,ef(B(a,l)), we can find o, g€P (f ry =(d,, ..., dy:y),
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then (r,,d)=(d,, ..., d,+,, d)) such that

a(rl.d) '< arl ’ l(a(rl,d)) > I(O',l)
and

4 Ef(B(O'(rl.d))) < B(ay, &,,).

Moreover, by Theorem 6 (b), we can take O,y Such that
n.(f (B(0,.4))) # O. This finishes our induction.
Put

C.=U{B(g,): reR, I(r)=k}, for each 0 <k < w,
and
C=N{C:0<k <w},

so C is a Gsubset of B,. By (ii) and (iii), it is not difficult to see that C is
homeomorphic to B, — this follows from [11], Theorem 1, p. 6 (the
argument is similar to the consideration in [11], p. 7).

Put o, = [cI(f(B(s,)): reR, I(r)=n}, so by (iii) ./, is a discrete
family, for each O <n<w. Put T, =, and T=N{T,: O<n<w},s0 T
is a closed subset of X (becuase Y is closed in X). It suffices to show that the
map g: C- T, g(x) =f(x) for xeC, is a homeomorphism.

By (ii) the intersection () {B(c,): re R\{@}, r <gq} is a single point
b,eC, for each ge Q. Moreover C = {b,: qeQ}. For each geQ we have

g(b) =f(b)eN {cI(f(B(s,)): reR\{@}, r<q} =T
and by (i)
limdiam (c1(f (B(s,)))) = 0.

I(r) 2

This shows that g is well-defined. Moreover,
T < U {N{cl{f (B(0))): reR\!0); r<gq}: geQ} =4(O),

i, g maps C onto T. By (iii) g is a one-to-one map and it is continuous as
a restriction of the continuous map f. The inverse map g~ !: T — C is con-
tinuous because the family {B(s,)"C: reR\{Q}} is a basis of C and
g(B(6,)nC)=f(B(s,)nC) =f(B(o,) is a closed-open subset of T (since
each family «/, is discrete).

Remark 3. Theorem 7 generalizes [11], Theorem 22, p. 37, and [12],
Theorem 2, p. 259, which were stated in the case of an absolutely Borel space
X. Compare Theorem 7 also with a discussion in [12], Remark on p. 259.

CorOLLARY 4. If & > Ny and X is an absolutely a-analytic space, then the
following conditions are equivalent:

(a) X contains a subset homeomorphic to B,;

(b) n,(X) # 3;

() X contains a closed subset homeomorphic to B,.
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Proof. Indeed, if X contains a subset Y homeomorphic to B,, then by
Corollary 3 (a) we have O # n,(Y) < n,(X), so (a)=(b).

Remark 4. (a) Using Theorem 7 one can show the following
generalization of [12], Theorem 5, p. 262: if a > X, and X is an absolutely
a-analytic space, then n,(X) =) [Y <« X: Y is homeomorphic to B,} (the
proof is similar to the proof of [12], Theorem 5, p. 262).

(b) The implication (a) = (c) of Corollary 4 is rather surprising but using
some ideas of the proof of Theorem 7, the reader can show that if a
metrizable space X contains a subset Y homeomorphic to B,, then X
contains a closed subset Z homeomorphic to B, such that Z c Y.

5. Hurewicz spaces. Let B, y be cardinal numbers and let X be a
topological space. We say that X is a (B, y)-Hurewicz space, if for any family
o = |y & <y} of open coverings of X there exists a covering %
= {%s: 0 <y} of X such that 4, of; and |%, < B for each é <.
Therefore if X is a (B, y)-Hurewicz space and f, y are cardinal numbers,
B =8 7 =9 then X is also a (f, y)-Hurewicz space. Moreover, if a
topological space Y is either a continuous image or a closed subset of a
(B, y)-Hurewicz space, then Y is again a (f, y)-Hurewicz space. It is clear
that each compact space is an (N,, 1)-Hurewicz space, moreover, each o-
compact space is an (N,, No)-Hurewicz space.

(o, No)-Hurewicz spaces were introduced by W. Hurewicz in [7]
(property E*). Then they were investigated by A. Lelek in [10] (the name
“Hurewicz space” was introduced there). In [10] the reader can find basic
properties of (N,, No)-Hurewicz spaces and more complete references than
given here.

If X is a topological space, then we define H(X) as the least cardinal
number y such that X is a (w(X), y)-Hurewicz space, so 1 < H(X) <|X].

LeEMMA 3. If X is a topological space, then each wgll-ordered by inclusion
(either increasing or decreasing) sequence of open subsets of X has at most
w(X) distinct elements.

Proof. It is a slight modification of [1], IV, § 7, Theorem 31 (the Baire—
Hausdorff Theorem), p. 161.

THeOREM 8. Each topological space X is a (2, w(X)*)-Hurewicz space.

Proof. Let {of;: B <w(X)"} be any family of open coverings of X.
Let us suppose that for some cardinal number y < w(X)* we have already
defined the sequence [Aze.ofp: B <y} If X\J{Ap: B <y} =0, then let
A,e o/, be any set and in the opposite case let x be any fixed point of
X\U{Ag: B<y} # O and let A, be any set from &/, such that xe A..

Put C,={4s: B<y} for each y <w(X)*. The family {C,: »
< w(X)*} of open sets is well-ordered by inclusion, so by Lemma 3, it has at
most w(X) distinct elements. This means that for some y, < w(X)*, the set
X\C,, is empty, ie., the family {4;: B <7y} is a covering of X.
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CoROLLARY 5. If X is a topological space, then H(X) < w(X)?*.

THEOREM 9. If X is a topological space, X = |){X,: ¢ <y} and each X,
is a (B, y)-Hurewicz space and y = N,, then also X is a (B, y)-Hurewicz space.

Proof. Let f: yxy—y be a fixed one-to-one and onto map (f does
exist because y > N,). Let {,: ¢ <y} be any family of open coverings of X.
Therefore

g": {{XJ(\A AEM.,}: 0'=f(5, ’7) fOI' ﬂ<'}’}

is a family of open coverings of X; for each 4 <y. Since X; is a (8, y)-
Hurewicz space, we see that there is a covering %° of X; such that

€ =U{%: n<y}
€ {X;nA: Ae A,y and |G <P for n<y.

If Ce ;¢ for some 8, n < , then let C’ be such a fixed element of o/, that
C=CnX;. If e<y, e=f(,n for some d, n<y then put ),
={C'eo,: Ce%’}. It is clear that the family | {<,: ¢ <y} is an open
covering of X such that |/} < B and &/, = o, for ¢ <y, ie, X is a (B, y)-
Hurewicz space.

The following Theorem 10 is a generalization of [10], Theorem 1,
p- 213.

THEOREM 10. Let X be a metrizable space such that w(X) <a. The
following conditions are equivalent:

(@) X is an (o, No)-Hurewicz space;

(b) for every metric d on X there exists an open a-zero-covering 4 of X
such that diamy(A) < 1, for Ae A,

(c) for every metric d on X there exists an a-zero-basis # of (X, d);

(d) there exists a metric d on X such that every basis # of X contains an
a-zero-covering & of (X, d);

(e) for every metric d on X each basis # of X contains an a-zero-covering
o of (X, d);

(f) for every metric d on X each basis # of X contains an a-zero-basis #'
of (X, d).

Proof. It suffices to show that (f)=(e)=(d)=(a)=(f) and
(f)=(c)=(b)=(a)=(f). The only nontrivial implications are: (b)=(a),
(d)=(a) and (a)=>(f). The proofs of them are quite similar to those of [10],
p. 213-215, given in the case a = N,. In the proof of (b) = (a) we should use
the following Lemma 4, analogous to [10], Lemma 1.10, p. 213:

LemMMA 4. Let X be a paracompact space, w(X) < a and let o4y, oA, ...
be open coverings of X. Then there is a pseudo-metric p on X and open
coverings 6o, €1, ... of X such that %, refines o/, and for each Y c X
satisfying diam,(Y) < 27", Y intersects only finitely many elements of %,, for n
<.
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Tueorem 11. H(By)) = N;.
Proof. For each n < w put

d" = {{(do, dl’ ...)EBNO: dn+l’ d,,+2, "‘GDRQ}: do, N d.eDNo},

so each </, is an open covering of By,. The family {</,: n < @} shows that
By, is not an (N, No)-Hurewicz space, ie., H(Byy) > N,.

THEOREM 12. Each metrizable space X such that w(X) < a and n,(X)
= @, for some a > N,, is an (a, No)-Hurewicz space.

Proof. Since X is a-scarce (by Theorem 6(c)), we see that X = ) {X,: n
< w}, where w(X,) < a. Therefore each X, is an (a, N,)-Hurewicz space, so
by Theorem 9, also X is such a space.

THEOREM 13. Let X be an absolutely a-analytic space for some o > NR,.

(@) X is an (a, No)-Hurewicz space if and only if n,(X) = @.

(b) If n,(X) # O, then H(X) = H(B,).

Proof. (a) By Theorem 12 it suffices to show that if n,(X) # @, then X
is not an (a, N,)-Hurewicz space. If n,(X) # @, then by Theorem 7, X
contains a closed subset homeomorphic to B,, so by Corollary 2, there is a
metric d on X such that (X, d) does not admit an a-zero-basis. By Theorem
10, X is not an (a, N,)-Hurewicz space.

(b) Since X contains a closed subset homeomorphic to B,, we see that
H(X) > H(B,). But X is a continuous image of B,, so H(X) < H(B,).

CoROLLARY 6. If Generalized Continuum Hypothesis holds and X is an
absolutely a-analytic space for some a > NR,, then X is an (&, No)-Hurewicz
space if and only if |X| < a.

Proof. By [11], Theorem 22, p. 37, if | X| > a, then X contams a closed
subset Y homeomorphic to B; for some B such that |Bg| = B >a. By
Generalized Continuum Hypothesis, if f < a, then ﬂ < B* < a. Therefore
Y is homeomorphic to B,. By Theorem 13, X is not an (x, NX,)-Hurewicz
space.

Remark 5. If we do not assume Generalized Continuum Hypothesis,
then it may happen that %o »+1 (see [8], Theorem 37 (the Easton
theorem), p. 63). Therefore BNo W1ll be an absolutely ¥, -analytic space which
is an (N,, No)-Hurewicz space and |By| > N,.

ProsLEM 4. What is H(B,) for a > X,? (P 1310)
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