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Abstract

We study unitary rings of characteristic 2 satisfying identity «? = x
for some natural number p. We characterize several infinite families of
these rings which are Boolean, i.e., every element is idempotent. For
example, it is in the case if p =2" —2o0rp=2"—-5o0rp=2"+1
for a suitable natural number n. Some other (more general) cases are
solved for p expressed in the form 27 + 2m + 1 or 29 4+ 2m where q is
a natural number and m € {1,2,...,29 — 1}.
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A ring R = (R;+,-) is called Boolean if every its element is idempotent,
i.e., if R satisfies the identity > = x. Boolean rings play an important
role in propositional logic and in theoretical computer science as well as
in lattice theory, see e.g. [2]. In particular, every unitary Boolean ring
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can be converted into a Boolean algebra and vice versa. This motivated
us to classify Boolean rings among rings with restricted powers, i.e., rings
satisfying the identity xP = x for a natural number p > 2.

A sample result is the following.

Lemma 1. Let R = (R;+,) be a ring satisfying the identity =P = z for
some integer p > 2. The following are equivalent:

(a) R is Boolean;

(b) R satisfies the identity x97 = 29 for some natural number q < p.

Proof. (a) = (b): It is evident, because 22 = x implies x9! = 29 for every
natural number q.

= (a): en satisfies also x =¥ an ence
(b) = (a): Then R satisfies also 2P*! = 2? and h

P =r-x=x 2P =Pt =P =g,

thus R is Boolean. ]

It is an easy consequence of 22 = x that every Boolean ring is of character-
istic 2, i.e., it satisfies the identity x + x = 0. Due to this fact, we restrict
our treaty only to rings of characteristic 2.

A ring R = (R;+,-) is called unitary if it contains a unit, i.e., an
element denoted by 1 such that z-1 = x = 1.z for each z € R. For
further information and notation on rings, the reader is refered to basic
monographs [1,4-6].

As a motivation, we can serve with the following two particular cases.

Lemma 2. Let R = (R;+,-) be a unitary ring of characteristic 2 satisfying
the identity 2 = x. Then R is Boolean.

Proof. Every element of R can be written in the form x + 1 because = =
(x+1)+1, due to the fact that R is unitary and of characteristic 2. Hence,
we get

l+z=>0+2P3=0+2)-1+2)?*=10+z) (1+2%
:1+x+x3+x2:1+x+x+x2:l+x2

whence z = z? proving that R is Boolean. [ |
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On the contrary, we can show that there exists a unitary ring of characteristic
2 satisfying the identity 2* = 2 which is not Boolean. In fact, we can show
the whole infinite family of identities P = x, i.e., an infinite set of natural
numbers p such that a unitary ring of characteristic 2 satisfying the identity
2P = z need not be Boolean, see the following.

Lemma 3. For each natural number k there exists a unitary commuta-
tive Ting of characteristic 2 satisfying the identity x3F+1
Boolean.

= x which is not

Proof. Consider the four-element ring R whose operations + and - are
determined by the tables

w o~ ot
w N = oo
N W O ==
—_ O W N
O =N WlWw
W N = O .
O O O OO
W N = O
— W N O
N = W OlWw

It is an immediate reflexion that R is unitary, commutative and of char-
acteristic 2. Moreover, R satisfies #3¥*1 = 2 for every natural number k.
However, R is not Boolean because e.g. 2 -2 =3 # 2. |

Remark 4. Let us note that if R = (R;+,-) is a unitary ring satisfying
the identity P = x for some even p then we need not suppose that R is of
characteristic 2. In fact, in this case there exists an element —1 € R and
from the identity P = x for x = —1 we get 1 = (—1)? = —1. Then for each
x € Rwe have —x = (—1)-z =1 -2 =2 whence x + x =z + (—z) = 0.

Similarly as in Lemma 2, we can determine infinite sets of natural numbers
p for which P = z implies that R is Boolean.

Theorem 5. Let R = (R;+,-) be a unitary ring and n be a natural number.

(i) If R satisfies 22" =2 = x for n > 1 then R is Boolean.

(ii) If R is of characteristic 2 and satisfies 2" ~° = x for n > 3 then R is
Boolean.
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Proof. (i): As mentioned above, R is of charactic 2. If R satisfies 22" 72 = x
then it satisfies also 22" = 23 thus by Lemma 3(a) from [3]

1427 =142 =(1+2°=143x2+3x2>+2°

Since 22" = 3, we conclude 3 x (z + 22) = x + 22 = 0, whence z = 2.

(ii): If R satisfies 22" ~° = x for some natural number n > 3 then it satisfies
also 22" = 2% and therefore, by [3], Lemma 3(a),

1428 =14+2"=14+2)" =1 +2)°=10+2)* 1 +2)?
=(1+a2Y - Q+2H=14224+22+2°
whence 22 = z*. This yields
3 5 7 275

r=x’=z'=---=z =x

and, applying Lemma 2, we conclude that R is Boolean. [ |

Similarly, we can also decide the following case.

Lemma 6. Let R = (R;+,-) be a unitary ring of characteristic 2 satisfying
22"t =z for a natural number q. Then R is Boolean.

Proof. We compute

l+r=1+2)"M=10+2)- Q+2)* =1 +2) (1+2%)

2941

=14+z+2"+z :1+x+x2q+x:1+x2q,

2% — zP~1, By Lemma 1, R is Boolean.

ie,forp=2941wehavea? =x ==z

Another relative large set of odd natural numbers p, for which a unitary ring
of characteristic 2 satisfying P = x is Boolean, is discerned by the following
result.

Theorem 7. Let R = (R;+,-) be a unitary ring of characteristic 2 sat-
isfying x = x where p = 29 + 2m + 1 for some natural number ¢ and
m e {1,2,...,2971 — 1}, If 27 — 2m = 2 + 2° where a,b are integers such
that ¢ > a > b > 1 then R is Boolean provided 2% — 2° divides 2m.



THE RINGS WHICH ARE BOOLEAN 179

Proof. Assume p = 29 + 2m + 1 with 27 — 2m = 2% + 2° for some integers
¢, m,a,b such that ¢ > a > b >1and m € {1,2,...,2971 — 1}, If 2¢ —
2 divides 2m then 2m = r(2% — 2) for some natural number 7. Since
22 H2m+l — 4 we have

220 p202mtl | 29-2m-1 0 029-2m—1 _ 29-2m

x
Hence, using [3], Lemma 3(a),
142272 =142 =(1+2)? =1+ 2 =1 +2)*
=(1+2)% 1+2)% =1 +2¥) (1+2%)
=142 2% 422 =142 2 42

This yields 0 = 22° 4 22", thus 22" = 22", Since 2m = r - (2% — 2%) and
294+2m+1> 27941 > 2% we conclude

q q a__ob q (9a_ob
P20 294 (292041 294 (29-28) 41
q
= 2l — b — g,
By Lemma 6, R is Boolean. |

Corollary 8. Let R = (R;+,-) be a unitary ring of characteristic 2 sat-
isfying P = x where p = 29 + 2m + 1 for some natural number ¢ and
m € {1,2,...,2971 — 1}, If 29 — 2m = 2°F! 4+ 29 for some integer a such
that g — 1 > a > 1 then R is Boolean.

Proof. If 29 — 2m = 2°T! 4 2° for some integers ¢, m, a such that ¢ — 1 >
a>1,me{1,2,...,2971 — 1} then 2¢*! — 29 = 22, Thus it divides

om =29 — 201 _ 90 — 9. (9970 _ 3),
which, by Theorem 7, means that R is Boolean. [ |

Hence, we get the sequence of numbers

p=3,5917,33,..., (S)
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by Lemma 6, for which a unitary ring of characteristic 2 satisfying the
identity zP = x is Boolean. In what follows, we will detect other natural
numbers p of this property.

Remark 9. We can recognize that (ii) of Theorem 5 can be included in the
cases treated in Theorem 7. Namely, if p = 2™ — 5 for some integer n > 3
then we can compute

Using the notation from Theorem 7 we have
20 —om =21 — (2" —6) =6 =22 + 2.

Thus, applying Corollary 8, we obtain that R is Boolean. Hence, we can
extend our sequence (S) with numbers

p=11,27,59,123,...,

Moreover, Corollary 8 enables us to insert also numbers of the form 2" — 11
(n>4), ie,
p=21,53,117,245, ...,

further numbers of the form 2™ — 23 (n > 5), i.e.,
p =41,105,233,489, ...,
etc. We can generalize this approach in the following result.

Theorem 10. Let R = (R;+, ") be a unitary ring of characteristic 2 satis-
fying 2P = x for some natural number p of the form 2" — (3 -2\ — 1) where
n,l are arbitrary natural numbers such that n — 3 > 1. Then R is Boolean.

Proof. If p=2" — (3-2! — 1) for some natural numbers satisfying n —3 > [
then

3.2l <3.9" 3 < 4.973 = ol

and, therefore, p = 2"~ 14-(2""1-3.2))+-1. We put ¢ = n—1, 2m = 2" 1-3.2!
and then obtain



THE RINGS WHICH ARE BOOLEAN 181

20 —2m=2""1— (2" —3.2)=3.2' =2. 2" + 2 =21 4 &
which, due to Corollary 8, means that R is Boolean. m

In the next theorem, we will analyse the case of Theorem 7 in more details
to obtain a general method how to produce sequences of p’s for which R is
Boolean.

Theorem 11. Let R = (R;+,-) be a unitary ring of characteristic 2 sat-
isfying x = x where p = 29 + 2m + 1 for some natural number ¢ and
m € {1,2,...,2971 — 1} such that 29 — 2m = 2% + 2° where a,b are integers
satisfying a > b > 1 and, moreover, ¢ = (a + 1) + k- (a — b) for some
nonnegative integer k. Then R is Boolean.

Proof. Consider a unitary ring R of characteristic 2 satisfying the identity
P = z for a number p possessing the assumption. Then

oH)H(eb)-b _ gamb _ 1)
*)
=)
() ()
ol () )
o ot (o). ((Qab e +1>
#(r 1) () s r )]
o (201, (2.<2a—b)’“+...+2.2a_b+1)
_ (ga_gb).(2.(2ab)k+...+2.2ab+1).

Hence, 2% — 2° divides 2m and, by Theorem 7, R is Boolean. [ |

o(k+1)-(a—b) _

7
—9b. ( o(k+1)-( _ 90
e




182 I. CHAJDA AND F. SVRCEK

Remark 12. Theorem 11 shows us how to construct numbers p for which
the unitary ring of characteristic 2 satisfying 2P = x is Boolean.

It is enough to choose arbitrary integers a, b such that a > b > 1 then to
take ¢ = (a+1) + k- (a — b) for some nonnegative integer k and to compute
2m = 27 — 2% — 2% Then p = 29 + 2m + 1 is the number which we look for.

Example 13. If we take a =8, b=3 and k =1, we have ¢ = (8 + 1) + 1 -
(8 — 3) = 14 and, consequently, 2m = 24 — 28 — 23 = 16120. In fact, we
have proved that the unitary ring of characteristic 2 satisfying the identity
232595 = g is Boolean, because 32505 = 2 + 16120 + 1.

Until now, except Lemma 5(i) and partially also Lemma 3, we have dealed
with unitary rings of characteristic 2 satisfying the identity 2P = =z only
for odd natural numbers p. Further, we will discuss some cases when p
is even.

It is worth noticing that we have already solved the case of unitary ring
satisfying 2° = x for r even. As mentioned in Remark 4, such a ring is
of characteristic 2 and we can write here 2" = 3k + 1 for some odd natural
number k. Hence, by Lemma 3, such a ring need not be Boolean.

If we consider a unitary ring satisfying 2" = z for 7 odd then this ring
is of characteristic 2 and we can express 2" in the form 3k 4 2 for some
even k. Such a ring also need not be Boolean in general, see the following
example for r = 3.

Example 14. The eight-element ring R whose operations + and - are de-
termined by the tables

g o Gk W~ ot
O U W~ OO
LR T O WO |~
O N TR O W NN
AU 1O — N W w
W N O U i
— WO N O R~ Ut
N O W U~ B OO
O N WA O G|~
cCoococoo o oo
GO TR W O
O W TR N O
MR~ O U Ww O|w
N O Ol -1 W O
B WK O R~ oo
MW R~ O O
WUl =N O O

N O TR W N~ O

is unitary, of characteristic 2, but it is evidently not Boolean.
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We finish with the result which solves the problem for even natural numbers
p which are sum of two consequently standing powers of two, i.e. for numbers

p=06,12,24,48, ... .

Theorem 15. Let R = (R;+,) be a unitary ring satisfying the identity
2P = 2 where p = 2°F1 £29 for some natural number a. Then R is Boolean.
Proof. Consider a unitary ring R satisfying 22" 2" = 2 for some natural
number a. By Remark 4, this ring is of characteristic 2 and, by [3], Lemma

3(a), we have

1 + r = (1 + x)2a+l+2a _ (1 + x)2a+1 ) (1 + x)Qa

= (1 +x2a+1) . (1 + x2a) -1 + {I;2a + x2a+1 + x2a+1+2a'

Hence, 22 = 22", and further
x2a+2 _ x2a+1+2a+1 _ x2a+l ) :C2a+1 _ :C2a+1 ) an
_ x2a+1+2a _ :Cp —
From the identity P = 222" = 2 we can also obtain

2a+2 2a+1+2a)+(2a+1_2a) x1+(2a+1_2a) _ x1+2a

Altogether we have z = 22 = z2"*t1 and, by Lemma 6, R is Boolean. m

Remark 16. It is easily seen that all the numbers p which are determined
by Theorem 15 are just the numbers of the form p = 6 - 25~ where k is an
arbitrary natural number.
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