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Abstract

The maximal column rank of an m by n matrix is the maximal
number of the columns of A which are linearly independent. We
compare the maximal column rank with rank of matrices over a
nonbinary Boolean algebra. We also characterize the linear operators
which preserve the maximal column ranks of matrices over
nonbinary Boolean algebra.
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1. Introduction

There is much literature on the study of linear operators that preserve rank
of matrices over several semirings. Boolean matrices also have been the
subject of research by many authors ([1] – [6]).
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Hwang, Kim and Song [3] defined a maximal column rank of a matrix
over a semiring and compared it with column rank. And they obtained
characterization of the linear operators that preserve maximal column
rank of binary Boolean matrices. Kirkland and Pullman [4] exhibited charac-
terizations of the linear operators that preserve several invariants of matrices
over nonbinary Boolean algebra. But they did not deal with the maximal
column rank.

In this paper we continue the study of maximal column rank of matrices
over nonbinary Boolean algebras. We also obtain characterizations of the
linear operators that preserve maximal column ranks of nonbinary Boolean
matrices.

2. Comparison of rank and maximal column rank

of Boolean matrices

Let B be a finite Boolean algebra. We may assume that B consists of the
subsets of a k-element set Sk. Union is denoted by +, and intersection by
juxtaposition ; 0 denote the null set and 1 the set Sk. Let Mm,n(B) denote
the set of all m× n matrices with entries in B. Addition and multiplication
of matrices over B are defined as if it were a filed, as are the zero matrix,
O, and the identity matrix, I.

Let σ1, σ2, · · · , σk denote the singleton subsets of Sk. For each p × q
matrix A over B, the l-th constituent of A, Al, is the p × q binary matrix
whose (i, j) entry is 1 if and only if αij ⊇ σl. By these constituents, A can
be written uniquely as

∑
l σlAl, which is called the canonical form of A.

From the canonical forms, we have that for all p×q matrices A, all q×r
matrices B and C, and all α ∈ B, (a) (AB)l = AlBl, (b) (B +C)l = Bl +Cl,
and (c) (αA)l = αlAl, for all 1 ≤ l ≤ k.

The Boolean rank, b(A), of a nonzero A ∈ Mm,n(B) is defined as the
least r such that A = BC for some B ∈ Mm,r(B) and C ∈ Mr,n(B). The
rank of zero matrix is zero ; in the case that B = B1 = {0, 1}, we refer to
b(A) as the binary Boolean rank, and denote it by b1(A).

For a binary Boolean matrix A, we have b(A) = b1(A) by definition.
A set G of m×1 matrices over B is linearly dependent if for some g ∈ G,

g is a linear combination of elements in G − {g}. Otherwise G is linearly
independent.

The maximal column rank [3], mc(A), of a matrix A ∈Mm,n(B) is the
maximal number of the columns of A which are linearly independent over
B. In the case that B = B1, we denote it by mc1(A) for A ∈Mm,n(B1).
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It follows that

(2.1) 0 ≤ b(A) ≤ mc(A) ≤ n

for all m× n matrices A over B.
The inequality in (2.1) may be strict over B. For example, we consider

the matrix

(2.2)

[
σ1 σ2

σ1 σ2

]

over B, where σ1 and σ2 are distinct singletons. Then A =

[
1
1

]
[σ1σ2]

has Boolean rank 1, but mc(A) = 2 since the two columns are linearly
independent over B.

Let β(B,m, n) be the largest integer r such that for all m× n matrices
A over B, b(A) = mc(A) if b(A) ≤ r. The previous example shows that
β(B, 2, 2) < 1. In general 0 ≤ β(B,m, n) ≤ n. In the case that B = B1, we
denote it by β(B1,m, n).

We also obtain that

(2.3) b

([
A 0
0 0

])
= b(A) and mc

([
A 0
0 0

])
= mc(A)

for all m× n matrices A over B.

Lemma 2.1. For an arbitrary matrix A ∈ Mm,n(B1), we have mc(A) =
mc1(A).

Proof. Assume mc(A) = r. Then there are r columns a,a, · · · ,ar of A
which are linearly independent over B.

Consider the p-th constituents (a)p, (a)p, · · · , (ar)p for p = 1, 2, · · · , k.
If (ai)p =

∑r
j 6=i αj(aj)p with αj ∈ {0, 1} = B1, then

ai = (ai)p =
r∑

j 6=i

αj(aj)p =
r∑

j 6=i

αjaj .

This contradicts the assumption. Thus (a)p, (a)p, · · · , (ar)p are linearly
independent over B1. But they are the same as a,a, · · · ,ar and hence
mc1(A) ≥ r.
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Conversely, if mc1(A) = r, then there are r columns a,a, · · · ,ar which
are linearly independent over B1. If ai =

∑r
j 6=i αjaj with αj ∈ B, then

ai = (ai)p =
r∑

j 6=i

(αj)p(aj)p =
r∑

j 6=i

(αj)paj .

for any p = 1, 2, · · · , k. This contradicts the assumption. Thus
a,a, · · · ,ar are linearly independent over B and hence mc(A) ≥ r.

Lemma 2.2. If mc(A) > b(A) for some p× q matrix A over B, then for all
m ≥ p and n ≥ q, β(B,m, n) < b(A).

Proof. Since mc(A) > b(A) for some p× q matrix A, we have β(B, p, q) <

b(A) from the definition of β. Let B =

(
A 0
0 0

)
be an m × n matrix

containing A as a submatrix. Then

b(B) = b(A) < mc(A) = mc(B)

by (2.3). So, β(B,m, n) < b(B) for all m ≥ p and n ≥ q.

Lemma 2.3. For any A ∈ Mm,n(B1), we have b1(A) = 1 if and only if
mc1(A) = 1.

Proof. Suppose b1(A) = 1. Then A can be factored as

A =




a1

a2
...

am




[b1, b2, · · · , bn]

=




a1b1 · · · a1bi · · · a1bn

a2b1 · · · a2bi · · · a2bn
...

...
...

amb1 · · · ambi · · · ambn




.

If there exist nonzero bp and bq for p 6= q, then bp = bq = 1. Thus the pth
and qth columns of A are the same and hence they are linearly dependent.
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This implies that any two nonzero columns of A are the same. Therefore
mc1(A) = 1.

The converse is obvious from (2.1)

But as we have seen from the matrix in (2.2), it is not necessary that b(A) = 1
if and only if mc(A) = 1.

Example 2.4. Consider

A =




0 1 1 0
1 0 0 1
0 0 1 1


 ∈M3,4(B1).

Then b1(A) = 3 but mc1(A) = 4.
For, all columns of A are linearly independent over B1, so we have

mc1(A) = 4. And 2 ≤ b1(A) ≤ 3 by Lemma 2.3.
If b1(A) = 2, then A can be factored as

A =




a11 a12

a21 a22

a31 a32




[
b11 b12 b13 b14

b21 b22 b23 b24

]
= [(ai1b1j + ai2b2j)].

If we take a11 = 0 in this factorization, then we have b21 = b24 = 0 and
a12 = b22 = b23 = 1 from the comparison of the first row of A, and a21 =
b11 = b14 = 1 and a22 = b12 = b13 = 0 from the comparison of the second row
of A. But a31 = a32 = 0 from the comparison of the third row of A, which is
impossible. Similarly, if we take a11 = 1, we also have a31 = a32 = 0, which
is impossible.

Therefore b1(A) 6= 2, which implies b1(A) = 3.

Theorem 2.5. For m× n matrices over the binary Boolean algebra B1, we
have the values of β as follows;

β(B1,m, n) =





1 if min{m,n} = 1,
3 m ≥ 3 and n = 3,
2 otherwise.

Proof. For the case min{m,n}=1, Lemma 2.3 implies that β(B1,m, n)=1.
Let

A =




0 1 1 0
1 0 0 1
0 0 1 1


 .
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Then we have mc1(A) = 4 and b1(A) = 3 from Example 2.4. Thus Lemma
2.2 implies that β(B1,m, n) ≤ 2 for all m ≥ 3 and n ≥ 4.

Suppose m ≥ 2, n ≥ 2 and A ∈ Mm,n(B1). If mc1(A) = 2, then
b1(A) = 1 or 2. But b1(A) 6= 1 by Lemma 2.3. Thus b1(A) = 2. Conversely,
if b1(A) = 2, then there exist F ∈ Mm,2(B1) and G ∈ M2,n(B1) such that
A = FG. Since b1(F ) = 2, mc1(F ) = 2 by (2.1). But the two columns f1

and f2 of F span all the columns of A over B1. Hence each column of A has
one of the forms f1, f2, f1 + f2 or 0. Then any three columns of them are
linearly dependent, so mc1(A) ≤ 2. Hence mc1(A) = 2. Therefore we get
β(B1,m, n) ≥ 2 for all m ≥ 2 and n ≥ 2.

Finally, consider the case m ≥ 3 and n = 3. Let A ∈ Mm,3(B1). If
mc1(A) = 3, then b1(A) = 1, 2 or 3. But b1(A) cannot be 1 by Lemma
2.3, and b1(A) 6= 2 by the above argument. Thus b1(A) = 3. Conversely, if
b1(A) = 3, then it is obvious that mc1(A) = 3 for this case.

Therefore we have the values of β as required.

Kirkland and Pullman obtained the relation between the rank of a Boolean
matrix and the binary ranks of its constituents in [4] as follows:

(2.4) The Boolean rank of a matrix in Mm,n(B) is the maximum of the
binary Boolean ranks of its constituents.

But for the maximal column rank of the Boolean matrix, we do not have
such relation as (2.4).

Example 2.6. Let A =

[
σ1 σ1 1
0 1 1

]
∈M2,3(B). Then any two columns

cannot span the other column. Thus mc(A) = 3. But

mc1(A1) = mc1

([
1 1 1
0 1 1

])
= 2

and

mc1(Ap) = mc1

([
0 0 1
0 1 1

])
= 2 for all p = 2, 3, · · · , k.

Therefore we have mc(A) > max{mc1(Ap)|p = 1, 2, · · · , k}.
In general, we obtain the following relation between the maximal column
rank of a Boolean matrix and the maximal column rank of its constituents
over binary Boolean algebra.
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Proposition 2.7. For A ∈Mm,n(B), if
∑

σpAp is the canonical form of A,
then

max{mc1(Ap)|1 ≤ p ≤ k} ≤ mc(A).

Proof. Suppose mc(A) = r. If mc1(Ap) > r for some p, then there
exist r + 1 columns (a)p, (a)p, · · · , (ar+)p which are linearly indepen-
dent over B. Since mc(A) = r, these columns a,a, · · · ,ar+ are
linearly dependent over B. So aj =

∑r+1
i6=j αiai, αi ∈ B for some j. Thus

(aj)p = (
∑r+1

i6=j αiai)p =
∑r+1

i6=j (αi)p(ai)p, which contradicts the linearly
independence. Therefore mc1(Ap) ≤ r=mc(A) for all p = 1, 2, · · · , k.

Theorem 2.8. For m× n matrices over nonbinary Boolean algebra B, we
have the values of β as follows;

β(B, m, n) =

{
1 if n = 1,
0 if n ≥ 2.

Proof. For any A ∈ Mm,1(B), we have that b(A) = 1 if and only if
mc(A) = 1. Thus β(B,m, 1) = 1. Let A = [σ1, σ2] ∈M1,2(B), where σ1 and
σ2 are distinct. Then b(A) = 1, but mc(A) = 2. Hence β(B,m, n) = 0
for n ≥ 2 by Lemma 2.2.

3. Maximal column rank preservers over Mm,n(B)

In this section we obtain characterizations of the linear operators that pre-
serve maximal column rank of matrices over nonbinary Boolean algebra.

A linear operator T onMm,n(B) is said to preserve maximal column rank
if mc(T (A)) = mc(A) for all A ∈ Mm,n(B). It preserves maximal column
rank r if mc(T (A)) = r whenever mc(A) = r. For the terms Boolean rank
preserver and Boolean rank r preserver, they are defined similarly [3].

If T is a linear operator on Mm,n(B), for each 1 ≤ p ≤ k, define its
p-th constituent, Tp, by Tp(X) = (T (X))p for every X ∈Mm,n(B1). By the
linearity of T , we have T (A) =

∑
σpTp(Ap) for any matrix A ∈Mm,n(B).

Since Mm,n(B) is a semiring, we can consider the invertible members of
its multiplicative monoid. Wedderburn [6] showed that a Boolean matrix is
invertible if and only if all its constituents are permutation matrices.
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Lemma 3.1. The maximal column rank of a Boolean matrix is preserved
under pre-multiplication by an invertible matrix.

Proof. Let A ∈ Mm,n(B) and U be an invertible matrix in Mm,n(B). If
mc(A) = h, then there exist h linearly independent columns ai(1), ai(2), · · · ,
ai(h) in A which are maximal. Then Uai(1), Uai(2), · · · , Uai(h) are linearly
independent columns of UA. Thus mc(UA) ≥ h.

Conversely, if mc(UA) = h, then there exist h linearly inde-
pendent columns vi(1), vi(2), · · · , vi(h) which are maximal. Then
U−1vi(1), U−1vi(2), · · · , U−1vi(h) are linearly independent columns of
U−1(UA) = A. Hence mc(A) ≥ h. Therefore mc(A) = mc(UA).

But the maximal column rank of a Boolean matrix is not preserved under
post-multiplication by an invertible matrix.

Example 3.2. Let B be the Boolean algebra of subsets of {1, 2, 3}.
Consider

U =



{1} {2} {3}
{2} {3} {1}
{3} {1} {2}


 and A =

[
{1} {2} {3}
{2} {3} {1}

]
.

Then U is an invertible matrix in M3,3(B) whose inverse is U itself. And
mc(A) = 3 since the three columns are linearly independent. But mc(AU) =
2 since

AU =

[
1 0 0
0 1 0

]
.

Thus the post-multiplication by an invertible matrix does not preserve
maximal column rank r for r ≥ 3.

Lemma 3.3. Assume that T is a linear operator on Mm,n(B). If T pre-
serves maximal column rank r, then each constituent Tp preserves maximal
column rank r on Mm,n(B1).

Proof. Suppose that T preserves maximal column rank r. Let Y be any
matrix over B1 such that mc1(Y ) = r. Then Lemma 2.1 implies that
mc(Y ) = r and mc(σpY ) = r for each p = 1, 2, · · · , k. Since T preserves
maximal coulmn rank r, mc(T (σpY )) = r.



Linear operators preserving maximal column ranks 263

But
r = mc(T (σpY )) = mc(σpT (Y ))

= mc(σp
∑

i σiTi(Yi))

= mc(σpTp(Y )).

Therefore mc(σpTp(Y )) = r for each p = 1, 2, · · · , k, and hence
mc(Tp(Y )) = r.

Lemma 3.4. Suppose T is a linear operator onMm,n(B). Then T preserves
Boolean rank r if and only if each constituent Tp is a binary Boolean rank
preserving operator on Mm,n(B1).

Proof. Let b(A) = r for A ∈ Mm,n(B). Then there exists some p
such that b1(Ap) = r and b1(Aq) ≤ r for 1 ≤ q ≤ k by property
(2.4). Thus b1(Tp(Ap)) = r and b1(Tq(Aq)) ≤ r for 1 ≤ q ≤ k. Since
b(T (A)) = max{b1(Tq(Aq))|1 ≤ q ≤ k} = r by property (2.4), T preserves
Boolean rank r.

For the converse, it is similar to the proof of Lemma 3.3.

Now we need the following definitions of linear operators on the m × n
matrices over B. For any fixed pair of invertible m×m and n× n Boolean
matrices U and V , the operator A → UAV is called a congruence operator.
Let σ∗ denote the complement of σ for each σ in B. For 1 ≤ q ≤ k, we
define the q-th rotation operator, R(q), by

R(q)(A) = σqA
t
q + σ∗qA,

where At
q is the transpose matrix of Aq. We see that R(q) has the effect of

transposing Aq while leaving the remaining constituents unchanged. Each
rotation operator is linear onMm,n(B) and their product is the transposition
operator, R : A → At.

Example 3.5. Let

A =




0 0 0

σ1 σ1 1

0 1 1




be a matrix on M3,3(B). then mc(A) = 3 by Example 2.6 and property
(2.3). But
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R(1)(A) = σ1A
t
1 + σ∗1A

= σ1




0 0 0

1 1 1

0 1 1




t

+ σ∗1




0 0 0

σ1 σ1 1

0 1 1




= At

which has maximal column rank 2. Thus the rotation operator does not
preserve maximal column rank 3 on Mm,m(B) for m ≥ 3 by property (2.3).

Lemma 3.6 ([4]). If T is a linear operator on Mm,m(B), then the following
are equivalent.

(1) T preserves Boolean ranks 1 and 2.

(2) T is in the group of operators generated by the congruence (if m = n,
also the rotation) operators.

Theorem 3.7. Suppose T is a linear operator on Mm,n(B) for m ≥ 3 and
n > 1. Then the following are equivalent.

(1) T preserves maximal column rank.

(2) T preserves maximal column ranks 1, 2 and 3.

(3) There exist an invertible matrix U ∈ Mm,m(B) and a permutation
matrix P ∈Mn,n(B) such that T (A) = UAP for all A ∈Mm,n(B).

Proof. Obviously (1) implies (2). Assume that T preserves maximal col-
umn ranks 1, 2 and 3. Then each constituent Tp preserves binary maximal
column ranks 1, 2 and 3 by Lemma 3.3. For A ∈ Mm,n(B1), Theorem
3.1 implies that b1(A) = mc1(A) for b1(A) ≤ 2. Thus Tp preserves binary
Boolean ranks 1 and 2, and hence T preserves Boolean ranks 1 and 2 by
Lemma 3.4. So T is in the group of operators generated by congruence (if
m = n, also the rotation) operators by Lemma 3.6. But the rotation op-
erator does not preserve maximal column rank 3 by Example 3.5, and the
post-multiplication by an invertible matrix does not preserve maximal col-
umn rank 3 by Example 3.2. But the operation of permuting the columns
does not change the maximal number of linearly independent columns of the
given matrix. Hence in order to preserve maximal column ranks 1, 2 and 3,
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T has the form T (A) = UAP for some invertible matrix U ∈Mm,m(B) and
some permutation matrix P ∈Mn,n(B). That is, (2) implies (3). Finally, if
we assume (3), then T preserves maximal column rank by Lemma 3.1 and
the fact that the post-multiplication by a permutation matrix preserves the
maximal column rank. Hence (3) implies (1).

If m ≤ 2, then the linear operators that preserve maximal column rank on
Mm,n(B) are the same as the Boolean rank-preservers, which were
characterized in [4].

Thus we have characterizations of the linear operators that preserve the
maximal column rank of nonbinary Boolean matrices.
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