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1 Introduction

Various results involving commutative groups and rings have been
generalized by several authors (Timm [15], Crombez and Timm [2], Dudek
[4]) for the commutative n-ary case: still, in many cases commutativity
may be replaced by a weaker condition, namely semicommutativity (which
is a natural generalization of binary commutativity as well). The purpose
of this paper is to give a construction for (m,n)-rings of quotients of
a semicommutative (m,n)-ring, which generalizes the ones given by Crombez
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and Timm in [2] and by Paunić in [10]; we also study various constructions
involving reduced rings and rings of quotients and give some functorial
interpretations. We assume known the standard notions about n-
semigroups, n-groups and (m,n)-rings as they appear for example in [3],
[13], [1] and [14].

Notations and terminology. Throughout the paper we will make use
of similar notations to those in [11] and [8]. In order to simplify notations
we will often write

∑m
i=1 ai instead of [a1, . . . , am]+ and (an

1 )◦ instead of
(a1, . . . , an)◦; if k consecutive terms (factors) coincide we use the short

notation
(k)
a . An n-semigroup (R, ◦) is called:

commutative if for any permutation σ ∈ Sn, a1, a2, . . . , an ∈ R, we have

(a1, a2, . . . , an)◦ = (aσ(1), aσ(2), . . . , aσ(n))◦;

semicommutative if for any a1, a2, . . . , an ∈ R, we have

(a1, a
n−1
2 , an)◦ = (an, an−1

2 , a1)◦;

entropic or medial if for aij ∈ R, i, j ∈ {1, 2, . . . , n}, we have

((a1n
11 )◦, (a2n

21 )◦, . . . , (ann
n1 )◦)◦ = ((an1

11 )◦, (an2
12 )◦, . . . , (ann

1n )◦)◦;

i-cancellative with respect to S ⊆ R, where i ∈ {1, 2, . . . , n}, if for
sj ∈ S, j ∈ {1, 2, . . . , n} \ {i}, a, b ∈ R the following implication holds:

(si−1
1 , a, sn

i+1)◦ = (si−1
1 , b, sn

i+1)◦ ⇒ a = b;

cancellative with respect to S ⊆ R if it is i-cancellative for every i ∈
{1, 2, . . . , n}.

11 . (a) A semicommutative n-semigroup is entropic. (b) A right and left
cancellative n-semigroup (with respect to some subset) is cancellative (with
respect to the same subset).

12 . An algebraic structure (R, +, ◦) is called (m,n)-ring if:

(a) (R, +) is a commutative m-group,
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(b) (R, ◦) is an n-semigroup,

(c) multiplication ◦ is distributive with respect to addition +, i.e. for any
i ∈ {1, 2, . . . , n}, aj , bk ∈ R, j ∈ {1, 2, . . . , n} \ {i}, k ∈ {1, 2, . . . , m},
we have

(ai−1
1 , [bm

1 ]+, an
i+1)◦ =

m∑

j=1

(ai−1
1 , bj , a

n
i+1)◦.

13 . An (m,n)-ring (R, +, ◦) is calledcommutative, semicommutative,
entropic or cancellative with respect to S ⊆ R if the n-semigroup (R, ◦)
has that property. A zero in R (if it exists) is an element z ∈ R such that
for all a1, . . . , an−1 ∈ R, we have

( a) (z, an−1
1 )◦ = (a1, z, an−1

2 )◦ = . . . = (an−1
1 , z)◦ = z

R∗ denotes the set R \{0} if 0 exists and R otherwise. In an (m,n)-ring the
following relations hold:

(a1, . . . , an)◦ = (ai−1
1 , ai, a

n
i+1)◦, [a1, . . . , am]+ = [a1, . . . , am]+,

where a denotes the querelement (skewelement in other terminology) of a

in (R, +). If x ∈ R satisfies the equation (
(n−1)

a , x)◦ = a then x is the
multiplicative querelement of a and will be denoted by a.

2 (m,n)-rings of quotients of a semicommutative
(m, n)-ring

We shall first state two lemmas which will prove useful in the sequel. Note
that Lemma 22 appeared already, in a slightly different formulation, in [7].

Lemma 21. If an n-semigroup (R, ◦) is entropic then it is also true that:
(
(a1k

11)◦, (a
2k
21)◦, . . . , (a

pk
p1)◦

)
◦ =

(
(ap1

11)◦, (a
p2
12)◦, . . . , (a

pk
1k)◦

)
◦ ,

where p, k ≡ 1(mod n− 1).

Proof. The proof of this lemma is based on the following facts: for p =
n, k = 2n− 1, we have
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(
(a1,2n−1

11 )◦, (a
2,2n−1
21 )◦, . . . , (a

n,2n−1
n1 )◦

)
◦

=
(
((a1n

11 )◦, a
1,2n−1
1,n+1 )◦, ((a2n

21 )◦, a
2,2n−1
2,n+1 )◦, . . . , ((ann

n1 )◦, a
n,2n−1
n,n+1 )◦

)
◦

=
(
((a1n

11 )◦, (a2n
21 )◦, (ann

n1 )◦)◦, (a
n,n+1
1,n+1 )◦, . . . , (a

n,2n−1
1,2n−1 )◦

)
◦

=
(
(an1

11 )◦, (an2
12 )◦, . . . , (ann

1n )◦, (a
n,n+1
1,n+1 )◦, . . . , (a

n,2n−1
1,2n−1 )◦

)
◦ ,

and for p = 2n− 1, k = n, we have

(
(a1n

11 )◦, (a2n
21 )◦, . . . , (a

2n−1,n
2n−1,1 )◦

)
◦

=
(
((a1n

11 )◦, (a2n
21 )◦, . . . , (ann

n1 )◦)◦, (a
n+1,n
n+1,1 )◦, . . . , (a

2n−1,n
2n−1,1 )◦

)
◦

=
(
((an1

11 )◦, (an2
12 )◦, . . . , (ann

1n )◦)◦, (a
n+1,n
n+1,1 )◦, . . . , (a

2n−1,n
2n−1,1 )◦

)
◦

=
(
((an1

11 )◦, a
2n−1,1
n+1,1 )◦, )◦, . . . , ((ann

1n )◦, a
2n−1,n
n+1,n )◦

)
◦

=
(
(a2n−1,1

11 )◦, (a
2n−1,2
12 )◦, . . . , (a

2n−1,n
1n )◦

)
◦ .

Lemma 22 (see also [7], Corrollary 1). If (R, ◦) is a semicommutative
n-semigroup and p ≥ 2, p ∈ Z then for every permutation σ ∈ Sp and for
any a, bij ∈ R, i ∈ {1, . . . , p}, j ∈ {2, . . . , n}, we have

(
(. . . ((a, b1n

12 )◦, b2n
22 )◦ . . .)◦, b

pn
p2

)
◦

=
(
(. . . ((a, b

σ(1),n
σ(1),2 )◦, b

σ(2),n
σ(2),2 )◦ . . .)◦, b

σ(p),n
σ(p),2

)
◦ .

Proof. Recall that every permutation can be written as a product of
transpositions; now it suffices to note that, the operation ◦ being associative
and semicommutative, we have:

(
(a, b1n

12 )◦, b2n
22

)
◦ =

(
(a, b2n

22 )◦, b1n
12

)
◦.

23 . As consequences of the above two lemmas note that:
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(a) for k ≡ 0 (mod n− 1) we have

(
(a, sk

1)◦, t
k
1

)
◦ =

(
(a, tk1)◦, s

k
1

)
◦ ;

(b) for any σ ∈ Sp :

a

s1n
12 s2n

22 . . . spn
p2

=
a

s
σ(1),n
σ(1),2 s

σ(2),n
σ(2),2 . . . s

σ(p),n
σ(p),2

;

(c)
(a, sn

2 )◦
un

2sn
2

=
a

un
2

;

(d)
[
a1

sn
2

, . . . ,
am

sn
2

]

⊕
=

[a1, . . . , am]+
sn
2

.

24 . Let (R,+, ◦) be a semicommutative (m,n)-ring cancellative with
respect to a non-empty n-subsemigroup S of (R∗, ◦). On the set R×Sn−1 de-
fine the equivalence relation (see [2]) ”∼” by: (a, s2, . . . , sn) ∼ (b, t2, . . . , tn)
if (a, tn2 )◦ = (b, sn

2 )◦. The equivalence class of (a, s2, . . . , sn) is denoted by
a
sn
2

and we write RSn−1 for R× Sn−1/ ∼ . Note that the notation a
s1n
12 ...spn

p2
is

unambiguous (see the definition of ”∼”). Define now the n-ary multi-
plication in RSn−1 by:

(
a1

s1n
12

, · · · , an

snn
n2

)

?

=
(a1, . . . , an)◦

(sn2
12 )◦(sn3

13 )◦ . . . (snn
1n )◦

.

25 . In [12] M.S. Pop and M. Câmpian show that:

(i) (RSn−1 , ?) is an n-semigroup with unit (as an (n− 1)-ad) and there is
an injective homomorphism f : R → RSn−1 such that for every s ∈ S
the element f(s) ∈ RSn−1 has a querelement f(s).

(ii) if R′ is an n-semigroup with unit as an (n − 1)-ad and α:R → R′

is a homomorphism having the property that for every s ∈ S, α(s)
has a querelement in R′, then there exists a unique homomorphism
β:RSn−1 → R′ such that the diagram
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R -
α

R′

?
f

½
½

½
½

½½>

β

RSn−1

commutes.

As a consequence of this result note that every element of RSn−1 can be
described as:

( iii)
a

sn
2

=

(
f(a),

(n−3)

f(sn), f(sn), . . . ,
(n−3)

f(s2), f(s2)

)

?

.

We can state now the following

Theorem 26. Let (R, +, ◦) be a semicommutative (m,n)-ring cancellative
with respect to a non-empty n-subsemigroup S of (R∗, ◦), containing no
zerodivisors. Then there exists a unique m-ary operation ⊕ on RSn−1

such that the following conditions are satisfied:

(a) (RSn−1 ,⊕, ?) is a semicommutative (m,n)-ring with unit as
an (n− 1)-ad,

(b) the mapping f : R → RSn−1 , f(a) = (a,sn
2 )◦

sn
2

is an injective ring-
homomorphism.

Proof. Suppose first that there exists an operation ⊕ on RSn−1 satisfying
conditions (a) and (b); we prove that it is then unique. Indeed, the above
conditions (a) and (b), 25 (iii) and 22 imply that for any ai

sin
i2

, i = 1, . . . , m ,

we have

[
a1

s1n
12

, · · · , am

smn
m2

]

⊕
=

m∑

i=1

(
f(ai),

(n−3)

f(sin), f(sin), . . . ,
(n−3)

f(si2), f(si2)

)

?
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and that for i = 1, . . . ,m the following holds:
(

f(ai),
(n−3)

f(sin), f(sin), . . . ,
(n−3)

f(si2), f(si2)

)

?

def= (f(ai), A)? =

(
f(ai), f(s12),

(n−3)

f(s12), f(s12), A

)

?

=

(
f(ai), f(s12), f(s13),

(n−3)

f(s13), f(s13),
(n−3)

f(s12), f(s12), A

)

?

= . . .

=

(
f((ai, s

1n
12 )◦),

(n−3)

f(s1n), f(s1n), . . . ,
(n−3)

f(s12), f(s12), A

)

?

= . . .

=

(
f( (ai, s

1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦ ),
(n−3)

f(smn), f(smn), . . . ,

(n−3)

f(si+1,2), f(si+1,2),
(n−3)

f(si−1,n), f(si−1,n), . . . ,
(n−3)

f(s12), f(s12), A

)

?

22=

(
f((ai, s

1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦),
(n−3)

f(smn), f(smn), . . . ,
(n−3)

f(s12), f(s12)

)

?

and so, by using distributivity, the sum will be equal to:

(
m∑

i=1

f((ai, s
1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦),
(n−3)

f(smn), f(smn), . . . ,

(n−3)

f(s12), f(s12)

)

?

=

(
f

(
m∑

i=1

(ai, s
1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦

)
,

(n−3)

f(smn),

f(smn), . . . ,
(n−3)

f(s12), f(s12))? =
∑m

i=1(ai, s
1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦
s1n
12 . . . smn

m2

.

and this proves the uniqueness of the operation ⊕. In order to prove the
existence of an operation ⊕ on RSn−1 which satisfies (a) and (b), we define
⊕ by:

[
a1

s1n
12

, · · · , am

smn
m2

]

⊕
=

∑m
i=1(ai, s

1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦
s1n
12 . . . smn

m2

.

By using Lemmas 21, 22 and their consequences one proves that addition in
RSn−1 is well defined, it is an associative and commutative operation and the
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querelement of a
sn
2

in (RSn−1 ,⊕) is ā
sn
2

; therefore (RSn−1 ,⊕) is a commutative
m-group. It is shown in [12] that (RSn−1 , ?) is a semicommutative n-
semigroup
with unit as an (n− 1)-ad, for example


(

(n)
s )◦

(n−1)
s

, · · · , (
(n)
s )◦

(n−1)
s

,
s

(n−1)
s




is a lateral unit in RSn−1 for every s ∈ S; RSn−1 is cancellative with respect
to SSn−1 = { s1

sn
2
|si ∈ S, i = 1, 2, . . . , n}; f is an injective homomorphism of

n-semigroups and for every s ∈ S the element f(s) ∈ RSn−1 has a multiplica-
tive querelement f(s) = s

(n−1)
s

. The fact that f([am
1 ]+) = [f(a1), . . . , f(am)]⊕

follows from the properties of the operations in R and by the quoted two
lemmas, so f is a ring-homomorphism. Distributivity laws in RSn−1 also
follow by the properties of the operations in R and by the lemmas.

The (m,n)-ring (RSn−1 ,⊕, ?) is called the ring of quotients of R with
respect to S (or with denominators in Sn−1). It has the following universal
property which determines it up to isomorphism:

Theorem 27. Let (R, +, ◦) be a semicommutative (m,n)-ring cancellative
with respect to a non-empty n-subsemigroup S of (R∗, ◦). If RSn−1 is the
ring of quotients of R with denominators in Sn−1 and f : R → RS is the
canonical homomorphism defined in (26), then for any ring-homomorphism
α: R → R′, where (R′, [ ],¯) is a semicommutative (m,n)-ring with unit as
an (n − 1)-ad such that for every s ∈ S α(s) has a querelement in (R′,¯),
there exists a unique ring-homomorphism β: RS → R′ such that β ◦ f = α.

Definition 28. An (m,n)-ring R is called (m,n)-semidomain if it is
semicommutative, it has unit as a system of n − 1 elements and it is
cancellative with respect to R∗.

Note that if a (m,n)-semidomain R has a zero, then cancellativity
is equivalent to the non-existence of zerodivisors (see [2]). For (m,n)-
semidomains, we can also state the following:

Theorem 29. Any (m, n)-semidomain can be embedded in a semicom-
mutative (m,n)-division ring; the ring of quotients RR∗ n−1 is (up to
isomorphism) the unique minimal semicommutative (m, n)-division ring
with this property.
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3 (m,n)-rings of quotients and their reducts

31 . In the study of (m,n)-rings, as well as in the case of n-semigroups
or n-groups, it is always of interest to establish connections between the
given structure and its (binary) reduct. In the sequel we shall refer to the
Hosszù-type reduced operations and we shall make the following notations:

(a) redun−2
1

(A, ◦) (where (A, ◦) is an n-semigroup and u1, . . . , un−2 ∈ A are
fixed arbitrary elements) denotes the (binary) semigroup (A, ·), with
x · y = (x, un−2

1 , y)◦ .

(b) reda(G, ◦) (where (G, ◦) is an n-group, a ∈ G) denotes the (binary)

group (G, ·), with x · y = (x,
(n−3)

a , a, y)◦ .

(c) red(m,2)

un−2
1

(R, +, ◦) (where (R, +, ◦) is an (m, n)-ring, u1, . . . , un−2 ∈ R)

denotes the (m, 2)-ring (R, +, ·) in which addition remains unchanged
while binary multiplication is defined as above, i.e., x·y = (x, un−2

1 , y)◦.

(d) red(m,k)

ut−1
1

(R,+, ◦) (where (R, +, ◦) is an (m,n)-ring, n−1 = t(k−1) and

u1, . . . , ut−1 ∈ R) denotes the (m, k)-ring (R, +, ?) in which addition
remains unchanged and (xk

1)? = (x1, u
t−1
1 , x2, u

t−1
1 , . . . , xk)◦ . Similar

k-reducts for n-groups were introduced and studied by Dudek and
Michalski in [5] where a generalization of the Hosszú theorem was also
proved.

(e) red(2,n)
0 (R, +, ◦) (where (R, +, ◦) is an (m,n)-ring with zero 0) denotes

the (2, n)-ring (R,⊕, ◦) in which multiplication remains unchanged,

while binary addition is given by: x⊕ y = [x,
(m−2)

0 , y]+ .

First reducing and then constructing a ring of quotients or first
constructing a ring of quotients and then reducing it – we prove that
these two procedures lead to isomorphic results.

Theorem 32. Let (R, +, ◦) be a semicommutative (m,n)-ring, cancellative
with respect to an n-subsemigroup S of (R, ◦). Let u1, . . . , un−2 ∈ S and
(R, +, ·) = red(m,2)

un−2
1

(R, +, ◦). Then the (m, 2)-ring of quotients of (R, +, ·)
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with denominators in S is isomorphic to red(m,2)

vn−2
1

(RSn−1 ,⊕, ?), where

vi =
(ui,

(n−1)
s )◦

(n−1)
s

, i = 1, . . . , n− 2

(and (RSn−1 ,⊕, ?) denotes, as in Section 2, the (m,n)-ring of quotients of
R with denominators in Sn−1).

Proof. The mapping ϕ: (RS , ·) → redvn−2
1

(RSn−1 , ?), ϕ(a
s ) = a

un−2
1 s

is an

isomorphism of semigroups (see [8]); one also proves then that

ϕ
([

a1

s1
, . . . ,

am

sm

]

+

)
=

[
ϕ

(
a1

s1

)
, . . . , ϕ

(
am

sm

)]

⊕
and ϕ

((
a

s

))
= ϕ

(
a

s

)
.

A similar result can be stated for the more general case of (m, k)-reducts:

Theorem 33. Let (R, +, ◦) be a semicommutative (m,n)-ring, cancella-
tive with respect to an n-subsemigroup S of (R, ◦) and n − 1 = t(k − 1).
Let u1, . . . , ut−1 ∈ S and (R, +, ·) = red(m,k)

ut−1
1

(R, +, ◦). Then the (m, k)-

ring of quotients of (R, +, ·) with denominators in Sk−1 is isomorphic to
red(m,k)

vt−1
1

(RSn−1 ,⊕, ?), where

vi =
(ui,

(n−1)
s )◦

(n−1)
s

, i = 1, . . . , t− 1 .

Proof. The mapping

ϕ: RSk−1 → red(m,k)

vt−1
1

RSn−1 , ϕ

(
a
sk2

)
=

a
ut−1

1 s2ut−1
1 s3 . . .ut−1

1 sk

is an isomorphism of (m, k)-rings; note that an arbitrary fraction a
sn
2

in RSn−1

is the image under ϕ of the (uniquely determined) fraction

(a, ut−1
1 , s, . . . , ut−1

1 , s)◦
(k−2)

s (s, sn
2 )◦

∈ RSk−1 .
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4 The case of (m,n)-semidomains with zero

41 . In the special case of (m,n)-semidomains with zero some more results
can be given and even in a functorial way. We denote by:

(a) (m,n)SDom-the category which consists of (m,n)-semidomains with
zero as objects and injective ring-homomorphisms as morphisms;

(b) (m,n)SDR-the category which consists of semicommutative (m,n)-
division rings with zero as objects and injective ring-homomorphisms
as morphisms;

(c) (m,n)Fd-the category which consists of (m, n)-fields as objects and
ring-homomorphisms as morphisms.

In all cases, multiplication of morphisms is ordinary composition of
maps. Note that if R1, R2 are (m,n)-rings with zero and ϕ: R1 → R2

is a ring-homomorphism, then ϕ is injective if and only if ϕ(x) = 0
implies x = 0.

42 . Define now the following covariant functors:

(a) Quot: (m, n)SDom → (m,n)SDR sends an (m,n)-semidomain with
zero into its (m,n)-division ring of fractions, QuotR = RR∗ (n−1) and,
for ϕ ∈ Hom(R1, R2), Quotϕ ∈ Hom(QuotR1, QuotR2) is
defined by

Quotϕ

(
a

sn
2

)
=

ϕ(a)
ϕ(s2) . . . ϕ(sn)

.

(b) Red: (m,n)SDom → (2, n)SDom sends an (m,n)-semidomain with
zero into its (2, n)-reduced ring with respect to 0, RedR = red(2,n)

0 R,
and it leaves the morphisms unchanged, i.e. for ϕ ∈ Hom(R1, R2), we
have

Redϕ ∈ Hom(RedR1, RedR2), Redϕ (x) = ϕ(x) .

Note that the functor Red was already introduced and studied for the
case of n-groups in the papers [9] and [6].

(c) Fm: (m, n)SDom → (m, 2)SDR; for any (m,n)-semidomain R with
zero, FmR is obtained as the division ring of quotients of its
(m, 2)-reduct with respect to n−2 nonzero elements and, for
ϕ ∈ Hom(R1, R2),
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Fmϕ ∈ Hom (FmR1, FmR2) is defined by Fmϕ

(
a

b

)
=

ϕ(a)
ϕ(b)

.

The functor Fm is well-defined; indeed, let (R, +, ◦) be an (m,n)-
semidomain with zero,

u1, . . . , un−2, v1, . . . , vn−2 ∈ R∗, A = redun−2
1

R,

(Q1, +, ·) = AA∗n−1 , B = redvn−2
1

R, (Q2,⊕,¯) = BB∗ n−1 ;

we prove that, in fact, Q1 ≡ Q2. The fraction a
b means in Q1 :

a
b = {x

y | x ∈ R, y ∈ R∗, a · y = x · b}

= {x
y | x ∈ R, y ∈ R∗, (a, un−2

1 , y)◦ = (x, un−2
1 , b)◦} ,

while in Q2 :

a

b
=

{
x

y
| x ∈ R, y ∈ R∗, (a, vn−2

1 , y)◦ = (x, vn−2
1 , b)◦

}
;

note now that – since R is an (m,n)-semidomain – we have by cancel-
lation laws and semicommutativity:

(a, un−2
1 , y)◦ = (x, un−2

1 , b)◦

⇔ (a, un−2
1 , y, vn−2

1 , y)◦ = (x, un−2
1 , b, vn−2

1 , y)◦

⇔ (a, vn−2
1 , y, un−2

1 , y)◦ = (x, vn−2
1 , b, un−2

1 , y)◦

⇔ (a, vn−2
1 , y)◦ = (x, vn−2

1 , b)◦,

i.e. the fraction a
b means the same thing in Q1 as in Q2 (and so

Q1 = Q2 = Q). Furthermore, we have

a1

b1
· a2

b2
=

a1

b1
¯ a2

b2
and

[
a1

b1
, · · · , am

bm

]

+
=

[
a1

b1
, · · · , am

bm

]

⊕
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for any
ai

bi
∈ Q, i = 1, . . . , m.

(d) Pm: (m,n)SDR → (m, 2)Fd. Indeed, for any semicommutative
(m,n)-division ring D with zero, PmD is the (m, 2)-field (M/ ∼,+, ·) ,
where M is the set of all sequences of (n− 1) elements of D,

M = {(a1, . . . , an−1) | a1, . . . , an−1 ∈ D} ;

”∼” is the equivalence on M (see [13]) defined as:

[a1, . . . , an−1] ∼ [b1, . . . , bn−1] ⇔ ∀c ∈ D : (c, an−1
1 )◦ = (c, bn−1

1 )◦

(in fact, it is easy to prove that it is sufficient that the relation above
is verified for one c ∈ D); it is also easy to see that the relation above
implies ∀c ∈ D : (an−1

1 , c)◦ = (bn−1
1 , c)◦; the equivalence class of the

sequence (a1, . . . , an−1) is denoted by 〈a1, . . . , an−1〉; the operations in
M/ ∼ are defined by:

〈a1, . . . , an−1〉 · 〈b1, . . . , bn−1〉 = 〈(an−1
1 , b1)◦, b2, . . . , bn−1〉

[〈a11, . . . , a1,n−1〉, . . . , 〈am1, . . . , am,n−1〉]+

=
〈[

(a1,n−1
11 , u)◦, . . . , (a

m,n−1
m1 , u)◦

]
+
, u, . . . , u, u

〉
with u ∈ D∗.

For ϕ ∈ Hom(D1, D2), we have Pmϕ ∈ Hom( PmD1, PmD2),

Pmϕ(〈a1, . . . , an−1〉) = 〈ϕ(a1), . . . , ϕ(an−1)〉 .

Theorem 43. The diagram

(2, n)SDom

(m,n)SDom (m, n)SDR

(2, n)SDR-

-

? ?

Quot

Quot

Red Red

with categories and functors is commutative, i.e. Red ◦Quot = Quot ◦Red.
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Proof. Let (R, [ ]+, ◦) be an (m,n)-semidomain with zero. Then

RedR = red(2,n)
0 (R, [ ]+, ◦) = (R, +, ◦) ,

and for

ϕ: R1 → R2, wehave Redϕ: RedR1 → RedR2, Redϕ(x) = ϕ(x) .

Now Quot ◦ Red acts on objects as follows: Quot(RedR) = (Q,+,¯),
where

Q =
{

a

sn
2

| a ∈ R, s2, . . . , sn ∈ R∗
}

,

a

sn
2

=
{

x

yn
2

| x ∈ R, y2, . . . , yn ∈ R∗, (a, yn
2 )◦ = (x, sn

2 )◦
}

,

a

sn
2

+
b

tn2
=

(a, tn2 )◦ + (b, sn
2 )◦

sn
2 tn2

=
[(a, tn2 )◦,

(m−2)

0 , (b, sn
2 )◦]+

sn
2 tn2

,

(
a1

s1n
12

, · · · , an

snn
n2

)

¯
=

(a1, . . . , an)◦
(sn2

12 )◦ . . . , (snn
1n )◦

.

On morphisms Quot ◦ Red acts as follows:

Quot(Redϕ):Q1 → Q2,

Quot(Redϕ)
(

a

sn
2

)
=

Redϕ(a)
Redϕ(s2) . . . Redϕ(sn)

=
ϕ(a)

ϕ(s2) . . . ϕ(sn)
.

On the other hand,

QuotR = RR∗ n−1
def= (Q, [ ]⊕, ?),

Q =
{

a

sn
2

| a ∈ R, s2, . . . , sn ∈ R∗
}

,

a

sn
2

=
{

x

yn
2

| x ∈ R, y2, . . . , yn ∈ R∗, (a, yn
2 )◦ = (x, sn

2 )◦
}

,
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so the sets Q and Q coincide and

[
a1

s1n
12

, · · · , am

smn
m2

]

⊕
=

∑m
i=1(ai, s

1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , smn

m2 )◦
s1n
12 . . . smn

m2

,

=
(

a1

s1n
12

, · · · , an

snn
n2

)

?

=
(a1, . . . , an)◦

(sn2
12 )◦ . . . (snn

n2 )◦
,

and the zero in Q is 0 = { 0
sn
2
| s2, . . . , sn ∈ R∗}.

Now we will see how Red ◦Quot acts on objects and morphisms. We have:

Red( QuotR) = (Q,⊕, ?), where

a

sn
2

⊕ b

tn2
=


 a

sn
2

,

(m−2)

0
un

2

,
b

tn2



⊕

=
[(a,

(m−2)

un
2 , tn2 )◦,

(m−2)

0 , (b, sn
2 ,

(m−2)

un
2 )◦]+

sn
2 un

2 . . . un
2 tn2

=

(
[(a, tn2 )◦,

(m−2)

0 , (b, sn
2 )◦]+,

(m−2)

un
2

)

◦

sn
2

(m−2)

un
2 tn2

=
[(a, tn2 )◦,

(m−2)

0 , (b, sn
2 )◦]+

sn
2 tn2

,

multiplication ? remaining unchanged; we see now that Q and Q coincide,
i.e. Quot(RedR) = Red(QuotR) . On morphisms, we have

Red(Quotϕ)
(

a

sn
2

)
= Quotϕ

(
a

sn
2

)
=

ϕ(a)
ϕ(s2) . . . ϕ(sn)

= Quot(Redϕ)
(

a

sn
2

)

i.e. Red(Quotϕ) = Quot(Redϕ).

Theorem 44. In the diagram

(m, 2)Fd

(m,n)SDom (m, n)SDR

?

-
©©©©©©©©¼

Quot

Fm

Pm
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the two paths are naturally equivalent, i.e. Pm ◦Quot and Fm are naturally
equivalent functors.

Proof. Define θ: Fm → Pm ◦Quot, as follows: for each R ∈ (m,n)SDom,
θR: FmR → (Pm ◦Quot)R is given by

θR

(
a

b

)
=

〈
(a,

(n2−3n+2)

b )◦
(n−1)

b

,
b

(n−1)

b

, · · · , b
(n−1)

b

〉
.

We will prove that θ is a natural equivalence of functors. We will show that
for each (m, n)-semidomain with zero R, θR is an isomorphism and that
for any α ∈ Hom(R1, R2) (in (m, n)SDom) the diagram:

(D)
FmR2

FmR1 (Pm ◦ Quot)R1

(Pm ◦ Quot)R2
-

-

? ?
θR2

θR1

Fmα (Pm ◦ Quot)α

is commutative.
Let (R, [ ]+, ◦) be an (m,n)-semidomain with zero and FmR = (Q,+, ·),
where

a1

b1
· a2

b2
=

(a1, u
n−2
1 , a2)◦

(b1, u
n−2
1 , b2)◦

;

[
a1

b1
, · · · , am

bm

]

+
=

∑m
i=1 ai · b1 · . . . · bi−1 · bi+1 · . . . · bm

b1 · . . . · bm

=
∑m

i=1(ai, u
n−2
1 , b1, u

n−2
1 , . . . , bi−1, u

n−2
1 , bi+1, . . . , u

n−2
1 , bm)◦

(b1, u
n−2
1 , b2, . . . , u

n−2
1 , bm)◦

.

For a
b , c

d ∈ Q we have:
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θR

(
a

b
· c

d

)
= θR

(
(a, un−2

1 , c)◦
(b, un−2

1 , d)◦

)

=

〈
(a, un−2

1 , c,
(n2−3n+2)

(b, un−2
1 , d)◦)◦

(n−1)

(b, un−2
1 , d)◦

,
(b, un−2

1 , d)◦
(n−1)

(b, un−2
1 , d)◦

, · · · , (b, un−2
1 , d)◦

(n−1)

(b, un−2
1 , d)◦

〉
def= A

and

θR

(
a

b

)
· θR

(
c

d

)

=

〈
(a,

(n2−3n+2)

b )◦
(n−1)

b

,
b

(n−1)

b

, · · · , b
(n−1)

b

〉
·
〈

(c,
(n2−3n+2)

d )◦
(n−1)

d

,
d

(n−1)

d

, · · · , d
(n−1)

d

〉

=

〈((a,
(n2−3n+2)

b )◦
(n−1)

b

,
b

(n−1)

b

, · · · , b
(n−1)

b

,
(c,

(n2−3n+2)

d )◦
(n−1)

d

)
?
,

d
(n−1)

d

, · · · , d
(n−1)

d

〉

=

〈
(a,

(n2−2n)

b , c,
(n2−3n+2)

d )◦

(
(n−1)

b , d)◦ . . . (
(n−1)

b , d)◦
,

d
(n−1)

d

, · · · , d
(n−1)

d

〉
def= B.

Now the identity θR(a
b · c

d) = θR(a
b ) · θR( c

d) is equivalent to the identity:
(

x
(n−1)

x
,A

)

?

=

(
x

(n−1)
x

,B

)

?

, for some x ∈ R∗,

and further to the identity

(
x, a, un−2

1 , c,
(n2−2n)

(b, un−2
1 , d)◦,

(n−1)

(x,
(n−1)

b ,
(n−1)

d )◦
)
◦

=
(
x, a,

(n2−2n)

b , c,
(n2−2n)

d ,

(n−1)

(x,
(n−1)

(b, un−2
1 , d)◦)◦

)
◦ ,
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which (by cancellative laws and lemmas) holds. After some similar
computations one shows that

θR

([
a1

b1
, · · · , am

bm

]

+

)
=

[
θR

(
a1

b1

)
, · · · , θR

(
am

bm

)]

+
,

and so θR is a ring-homomorphism. Now notice that we have

θR

(
a

b

)
= 0 ⇔

〈
(a,

(n2−3n+2)

b )◦
(n−1)

b

,
b

(n−1)

b

, · · · , b
(n−1)

b

〉
= 0

in ( Pm ◦ Quot)R, i.e. one of the components is 0 in QuotR. The only
possibility is that

(a,
(n2−3n+2)

b )◦
(n−1)

b

= 0 in QuotR,

which means that: (a,
(n2−3n+2)

b )◦ = 0 . Since R is an (m,n)-semidomain,
this implies a = 0, so a

b = 0 . Thus, θR is injective.
Let now y be an element of ( Pm ◦ Quot)R, y = 〈 a1

s1n
12

, · · · , an−1

sn−1,n
n−1,2

〉;
by (23(b)) and (23(c)) we have that

y =

〈
(a1, s

2n
22 , . . . , sn−1,n

n−1,2 )◦
s1n
12 s2n

22 . . . sn−1,n
n−1,2

, · · · , (an−1, s
1n
12 , . . . sn−2,n

n−2,2 )◦
s1n
12 s2n

22 . . . sn−1,n
n−1,2

〉
.

To abbreviate notation, we set

bi = (ai, s
1n
12 , . . . , si−1,n

i−1,2 , si+1,n
i+1,2 , . . . , sn−1,n

n−1,2 )◦, i = 1, . . . , n− 1

t2 = (s1n
12 , s2n

22 , . . . , sn−2,n
n−2,2 , sn−1,2)◦, ti = sn−1,i, i = 3, . . . , n ,

and so y =
〈

b1

tn2
, · · · , bn−1

tn2

〉
.

Then

y = θR


 (bn−1

1 , x)◦

(
(n−1)
t2 , . . . ,

(n−1)
tn , x)◦


 ,
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where x is an arbitrary (fixed) element of R∗; thus θR is surjective too.
Finally, for any a

b ∈ FmR1 we have:

((( Pm ◦ Quot)α) ◦ θR1)(
a
b )

= ( Pm ◦ Quot)α




〈
(a,

(n2−3n+2)

b )◦
(n−1)

b

, b
(n−1)

b

, · · · , b
(n−1)

b

〉


=

〈
Quot α

(
(a,

(n2−3n+2)

b )◦
(n−1)

b

)
, Quot α

(
b

(n−1)

b

)
, · · · , Quot α

(
b

(n−1)

b

)〉

=

〈
α((a,

(n2−3n+2)

b )◦)
α(b)...α(b) , α(b)

α(b)...α(b) , · · · , α(b)
α(b)...α(b)

〉

and (θR2 ◦ Fmα)
(

a
b

)
= θR2

(
α(a)
α(b)

)

=

〈
(α(a),

(n2−3n+2)

α(b) )◦
α(b)...α(b) , α(b)

α(b)...α(b) , · · · , α(b)
α(b)...α(b)

〉
,

which proves that the diagram (D) is commutative and so θ is a natural
equivalence.

45 . As a consequence of the two previous theorems we obtain that the
diagram

(2, n)SDom

(m,n)SDom

(2, 2)Fd

(2, n)SDR

(m, n)SDR

-

-

? ?

?

HHHHHHHHHHj

Quot

Quot

Red Red

F2

P2

is ”naturally” commutative (paths are naturally equivalent functors).
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