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Abstra
t

A fundamental result in universal algebra is the theorem of

Rosenberg des
ribing the maximal sub
lones in the 
lone of all

operations over a �nite set. In group theory, the maximal subgroups

of the symmetri
 groups are 
lassi�ed by the O'Nan�S
ott Theorem.

We shall explore the similarities and di�eren
es between these

two analogous major results. In addition, we show that a primitive

permutation group of diagonal type 
an be maximal in the symmetri


group only if its so
le is the dire
t produ
t of two isomorphi
 simple

groups, be
ause if the number of simple fa
tors of the so
le is greater

than two, then the group is 
ontained in the alternating group.

Keywords: maximal 
lones, Rosenberg's primality 
riterion,

O'Nan�S
ott theorem, primitive permutation groups.

2000 Mathemati
s Subje
t Classi�
ation: 08A40, 20B35.

∗

The author has been supported by the Hungarian National Resear
h Fund (OTKA),

grant No. T38059.



278 P.P. Pálfy

1. Introdu
tion

Let X be a �nite set, |X| ≥ 2. In universal algebra one of the fundamental

obje
ts is Clo(X), the 
lone of all operations over X. In group theory one

studies the symmetri
 group Sym(X), the group of all permutations of X. In

this paper we are going to 
ompare two fundamental results, one from 1965

due to Ivo Rosenberg [11℄ des
ribing the maximal sub
lones in Clo(X), the
other from 1979 due to Leonard L. S
ott [15℄ and Mi
hael O'Nan 
lassifying

the maximal subgroups in Sym(X).

These two results have quite di�erent 
hara
ter. Rosenberg's Theorem

gives a full des
ription. All 
lones on his list are maximal and

pairwise distin
t, apart from some trivial 
ases (reversing the partial

order; taking a power of the permutation of prime order), see [12℄.

Hen
e it is straightforward to enumerate all maximal 
lones on a given

set X.

In 
ontrast, the O'Nan�S
ott Theorem is only a 
lassi�
ation. Not

all groups on their list are maximal. It has to be investigated individually

whether a group listed is indeed maximal. That job has been a

omplished

by Liebe
k, Praeger, and Saxl [5℄. The present paper provides a small


ontribution to this by showing that a primitive group of diagonal type is

not maximal in the symmetri
 group if its so
le is a dire
t produ
t

of three or more simple fa
tors, see Theorem 3. (Although su
h groups


an be maximal in the alternating group as it follows from [5℄.)

Furthermore, in order to know all maximal permutation groups of

a given degree n one needs a list of all almost simple groups that 
ontain

a maximal subgroup of index n. Thus, the O'Nan�S
ott Theorem yields

no straightforward method to enumerate the maximal permutation

groups of a given degree.

In Se
tion 2 we present Rosenberg's Theorem. In Se
tion 3 we formulate

the O'Nan�S
ott Theorem and prove our observation about the parity

of permutations in primitive groups of diagonal type. Finally, in Se
tion 4,

for ea
h maximal 
lone M we determine the permutations 
ontained

in M and tabulate those whi
h 
ontain a given maximal permutation

group. We �nd that for four of the six types of maximal permutation

groups any group in these 
lasses 
an be obtained as the permutation part of

a maximal 
lone.
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2. Rosenberg's Theorem on maximal 
lones

In order to formulate Rosenberg's Theorem we require a number of

de�nitions.

Let ρ ⊂ Xh
be an h-ary relation. We say that an n-ary operation

f :Xn → X preserves ρ, if

(x11, . . . , x1h), . . . , (xn1, . . . , xnh) ∈ ρ

implies

(f(x11, . . . , xn1), . . . , f(x1h, . . . , xnh)) ∈ ρ.

The set of all operations preserving ρ is 
losed under substitutions and


ontains all proje
tions, so it is a 
lone, whi
h will be denoted by Pol(ρ)
(see [9, pp. 47�48℄).

It is well known what is meant by a partial order relation, by the

smallest and largest element with respe
t to a partial order, by a

nontrivial equivalen
e relation, and by the graph (as a binary relation) of

a fun
tion. Three further types of relations need to be de�ned.

If X is an elementary abelian group (i.e., the dire
t sum of 
y
li
 groups

of the same prime order; in other words, the additive group of a ve
tor spa
e

over a �eld of prime number of elements), then the a�ne relation over X is

de�ned as

{(x, y, u, v) ∈ X4 | x + y = u + v},

and it is easily seen to be preserved exa
tly by the quasi-linear operations of

the form

n
∑

i=1

ǫi(xi) + c (ǫi ∈ End(X), c ∈ X).

A relation ρ ( Xh
is 
alled 
entral if it is totally symmetri
, totally re�exive,

and has nonempty 
enter

Z = {x ∈ X | ∀x2, . . . , xh : (x, x2, . . . , xh) ∈ ρ}.

By total symmetry of the relation we mean that for every permutation

g ∈ Sym(h), if (x1, . . . , xh) ∈ ρ, then (xg(1), . . . , xg(h)) ∈ ρ. Moreover, total

re�exivity means that (x1, . . . , xh) ∈ ρ, whenever any two of the arguments

x1, . . . , xh are equal. Note that we must have h + |Z| ≤ |X|.
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Finally, let φ : X ։ {1, . . . , h}m
be a surje
tive, but not ne
essarily

inje
tive 
oordinatization of the set X with m ≥ 1 
oordinates,

ea
h in the range {1, . . . , h} with h ≥ 3, and let πi : {1, . . . , h}m →
{1, . . . , h} be the i-th proje
tion (i = 1, . . . ,m). Then the 
orrespon-

ding h-regular relation ρ is de�ned by (x1, . . . , xh) ∈ ρ i� for every

i = 1, . . . ,m not all elements x1, . . . , xh have distin
t i-th 
oordinates:

|{πi(φ(x1)), . . . , πi(φ(xh))}| < h.

Now we 
an formulate Rosenberg's fundamental theorem.

Theorem 1. Over a �nite set X (|X| ≥ 2) all maximal 
lones have the form

Pol(ρ) for some relation ρ of one of the following six types:

(a) a partial order with smallest and largest element;

(b) the graph of a �xed-point-free permutation of prime order;

(
) the a�ne relation determined by an elementary abelian group;

(d) a nontrivial equivalen
e relation;

(e) a 
entral relation;

(f) an h-regular relation determined by a mapping φ : X ։ {1, . . . , h}m
.

In its original formulation Rosenberg's Theorem was given as a primality 
ri-

terion, stating that a 
olle
tion of fun
tions is 
omplete in the sense that it

generates the 
lone of all fun
tions, if and only if there is no relation of any of

the six types above that is preserved by every fun
tion in the given 
olle
tion.

The result was announ
ed in 1965 [11℄ and the proof appeared in a 91-page

paper in 1970 [13℄. Unfortunately, due to politi
al reasons, this issue of

Rozpravy was not sent to many libraries and it is still missing from their


olle
tions. In the book of Pös
hel and Kaluºnin [9℄ it is proved that the


lones determined by relations of types (a)�(f) are indeed maximal, but

the proof that there are no other maximal 
lones is not given there.

A proof of this part, shorter than the original one, 
an be found in a paper

of Qua
kenbush [10℄. For the number of maximal 
lones over a given �nite

set see [14℄.
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3. The O'Nan�S
ott Theorem on maximal

permutation groups

Here again we need some de�nitions. If X and Y are disjoint nonempty

sets then let Sym(X) × Sym(Y ) ≤ Sym(X ∪ Y ) be the intransitive per-

mutation group 
onsisting of the permutations mapping both X and Y to

itself. Furthermore, we de�ne two a
tions of the wreath produ
t of the two

symmetri
 groups. Let Sym(X) ≀ Sym(Y ) ≤ Sym(X × Y ) 
onsist of the

permutations of the form (x, y) 7→ (gy(x), h(y)), where h ∈ Sym(Y ) and for

ea
h y ∈ Y , gy ∈ Sym(X) are arbitrary permutations. The power a
tion

(also 
alled the produ
t a
tion) of the wreath produ
t is the permutation

group Sym(X) ↑ Sym(Y ) ≤ Sym(XY ) 
onsisting of permutations of the

form f 7→ f ′
, where f : Y → X and f ′(y) = gy(f(h−1(y))). If |X| = n we

may write Sym(n) for Sym(X).

If X is equipped with the stru
ture of a d-dimensional ve
tor spa
e over

the p-element �eld (p a prime), then the a�ne group AGL(d, p) 
onsists

of the permutations of the form x 7→ α(x) + c, where α ∈ Aut(X) is an

invertible linear transformation and c ∈ X.

Let S be a a nonabelian simple group, k ≥ 2, and let D = {(s, . . . , s)
| s ∈ S} ≤ Sk

be the diagonal subgroup. Consider the a
tion of Sk

on the left 
osets of D. Let G be the normalizer of this permutation

group in the symmetri
 group of degree |S|k−1
. Then G is a primitive

permutation group with G/Sk ∼= Out(S) × Sym(k), where Out(S) is the

outer automorphism group of S de�ned as the quotient group of the full

automorphism group by the group of inner automorphisms. We say that

this G is of diagonal type.

Finally, we say that G is an almost simple group, if G has a unique

minimal normal subgroup S, and S is a nonabelian simple group.

Then S ≤ G ≤ Aut(S). If G a
ts on the 
osets of a maximal subgroup

of index n not 
ontaining S, then we obtain a primitive permutation

representation of degree n of G.

We give the following formulation of the O'Nan�S
ott Theorem as it


an be found in [4, p. 268℄, or in [3, Theorem 4.8℄. Note that the original

version in [15℄ 
ontained some ina

ura
ies that were 
orre
ted in a paper of

As
hba
her and S
ott [1, Appendix℄, see also [6℄.
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Theorem 2. All maximal subgroups of Sym(n) (n ≥ 5) belong to one of the

following six 
lasses:

(a) Sym(n1) × Sym(n2), n = n1 + n2 (intransitive);

(b) Sym(m) ≀ Sym(k), n = mk (imprimitive);

(
) Sym(m) ↑ Sym(k), n = mk
(produ
t [power℄ a
tion);

(d) AGL(d, p), n = pd
(a�ne);

(e) a group of diagonal type;

(f) a primitive almost simple group.

Note that if 2 ≤ n ≤ 4, i.e., if Sym(n) is solvable, then we have to repla
e

the almost simple groups of 
ase (f) by the alternating group Alt(n) (whi
h
belongs to 
ase (f) if n ≥ 5).

The subgroups given in Theorem 2 are not ne
essarily maximal. A


omplete list of ex
eptions was given by Liebe
k, Praeger, and Saxl [5℄.

They show that in most of the 
ases these groups are maximal either in the

symmetri
 group Sym(n) or in the alternating group Alt(n). Of 
ourse, the
alternating group is one of the maximal subgroups in the symmetri
 group.

However, it has no analogue among the maximal 
lones. Therefore, we re-

stri
t ourselves to 
lassifying the maximal subgroups only in the symmetri


group, thus eliminating the proper subgroups of the alternating groups from

the list. Exer
ise 4.10 in [3℄ asks for investigating whi
h of the groups listed

in the theorem (Theorem 4.8 in [3℄) 
ontain odd permutations. In most 
ases

it is a routine task. However, for primitive groups of diagonal type it leads

to the following observation that seems to be new. Note that this does not

a�e
t the O'Nan�S
ott Theorem on the 
lassi�
ation of primitive permuta-

tion groups, where�of 
ourse�groups of diagonal type with k ≥ 3 do o

ur

as well.

Theorem 3. Let G be a primitive group of diagonal type with so
le Sk
,

where S is a nonabelian simple group. If k ≥ 3, then G is 
ontained in the

alternating group.

P roof. By de�nition, G a
ts on the 
osets of the diagonal subgroup

D = {(s, . . . , s) | s ∈ S}
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in Sk
and G/Sk

is isomorphi
 to a subgroup of Out(S)×Sym(k). The degree
of the permutation group G is |Sk : D| = |S|k−1

.

Any permutation a
tion of Sk
is obviously 
ontained in the alternating

group, sin
e S is a nonabelian simple group.

Next, we have to prove that for every automorphism α of S, the

permutation of the 
osets

(x1, . . . , xk)D 7→ (α(x1), . . . , α(xk))D

is an even permutation. Every 
oset has a unique representative of the form

(x1, . . . , xk−1, 1), so our task is to show that

(x1, . . . , xk−1) 7→ (α(x1), . . . , α(xk−1))

is an even permutation of Sk−1
. More generally, we show this for every

permutation α of the set S. Clearly, it is enough to verify this statement

for a set of generators of Sym(S), for example, for the transpositions. So let

α be a transposition on the set S. Then the 
orresponding permutation of

Sk−1
has order 2, so it is the produ
t of disjoint 2-
y
les. The number of

2-
y
les 
an be 
al
ulated by subtra
ting the number of �xed points from

the number of all elements and then dividing this number of moved points

by 2. We obtain that the number of 2-
y
les in the permutation of Sk−1


orresponding to a transposition α on S is

1

2

(

|S|k−1 − (|S| − 2)k−1
)

.

This number is even, sin
e |S| is even and k − 1 ≥ 2.
Finally, we have to prove that any permutation of the 
omponents gives

rise to an even permutation of the 
osets of D. Clearly, it is enough to

show it for a transposition of the 
omponents, and by symmetry, we 
an

restri
t ourselves to inter
hanging the �rst two 
omponents. So we treat the

permutation

(x1, x2, . . . , xk) D 7→ (x2, x1, . . . , xk) D,

and the parity of this permutation 
an be 
al
ulated using the same method

as above. We obtain that it is the produ
t of

1

2

(

|S|k−1 − |S|k−2
)

2-
y
les. This number is even, as the order of every nonabelian �nite simple

group is divisible by 4, and k − 2 ≥ 1.
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Sin
e we have shown that a generating set of a group 
ontaining G

onsists of even permutations only, we get that G is 
ontained in the

alternating group.

Hen
e in any maximal subgroup of the symmetri
 group among the primitive

groups of diagonal type we must have that the minimal normal subgroup is

a dire
t produ
t of two isomorphi
 simple groups. Su
h groups were 
alled

groups of biregular type by F. Buekenhout [2℄. In this 
ase the group 
an

be des
ribed as the following group of permutations of the elements of the

simple group S:

{x 7→ α(x)ǫs | α ∈ Aut(S), ǫ ∈ {+1,−1}, s ∈ S} < Sym(S).

This group may 
ontain odd permutations, for example, it does for PSL(2, q)
for all odd prime powers q, and also for Alt(7), M11, et
. However, it is


ontained in Alt(S) for many simple groups S, for example, if S = Alt(n)
for n ≥ 8, S = M12, et
. It would be interesting to have a 
omplete list

of those simple groups for whi
h this �extended holomorph� 
ontains odd

permutations.

In the other �ve 
ases, referring to Liebe
k, Praeger, and Saxl [5℄, we

get the following.

(a) Sym(n1) × Sym(n2) (n1, n2 ≥ 1) is maximal in Sym(n1 + n2), ex
ept
when n1 = n2 � in this 
ase it is 
ontained in Sym(n/2) ≀ Sym(2).

(b) Sym(m) ≀ Sym(k) (m,k ≥ 2) is always maximal in Sym(mk).

(
) Sym(m) ↑ Sym(k) (m ≥ 5, k ≥ 2) is maximal either in Sym(mk) or

in Alt(mk). The latter o

urs if either k = 2 and 4 | m or k ≥ 3 and

2 | m. If m ≤ 4, then the power a
tion is 
ontained in an a�ne group,

namely,

Sym(2) ↑ Sym(k) < AGL(k, 2),

Sym(3) ↑ Sym(k) < AGL(k, 3),

Sym(4) ↑ Sym(k) < AGL(2k, 2).

(d) AGL(d, p) (d ≥ 1, p prime, pd ≥ 5) is maximal either in Sym(pd) or

in Alt(pd). The latter o

urs if p = 2 and d ≥ 3. For pd ≤ 4 we have

AGL(d, p) = Sym(pd).
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(f) The numerous ex
eptional 
ases for almost simple groups are listed

in [5℄.

4. Permutations in maximal 
lones

The symmetri
 group Sym(X) 
an be 
onsidered as a 
lone 
onsisting of the

operations that depend on just one variable, i.e., operations of the form

f(x1, . . . , xn) = g(xi),

where g ∈ Sym(X) and 1 ≤ i ≤ n. We shall 
onsider �tra
es� of maximal


lones in the symmetri
 group, that is, the interse
tion M ∩ Sym(X) for the
maximal 
lones M . The following may happen for a maximal 
lone M :

(1) M 
ontains Sym(X);

(2) M ∩ Sym(X) is a maximal permutation group;

(3) M ∩ Sym(X) is properly 
ontained in a maximal permutation group.

Furthermore, we may have that

(4) a maximal permutation group is not of the form M ∩ Sym(X) for any
maximal 
lone M .

Sin
e the latti
e of 
lones does not satisfy any nontrivial latti
e identity

(in parti
ular, it is not modular), we 
an expe
t that in most 
ases the

possibility (3) will o

ur, and there will be many maximal permutation

groups with property (4). It is indeed the 
ase, however, the goal of the

present se
tion is to establish that 
ase (2), quite surprisingly, does o

ur

quite often as well.

In a somewhat di�erent setting, the study of similar �tra
es� of maximal


lones in the monoid of all unary operations was started by Maja Ponjavi¢

and Dragan Ma²ulovi¢ [8, 7℄. They proved that these tra
es form a very


omplex poset 
ontaining, for example, arbitrarily long 
hains.

Let M be a maximal 
lone. Then it has the form M = Pol(ρ). Now

M ∩ Sym(X) = Aut(ρ),

the automorphism group of the relation ρ. We investigate Aut(ρ) for ea
h of

the six types of relations given in Rosenberg's Theorem 1. In our dis
ussion,

three of the six 
ases will be further subdivided into sub
ases.
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(a) The automorphism group of a bounded partial order �xes the smallest

and the largest element. If |X| = 2, then we get the trivial group,

whi
h is maximal in Sym(X) in this 
ase. Otherwise, for |X| > 2,
the automorphism group has at least three orbits and hen
e it is not

maximal.

(b1) If |X| = p is a prime, then the automorphism group of the graph of

a 
y
le of length p is the 
entralizer of the 
y
li
 permutation and

has order p, while it is 
ontained in the normalizer of the 
y
li
 group

generated by the given p-
y
le, and this normalizer has order (p− 1)p.
So if |X| = 2, then Aut(ρ) = Sym(X); if |X| = 3, then Aut(ρ) =
Alt(X) is maximal in Sym(X); and if |X| > 3, then Aut(ρ) is properly

ontained in a maximal permutation group.

(b2) If |X| = pk with k > 1, then the automorphism group of

the graph of a �xed-point-free permutation 
onsisting of k

y
les of length p is the wreath produ
t Cp ≀ Sym(k) of a


y
li
 group of order p with the symmetri
 group of degree k.

maximal permutation group Sym(2) ≀ Sym(k); otherwise, if p > 2,
then this automorphism group is properly 
ontained in the maximal

permutation group Sym(p) ≀ Sym(k).

(
) The automorphism group of the a�ne relation is the a�ne group. As

it was mentioned in Se
tion 3, this group is the full symmetri
 group

if |X| ≤ 4; it is properly 
ontained in the alternating group if |X| ≥ 8
is a power of 2; and it is a maximal permutation group if |X| ≥ 5 is a

power of an odd prime number.

(d1) If the equivalen
e relation ρ has uniform 
lass size m and there are

k 
lasses, then Aut(ρ) = Sym(m) ≀ Sym(k) is a maximal permutation

group.

(d2) If the 
lasses of the equivalen
e relation are not uniform, then Aut(ρ)
is not transitive. It is a maximal permutation group if either the

equivalen
e relation ρ has just two 
lasses or it has only one non-

singleton 
lass and the size of this 
lass is not |X|/2; otherwise, it is
properly 
ontained in an intransitive maximal permutation group.
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(e) Let Z be the 
enter of a 
entral relation ρ. Then Aut(ρ) ⊆ Sym(Z)×
Sym(X \Z), with equality if and only if ρ is a �pure� 
entral relation,

i.e.,

ρ = {(x1, . . . , xh) | ∃i:xi ∈ Z or ∃i 6= j:xi = xj}.

In that 
ase Aut(ρ) is maximal, ex
ept when |Z| = |X|/2. In this

ex
eptional 
ase, as well as in any other 
ase the automorphism group

of a 
entral relation is not maximal.

(f1) If the h-regular relation ρ is determined by a one-to-one map φ : X ։

{1, . . . , h}m
, then Aut(ρ) = Sym(h) ↑ Sym(m). If m ≥ 2, then we get

the power a
tion. Its maximality was dis
ussed in Se
tion 3. If m = 1,
then Aut(ρ) is the full symmetri
 group. In that 
ase Pol(ρ) is the

so-
alled Sªupe
ki 
lone.

(f2) If φ is not inje
tive, then let ρ′ denote the kernel of φ. Clearly, Aut(ρ)
preserves ρ′, sin
e ρ′ = {(x1, x2):∀x3, . . . , xh : (x1, x2, . . . , xh) ∈ ρ}.
If m = 1, then we have Aut(ρ) = Aut(ρ′), so we have redu
ed the

maximality question to 
ases (d1)�(d2). Sin
e the number of 
lasses

of ρ′ is equal to h ≥ 3, the arity of the relation ρ, here the equivalen
e
relation ρ′ 
annot have just two 
lasses.

Now let m > 1. If ρ′ has at least two 
lasses of the same size, then

Aut(ρ) is properly 
ontained in Aut(ρ′), hen
e it is not maximal.

Otherwise, Aut(ρ′) has hm ≥ 9 orbits, hen
e in this 
ase Aut(ρ) = Aut(ρ′)
is not maximal either.

We have obtained that the �rst four types (
orresponding to sums,

produ
ts, powers, and ve
tor spa
es) from the O'Nan�S
ott Theorem do

arise as tra
es of maximal 
lones. The remaining two types, namely those,

where the 
onstru
tion involves nonabelian simple groups, do not arise in

this way, they fall into 
ategory (4).

We summarize our observations in the following theorems.

Theorem 4. Let Pol(ρ) be a maximal 
lone over a �nite set X, where ρ is

one of the relations des
ribed in Theorem 1. Then Pol(ρ) 
ontains the full

symmetri
 group Sym(X) in exa
tly the following 
ases:

(i) |X| ≥ 3, ρ is the h-regular relation with h = |X|, where (x1, . . . , xh) ∈
ρ i� there are equal elements xi = xj (i 6= j) among the 
oordinates of

the h-tuple;
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(ii) 2 ≤ |X| ≤ 4 and ρ is the (unique) a�ne relation on X;

(iii) |X| = 2 and ρ is the graph of the transposition inter
hanging the two

elements of X (i.e., ρ is the nonequality relation on the 2-element set).

Theorem 5. Let Pol(ρ) be a maximal 
lone over a �nite set X, where ρ is

one of the relations des
ribed in Theorem 1. Then Pol(ρ)∩Sym(X) = Aut(ρ)
is a maximal permutation group in exa
tly the following 
ases:

(a) Aut(ρ) = Sym(X1)×Sym(X2), where X = X1∪X2 is a disjoint union

with |X1| 6= |X2| or |X| = 2 :

(a1) |X| ≥ 3 and ρ is the equivalen
e relation with 
lasses X1 and X2;

(a2) ρ is an h-ary �pure� 
entral relation

ρ = {(x1, . . . , xh) | ∃i:xi ∈ Z or ∃i 6= j:xi = xj},

with 
enter Z = X1 or Z = X2, where 1 ≤ h ≤ |X| − |Z|;

(a3) |X1|, |X2| ≥ 2 and ρ is the equivalen
e relation with one non-

singleton 
lass X1 or X2;

(a4) |X1|, |X2| ≥ 2 and ρ is the h-regular relation 
orresponding to

φ : X ։ {1, . . . , h} where the kernel of φ has one non-singleton


lass X1 or X2 (then h = |X2|+1, or h = |X1|+1, respe
tively);

(a5) |X| = 2 and ρ is the order relation of the 2-element 
hain.

(b) Aut(ρ) = Sym(X1)≀Sym(X2), where X = X1×X2 with |X1|, |X2| ≥ 2 :

(b1) ρ is the equivalen
e relation (x1, x2)ρ(x′

1, x
′

2) i� x2 = x′

2;

(b2) |X2| ≥ 3 and ρ is the h-regular relation (h = |X2|,m = 1) 
orre-

sponding to the se
ond proje
tion mapping φ : X1 × X2 ։ X2;

(b3) |X1| = 2 and ρ is the binary relation (x1, x2)ρ(x′

1, x
′

2) i� x1 6=
x′

1 and x2 = x′

2 (the graph of the �xed-point-free permutation

of order two inter
hanging the elements with the same se
ond


oordinate).

(
) Aut(ρ) = Sym(X1) ↑ Sym(X2), where X = XX2

1 , |X1| ≥ 5, |X2| ≥ 2,
moreover 4 does not divide |X1| if |X2| = 2, and 2 does not divide |X1|
if |X2| ≥ 3 :
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(
1) ρ is the h-regular relation 
orresponding to the one-to-one map-

ping φ : X ։ XX2

1 , where h = |X1|.

(d) Aut(ρ) is the a�ne group AGL(d, p), where pd ≥ 5 is odd:

(d1) ρ is the a�ne relation (
orresponding to the ve
tor spa
e stru
ture

determining the a�ne group).

(e) Aut(ρ) = Alt(X) :

(e1) |X| = 3 and ρ is the graph of a 3-
y
le.

Counting the various possibilities we obtain the number of maximal 
lones


ontaining a given maximal permutation group.

Corollary 6. Let G be either the full symmetri
 group Sym(X) or a maximal

permutation group of any of the types (a)�(d) in the O'Nan�S
ott Theorem.

Then the number N of maximal 
lones Pol(ρ) on the set X su
h that G =
Pol(ρ) ∩ Sym(X) is as follows:

(o) For G = Sym(X) we have

N =







2, if |X| = 2, 3, 4;

1, if |X| ≥ 5.

(a) For G = Sym(X1)×Sym(X2), where X = X1 ∪X2 is a disjoint union

with |X1| 6= |X2| or |X| = 2, we have

N =







|X| + 1, if min(|X1|, |X2|) = 1;

|X| + 5, if min(|X1|, |X2|) ≥ 2.

(b) For G = Sym(X1) ≀ Sym(X2), where X = X1 ×X2, and |X1|, |X2| ≥ 2
we have

N =











































1, if |X1| ≥ 3 and |X2| = 2;

2, if |X1| = 2 and |X2| = 2;

2, if |X1| ≥ 3 and |X2| ≥ 3;

3, if |X1| = 2 and |X2| ≥ 3.
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(
) For G = Sym(X1) ↑ Sym(X2), where X = XX2

1 and |X1| ≥ 5, |X2| ≥
2, moreover 4 does not divide |X1| if |X2| = 2, and 2 does not divide

|X1| if |X2| ≥ 3, we have N = 1.

(d) For G = AGL(d, p), where pd ≥ 5 is odd, we have N = 1.
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