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Abstract

Let G be a group and K,, = {g € G : o(g) = n}. It is prowed: (i)
if F =R, n >4, then PSL(2,F) = K2; (ii) if F = Q,R, n = ,
then PSL(2,F) = K2; (iii) if F = R, then PSL(2,F) = K3; (iv) if
F =Q,R, then PSL(2,F) = Ky UE,E ¢ K3, where E denotes the
unit matrix; (v) if F = Q, then PSL(2, F) # K3.
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1991 Mathematics Subject Classification: 20G20, 11E57, 15A23,
20G15.

Let G be a group and K,, = K,(G) = {g € G : o(g) = n}. Let SL(m, F) and
PSL(m, F) be a special linear or projective specjal linear (resp.) groups of
degree m over a field F. Many papers have been devoted to the powers of the
set Ko (see [3] — [9]) but only few papers have been written about the powers
of the set K, for n > 2 (see [1] — [3]). In the papers [3] and [5], it has been
proved that if F' is an algebraically closed field, then PSL(3, F) = K, K,
for n > 2 and PSL(3,F) = Kj for any F. Note that we do not identify
K5 with the set of involutions. In the paper [7], it has been proved that if
F = Q, R, where QQ denotes the field of rational numbers and R denotes
the field of real numbers, then PSL(2, F) = K2.
In this paper we will prove the following properties:

(i) if F =R, n>4, then PSL(2,F) = K2;
(i) if F=Q,R, n = oo, then PSL(2,F) = K2;
(iii) if F = R, then PSL(2,F) = K3;
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(iv) if F=Q or R, then PSL(2,F)= K UE,E ¢ K3,
where E denotes the unit matrix;
(v) if F =Q, then PSL(2,F) # K3.

Recall, that PSL(2,C) = K2, where C denotes the field of complex
numbers (see [2]).
We begin with some lemmas.

Lemma 1. Let F be any field. In SL(2,F), each non-scalar matriz is

similar to a matriz of the form { _79,1 Z } = D. The order of D depends
only on s.
If F =R, then
a) the order of the matriz D € SL(2,R) isn > 2 iff s = 2cos 2 and
(k,n) = 1;

b) the order of the matriz D € PSL(2,R) isn > 2 iff s = 2603%7r and
(k,n) =1 or s =2cos 27 (k,n) = 1.

If F=Q or R and |s| > 2, then the order of D is cc.

a b

Proof. If F is any field, then for each A = l ¢ d ] € SL(2,F) there

¥ - z Y 0 T
- L@a+cy) L(bx+yd) —r~ b s
T T
such that A = X 1DX and s = a + d. The condition det X = 1 holds since

the equation £ (bx + yd) — £(xa + cy) = 1 has a solution in r, z,y.
If F' is any field, then we can find that

exists a matrix

and D =

D" =
—r Mno1(s)  wal(s)
where ¢, _o,%¥,_1,w, are polynomials in s which means that the order of D
depends only on s.

In the case F' = R, it is easy to notice that the order of any matrix A over
R is the same as over F' = C. Thus if —2 < s < 2, we can put s = 2cos g,
and then the matrix D is similar to the diagonal matrix [ ego =i } over

on2(s)  T1(s) ]

C. Hence, the rest of the proof follows from obvious properties of the group
of the n-th roots of unity. If |s| > 2, then the order of D is co. |
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Lemma 2 (see [5]). If V = diag(vi, ..., vm), W = diag(wn, ..., wn), v; # vj,
w; # wj fori # j and V,W € SL(m,F), then SL(m,F) = CyCw U Z,
where Cy denotes the conjugacy class of V. and Z denotes the center

of SL(m, F). |
Lemma 3. If
0 wj 0 1
NZ_ 1 3 E: 3 NZuEESL(ZaF)v

—w,; 0 -1 x
then the trace tr(N{'NJ2NI®) = s is any arbitrary element of
F, where (NI* = T, ' N;T,).
Proof. If we put x; = x5 = 0, then s = —wsw; 'w; ' (w} + w)xs. Thus s

is directly proportional to z3 and s can be any arbitrary element of F. m

Lemma 4. If

0 1

-1 ZT;

0 w; | .
Mi: (Z:1a273)7 T‘z:
—W,; dz'

]7 dl#ov

and M;, T; € SL(2, F), then there are w; such that the trace tr(MlMQTzMgT3) =
s s any arbitrary element of F.

Proof. A calculation shows that if we take wy = —dzdl_lwl_l,xg = x9 +
dzwy 'and (wiwszdy)? # d3, then s = x9(dydy "wz—dydy 'wy twg M) +didady
So s varies as a linear function of zs. [
0 W 0 Yi
Lemma 5. Let M; = 1 , S = 1 , over R. Then
—w; d; —Y; T

_ 2
5§ = tr(MlslM52) = —wiwy (l‘1y1 $2y2> +
Y291

d d 2
(z191 —T2Yy2) (11202 - w122> - <w2> <y1> - (wl) <yz) +dyds.
Y Y1 w1 Y2 w2 U

achieves the minimum

(1)

1 1
Smin = 51/ (4= &) (4 — &) + Sdudy
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and the maximum value

1 1
Smax = =5/ (4 — B)(4 — ) + 5drdy

for wiwe < 0 and wiws > 0, respectively.

Proof. If we consider the trace s as a function of x1, x2, then the condition

0s 0s
@) ooy
61'1 61‘2
is equivalent to the condition
dy do
(3) 2(z1y1 — T2ya) = Ui — Y-
da dy
. 9?%s _  2ww 9%s _  2wiw 9%s  _  2uww
Since 022 = —#, v A yl% 2, Dardzy = y11y22, therefore
211}111}2
(4) s(x1+h,m2 + k) — s(z1,22) = — P2 (y1 — y2k)*.
1Y3

Hence, s(x1, z2) achieves the minimum and the maximum value for wjws < 0
and wjwy > 0, respectively. The value of the trace s , at the surface (3)
equals

1 1 1 1
(5) Z»’U(dg —4)+ Z(d% - 4)5 + §d1d2,

— w1 (Y12
where z = T (2-)*.
The function (5) in x and, as a result, also s achieves the minimum sy,

and the maximum sy, value for

w1 Y1 d?—4 w1 Y1 d3—4
Dy [ g e [
w2 y2© | d3—4 wy Y2’ \d5—4

respectively. [
Lemma 6. If F =R, then the non-scalar matriz A = { Z 2 } € SL(2,F)
and D = { —r(')*l Z } , are similar in SL(2, F') provided s = a+d, br >0

or —cr > 0.
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Proof. We have XAX ! = D, where

4 Y

X = %(aa: + cy) %(bm + yd)

, det X # 0.

The condition X € SL(2, F) is equivalent to the solvability of the equation

(6) ba’ 4 2y(d —a) —cy? —r =0 in x or y.

The descriminant A = y?(s2 —4) +4br or A = 2%(s> —4) — 4cr, respectively,
must be a non negative element of F.

By the assumption br > 0 or —cr > 0, we can chose so small y or x such
that A > 0 for any a,d € R. [ |

Lemma 7. Let s = tr(MP* M3?) be defined by (1) and let n be the order of
M;. Then:

ifn=2,then —c0c <s<—-20r2<s<o;
ifn=3, then —co<s < —1orl<s< oc;
if n >4, then —oo < s < 0.

Proof. For di = 2cos% and do = ZCOSw the trace s achieves the
minimum 5

T
(7) Smin = —2C0OS —

n

and for di = 2cos 7 and dy = 2cos 7, the trace s achieves the maximum
value

2
(8) Smax = 2 COS I,

n
by Lemma 5. The rest of the proof follows from (7), (8) and definition (1)
of s. u

Lemma 8 (see [4]). Let G be a group. An element g € K3' (m > 2) if and
only if there is an element x € K'™' x # g~ such that (gz)% = 1. [ |

Theorem 1. PSL(2,R) = K2, for n > 4.

Proof. Let
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and d; = 2 cos %j,i =1,2; (4j,n) = 1. From (1) for 20 = 0, y1 = y2 = 1, it
results that

w; w
(9) s = —wlng% + (w2d1 — w1d2)$1 -2 + dids.

w9 w1
The function (9) in x; achieve the same minimum and maximum value as
the function (1). For this reason, the trace tr(M;'M5?) = s fulfills the

condition of Lemma 7. The matrix

d
]\/_f1T1M2T2 = { CCL Z ] , where b= —:—;xl + w—lz, ¢ =wi(—dy — wexq)
is similar in GL(2,R) to the matrix
0 r
D= { el g ] , s=a+d for any r # 0.

By Lemma 6, these matrices are similar in SL(2,R) provided
(10) re <0 or rb>0.
From Lemma 7, it results that the equation (9) is solvable in z; and

.7), _ wody — widsy + \/Z QS‘H _ wod, — widy — \/Z
1 2’LU1’U)2 ) 1

2’11}111)2 ’
where A = (wady + wids)? — d4w? — 4w3 — dwiwss.
If we put 2; = 2, then

b= 2% <w2d1 + widy — \/Z) and ¢ = —1 (w2d1 + widy + \/Z) .
w3 2
Note that A(—w;, —wy) = A(wy,we). Hence, if r > 0, then the signs of w;
and wo can be chosen such that wody + wide > 0, thus cr < 0; if r < 0,
then the signs of w; and wy can be chosen such that wad; +wide < 0, thus
br > 0. If wady +wide = 0, then ¢ < 0 and b < 0, thus for r > 0, rc¢ < 0 and
for 7 < 0, rb > 0. Hence, condition (10) holds in all cases. Thus M M;>
and D are similar in SL(2,R), by Lemma 6. Hence, matrices conjugate to
D run over all non-scalar matrices of PSL(2,R), by Lemma 1. Our set of

matrices contains together with the matrix L = 1 Z’; also L7!, so
(2

E = LL™! € K2. Therefore, K2 = PSL(2,R). ]
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Theorem 2. a) PSL(2,R) = K3,
b) PSL(2,Q) # K3,
c) PSL(2,F) # K3 for F = Q and R.

Proof. Let M; = [ _3,1 ;, ] where d; = 2cos i = 1,2; (j,n) = 1
1
and M;, T; as in Lemma 3 or 4. If we take r = 22b+zy(d—a)—cy?, x,y € F,
. b 0 r
then the matrices M1T1M2T2 = { g d ] and D = [ N T }, s=a+d

are similar in SL(2, F').
Consider the matrix

_ 0 z 0 r] [ —zr! zs
MiD = { -zt 4 ] ' { —rt s } - { —dir™t —rz7l 4 d;s ] '

By Lemma 3 or 4 the trace tr(M;D) = t runs over all of F', according to

n = 2 or n = 3. The matrix M;D is similar in the gerneral linear group
GL(2, F) to the matrix C’z{ —T(r)fl T } . The similarity of M;D and C' in

SL(2,F) is equivalent to the condition

md,

(11) (2 —4) +4— >0,
T

by Lemma 6.

Since d; = £1 for n = 3, it is possible to chose d; and x such that the
condition (11) holds in R. Hence, by the Lemma 1, matrices conjugate to
C tun over all non-scalar matrices of PSL(2, F). By Lemma 7, K3 contains

the matrix B:[ —l())_l cll) } € K3, where d; = 2cos 7rij,(j, 3) = 1. The set
(2

K3 together with B contains also B~!. Hence E = BB~! € K3. Therefore
PSL(2,R) = K3.

If F = Q, then the condition (11) cannot hold for ¢t = 2 and for any
arbitrary m € Q. Hence PSL(2,R) # K3.

If n = 2, then d; = 0 and the condition (11) cannot hold for |t| < 2
even for F = R. Hence PSL(2,F) # K3 for F = Q, R. The part b) of
Theorem 2 follows.

The statement c) results from Lemma 8. Indeed, the set of non-scalar
matrices of K3 C PSL(2, F) consist of matrices

_ 0 T Y z 9
(12) *= { —z=! 0 } ' { 1y —y | €1
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and their conjugates. The conditions (XG)? = E, G = +E, X # G are
equivalent to

(13) Py 1)+ 27 =0 @y, 2 £,
which cannot be fulfilled over Q and R. Hence E ¢ K3, by Lemma 8. |

Theorem 3. If F = Q or R and n = oo, then SL(2,F) = K2 and
PSL(2,F) = K2.

Proof. Among matrices of order n = oo in PSL(2, F') there are matrices

of the form
0 a;

A = —arl ditdt )

with distinct eigenvalues d;,d; 1 where d; # 0. Observe that o(A4;) =
o(—A;) = 0(A;') = coand K2 = U C4,Ca;. Lemma 2 implies that K2UZ =

/L?]
SL(2,F) but £ € C4,Cy—1 and —F € Cy,C_4,), 50 K2 =SL(2,F).
The equality K2 = PSL(2, F) can be proved similarly. [ ]

From Theorems 1, 2, 3, all proporties (i) — (v) follow immediately.
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