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Abstract

Generalized hypersubstitutions are mappings from the set of all
fundamental operations into the set of all terms of the same language
do not necessarily preserve the arities. Strong hyperidentities are iden-
tities which are closed under the generalized hypersubstitutions and a
strongly solid variety is a variety which every its identity is a strong
hyperidentity. In this paper we give an example of pre-strongly solid
varieties of commutative semigroups and determine the least and the
greatest pre-strongly solid variety of commutative semigroups.
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1. INTRODUCTION

Hyperidentities were invented by Aczel, Belousov and Taylor. The notion of
hyperidentities and solid varieties of a given type as well as derived algebras
of given type were invented by E. Graczyniska and D. Schweigert in [3]. An
identity ¢ ~ ¢ of terms of any type 7 is called a hyperidentity for an algebra
A = (A (fMN)ier) if t = ¢ holds identically for every choice of n-ary term
operation to represent m-ary operation symbols occurring in ¢ and t. A
variety which every its identity is a hyperidentity is called solid variety.
Hyperidentities can be characterized more precisely using the concept of a
hypersubstitution which was introduced by K. Denecke, D. Lau, R. Pdschel
and D. Schweigert. A hypersubstitution of type 7 is a mapping o : {f;|i €
I} — W, (X) which assigns to every n;-ary operation symbol f; an n;-ary
term. The set of all hypersubstitutions of type 7 is denoted by Hyp(T).
For every o € Hyp(7) induces a mapping 6 : W,(X) — W,(X) by the
following steps:

(i) o[z] := «, for any variable z € X, and

(i) o[fi(ts,... tn,)] == 0o(fi)(G[t1],...,0tn,]), where 6]t;],1 < j < n; are
already defined.

A binary operation o, on Hyp(7) is defined by o1 op, 09 := g7 0 0y for every
01,09 € Hyp(r) where o is the natural composition of mappings. Let o4
be the hypersubstitution where o;4(f;) = fi(x1,...,2n,). It turns out that
(Hyp(7);0p, 04q) is @ monoid with o;4 is an identity element.

S. Leeratanavalee and K. Denecke generalized the concepts of hypersub-
stitutions, hyperidentities and solid varieties to generalized hypersubstitu-
tions, strong hyperidentities and strongly solid varieties [4]. A generalized
hypersubstitution of type 7 is a mapping o : {f;|i € I} — W, (X) from
the set of all n;-ary operation symbols into the set of all terms built up
by elements of the alphabet X := {z1,x2,...} and operation symbols from
{fili € I} which does not necessarily preserve the arity.

We denoted the set of all generalized hypersubstitutions of type 7 by
Hype (7). To define a binary operation on Hypg(7), we defined firstly the
concept of generalized superposition of terms S™ : W, (X)™t! — W, (X)
by the following steps:

for any term t € W (X),
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(i) if t =2x5,1 < j < m, then
S™M(xj t1, ... tm) ==,

(ii) if t = x;,m < j € IN, then
S™M(xj,t1, .. t) =y,

(111) ift = fz‘(Sla ce 7Sni)7 then

Sm(t,tl, ce ,tm) = fl'(Sm(Sl,tl, ce ,tm), e ,Sm(sni,tl, ce ,tm)).

Then the generalized hypersubstitution ¢ can be extended to a mapping
g : Wr(X) — W-(X) by the following steps:

(i) o[z] :=x € X,
(ii) olfi(t1,....tn;)] = S™(o(fi),0[t1],...,0[tn,]), for any n;-ary
operation symbol f; where ¢[t;], 1 < j < n; are already defined.

We defined a binary operation og on Hypg(7) by 010609 := 61009 where o
denotes the usual composition of mappings and 01,09 € Hypa (7). Let 049 be
the hypersubstitution mapping which maps each n;-ary operation symbol f;
to the term f;(z1,...,2p,). It turns out that (Hypg(7);oq, 0iq) is a monoid
and the monoid (Hyp(7);oq,04q) of all arity preserving hypersubstitutions
of type 7 forms a submonoid of (Hypa(7); oG, 0id)-

If M is a submonoid of Hypg(7) then an identity ¢ =~ ¢ is called an
M-strong hyperidentity if 6[t] ~ 6[t'] are identities for every ¢ € M. A
variety V is called M-strongly solid if every identity in it is an M-strong
hyperidentity. In case of M = Hypg(7) we will call a strong hyperidentity
and strongly solid respectively.

2. V-PROPER GENERALIZED HYPERSUBSTITUTIONS AND NORMAL FORMS

In 2007, S. Leeratanavalee and S. Phatchat generalized the concept of V-
proper hypersubstitutions and normal forms of hypersubstitutions intro-
duced by J. Plonka [5] to V-proper generalized hypersubstitutions and nor-
mal forms of generalized hypersubstitutions.
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Definition 2.1 ([5]). Let V be a variety of type 7. A generalized hyper-
substitution o of type 7 is called a V-proper generalized hypersubstitution if
for every identity s ~ ¢ of V, the identity &[s| ~ d[t] also holds in V. We use
P (V) for the set of all V-proper generalized hypersubstitutions of type 7.

Proposition 2.2 ([5]). For any variety V of type 7, (Pa(V);0q,0i4) is a
submonoid of (Hypg(7); oG, 0id)-

Definition 2.3 ([5]). Let V' be a variety of type 7. Two generalized hy-
persubstitutions o1 and oo of type 7 are called a V-generalized equivalent
if o1(f;) =~ o2(f;) are identities in V for all ¢ € I. In this case we write
01 ~VG 02-

Theorem 2.4 ([5]). Let V be a variety of algebras of type T,and let 01,09 €
Hypg(7). Then the following statements are equivalent:

(i) o1 ~vg o2.
(ii) For allt € W-(X), the equations 61[t] = 62[t] are identities in V.
(iii) For all A € V, 01[A] = 02]A] where o[A] = (A; (or(fi)Vicr); k = 1,2.

Proposition 2.5 ([5]). Let V' be a variety of algebras of type 7. Then the
following statements hold:

(i) For all 01,09 € Hypg(7), if 01 ~va o2 then o1 is a V-proper gener-
alized hypersubstitution iff oo is a V-proper generalized hypersubstitu-
tion.

(ii) For all s,t € W-(X) and for all 01,09 € Hypg(T), if 01 ~v¢ o2 then
g1(s] = 61[t] is an identity in V iff 69[s] = G2[t] is an identity in V.

The relation ~y ¢ is an equivalence relation on Hypg(7), but it is not nec-
cessary a congruence relation. We factorize Hypg(7) by ~y¢ and consider
the submonoid P (V') of Hypg(7) is the union of equivalence classes of the
relation ~y . This is also true for a submonoid M of Hypg(r) and the

relation ~VG,,

Lemma 2.6 ([5]). Let M be a submonoid of Hypg(T) and let V be a variety
of type 7. Then the monoid Pg N M is the union of all equivalence classes
of the restricted relation ~va,, -
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Definition 2.7 ([5]). Let M be a monoid of generalized hypersubstitutions
of type 7, and let V' be a variety of type 7. Let ¢ be a choice function which
choosed from M one generalized hypersubstitution from each equivalence
class of the relation ~VGa and let N é)\/l (V') be the set of generalized hy-
persubstitutions which are chosen. Thus N, dj)w (V) is a set of distinguished
generalized hypersubstitutions from M, which we might call V-normal form
generalized hypersubstitutions. We will say that the variety V is N é)\/l (V)-
strongly solid if for every identity s =~ t € IdV and for every generalized
hypersubstitution o € Ndj)‘/I(V), o[s] = a[t] € IdV.

Theorem 2.8 ([5]). Let M be a monoid of generalized hypersubstitutions
of type T and let V' be a variety of type 7. For any choice function ¢,V is
M -strongly solid if and only if V' is Né)\/[(V)—strongly solid.

3. PRE-STRONGLY SOLID VARIETIES OF SEMIGROUPS

The concept of pre-solid varieties was introduced by K. Denecke and S.L.
Wismath [2]. In 2007, S. Leeratanavalee and S. Phatchat generalized the
concept of pre-solid varieties to pre-strongly solid varieties [5]. Firstly, we
recall the definitions of a pre-generalized hypersubstitution and a pre-strong
hyperidentity. Let us fix a type 7 = (2). So we have only one binary
operation symbol, say f. From now on, the generalized hypersubstitution o
which maps f to the term ¢ is denoted by oy.

Definition 3.1. A generalized hypersubstitution o € Hypg(2) is called a
pre-generalized hypersubstitution if o € Hypg(2) \ {04, 0z, } where o,, and
04, denoted the generalized hypersubstitutions which map f to x; and to
x9, respectively. We denote the set of all pre-generalized hypersubstitutions
of type 7 = (2) by Preg(2).

The reason to delete the generalized hypersubstitutions o,, and o4, from
Hypc(2) is if we apply the generalized hypersubstitution o,, or o,, on the
both sides of the commutative law z1x9 =~ z9x; we obtain the equation
1 & xo which satisfied only in a one-element semigroup.

Definition 3.2. An identity ¢ ~ t is called a pre-strong hyperidentity in a
variety V if 6[t] ~ 6[t'] € IdV for all o € Preg(2).

A variety V is called a pre-strongly solid variety if every identity in V is
a pre-strong hyperidentity of V.
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For a class K of algebras of type 7 and for a set ) of identities of this type
we fix the following notations:

IdK - the set of all identies of K,

HIdK - the set of all hyperidenties of K,

Hpye IdK - the set of all pre-strong hyperidenties of K,

Mody  ={A € Alg(7)|A satisfies) |} - the variety defined by >,

HMod) = {A € Alg(7)|A hypersatisfies) |} - the hyperequa-
tional class defined by ),

Hpre,Mod) = {A € Alg(r)|A pre-strong hypersatisfies) _} - the
pre-strong hyperequational class defined by >_.

Proposition 3.3 ([5]). Preg(2) is a submonoid of Hypg(2).

Remark 3.4 ([5]). Every strongly solid variety of semigroups is a pre-
strongly solid variety.

Remark 3.5 ([5]). Every pre-strongly solid variety of semigroups is a pre-
solid variety of semigroups.

Lemma 3.6 ([5]). The variety Z := Mod{xixo ~ x3x4} is the least non-
trivial pre-strongly solid variety of semigroups.

Theorem 3.7 ([5]). The greatest non-trivial pre-strongly solid variety of
semigroups which is not strongly solid is Z := Mod{z1xs ~ x324}.

Theorem 3.8 ([5]). The variety Viig := Mod{(z172)x3 ~ 21 (2223), 320 &
561:6% R T1X9, T1ToT3T4 R T1T3T2X4 ) 1S the greatest pre-strongly solid variety
of semigroups.

4. PRE-STRONGLY SOLID VARIETIES OF COMMUTATIVE SEMIGROUPS

Firstly, we recall the definition of a generalized hypersubstitution of type
T is a mapping o : {fi|li € [} — W, (X) from the set of all n;-ary opera-
tion symbols into the set of all terms built up by elements of the alphabet
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X := {x1,x9,...} and operation symbols from {f;|i € I} which does not
necessarily preserve the arity. We denote the set of all generalized hyper-
substitutions of type 7 by Hypg (7). A generalized superposition of terms
S™ W (X)™H — W, (X) is defined by the following steps:

for any term t € W, (X),
(i) if t =2x5,1 < j < m, then

Sm(SCj,tl, ce ,tm) = t]’,

(ii) if t = z;,m < j € IN, then

Sm(xj,tl, e ,tm) =z,

(111) ift = fz‘(Sla ce 7Sni)7 then

Sm(t,tl, o ,tm) = fi(Sm(sl,tl, L. ,tm), L. ,Sm(sni,tl, L. ,tm)).

For every o € Hypg(7) induces a mapping ¢ : W (X) — W,(X) by the
following steps:

(i) 6[z] = € X,

(ii) olfi(t1,... tn,)] == S™(c(fi),0[t1],...,0[tn,]), for any n;-ary opera-
tion symbol f; where 6[t;], 1 < j < n; are already defined.

In this section, we give an example of pre-strongly solid varieties of commu-
tative semigroups and then determine the least and the greatest pre-strongly
solid variety of commuutative semigroups.

Theorem 4.1. The variety Vi := Mod{(x1x2)x3 =~ x1(x2x3), T122 ~ ToX71,
1279 & 11735 & 1179, T3 & X3} is a pre-strongly solid variety of commutative
Semigroups.

Proof. To show that the variety V; is a pre-strongly solid variety of com-
mutative semigroups, we have to show that every identity satisfied in Vj is
a pre-strong hyperidentity of V. By using Theorem 2.8 , we can restrict
our checking to the following pre-generalized hypersubstitutions o, where
t e {$Z$]|Z,] S N}U{SCZIEJ.’EH 1 75 7 7& kj}U{SC“SCZQSCZ]J k,i1,...,5 € NJE > 3,
and all of i1, ..., 7 are distinct}.
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If we apply 04,4,; i, j € N on the both sides of the associative law we have the following table.

i,j eN &Iﬂj[(xle)xg] = 6'%.%. [$1($21’3)] =
52(1’1'1,‘]', SQ(xixj, I, $2), 113) 52(1’1'1,‘]', 1, SQ(JJi.Tj, xIo, .%’3))
1= j =1 L1111 11
1= 1,j =2 T1T2X3 T1T2X3
1=1,7>2 T1TXj 125
i=]= 323 T3T3T3T3
1=2,7>2 T3T; T3T;T
1,9 > 2 Tl TiTj

2 2 ~ 2 2

Using the associative law, the commutative law and identities zizy ~ 125 ~ x122,27 = 75

sides are equal.

we have both

If we apply 04,4,; t,j € N on the both sides of the commutative law we have the following table.

1,7 €N &zizj [xlxg] = 52($ix]‘,x1,x2) 6%@]‘ [:Ez:tl] = Sz(xiltj,ltz,ltl)
1=7 = 121 T2X2
1=1,7=2 T1T2 ToTq
1=1,7>2 T1Z; ToTj
1=4 =2 Tolo 121
1=2,7>2 T T
1,7 > 2 TiT; ;T

2 2~ 2 2

Using the associative law, the commutative law and identities zi{zy ~ 125 ~ x122,27 = 25

sides are equal.

we have both



If we apply 04,4,; ¢,j € N on the both sides of the identity 72 ~ 22 we have the following table.

i,j €N O [T171] = S%(xixj, x1,71) O, [T2T2] = S%(xixj, w2, T2)
1= j =1 1T T2
1= 1,j =2 12X T2
1=1,7>2 T1T5 T2
) :j =2 12X T2
1 =2,7>2 T1T; T2
1,9 > 2 LT TiZj

Using the associative law, the commutative law and identities 2329 ~ 7123 ~ 129,27 ~ 23 we have both
sides are equal.
If we apply 04,25 ¢,j € N on the both sides of the identity w%xz = wlxg ~ x1x2 we have the following

table.

i,j €N Ouiz; [(T171)12] = Opiz; |71 (T272)] = Ouiz; | T172] =

S%(wixj, S*(zizj, 21, 21), 22) | S*(wiwj, w1, S*(wizj, 12, 22)) | S?(wiw), 21, 72)
1= j =1 L1111 11 1T
1= 1,j =2 T1X1X9 T1X2X9 T1X9
= l,j > 2 T1T5T T1T; T1Z;
) :j = T2 LoX2XQTD ToX9
1=2,7>2 Tox; ToX;T ToTj
1,9 > 2 LT LT TiZj

SAdNOYUDINIS HAILLVLNNINOD A0 SHILAITYVA dI'TOS ATONOYULS-HYJ

3
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Using the associative law, the commutative law and identities 2379 ~ 2173 ~ 179,27 ~ 23 we have both

sides are equal.
If we apply 04,4,2,; ¢ # J # k € N on the both sides of the associative law we have the following table.

1,7, keN 6@%%[(361362)353] = &zizjzk [xl(:EQ:Eg)] =

S2(xixjxk, Sz(xix]wk, x1,T2),T3) S2(xixjxk, 1, S2(xixjxk, x9,x3))

1=1,=2,k>2 T1X2LLLITE T1T2T3TLTE
i=1,5,k>2 T1TjTRT T, T1T;Tp,

1=2,5,k>2 T3T T T3TTRT; T,
1,7,k >2 TiT T TiT;Th,

Using the associative law, the commutative law and identities ¥3x9 ~ m123 ~ 2179, 2% ~ 23 we have both

sides are equal.
If we apply 04,2,2,; ¢ # J # k € N on the both sides of the commutative law we have the following table.

i,j,k S N &zizjzk[xlxg] = 52(xixjxk,x1,x2) &zizjzk[mxl] = SQ(xixjxk,xg,xl)
1i=1,=2k>2 T1T9LE ToX1Xk
i=1,5,k>2 T1TjT) ToT ;T
1=2,5,k>2 T Ty, ToT ;T
1,7,k > 2 TiTj T TiT;Th,

Using the associative law, the commutative law and identities x
sides are equal.

2 ~
X2 ~

2 2~ 2
T1Ty =~ X1X2,T] ~ Ty

we have both



If we apply 0u.0.2.; © # j # k € N on the both sides of the identity x? ~ 22 we have the following table.
1Ll 1 2

i,j,k €N Oriajzy,[T171] = S%(xixjxn, 1, 71) Oz, [TaTa] = S%(xixjxn, T2, T2)
1=1,7= 2,k > 2 T1T2Tf ToX1Tk
1=1,5,k>2 T1X T, ToTj T
1=2,5,k>2 ToX Ty, T1Tj Tk
1,7,k >2 TiTj T TiT; T,

Using the associative law, the commutative law and identities 23729 ~ 7123 ~ 122,27 ~ 23 we have both

sides are equal.

If we apply 044,25 @ # j # k € N on the both sides of the identity x%wg ~ wlw% ~ x1x2 we have the

following table.

1,7,k €N

5':Eimjmk [(1'11'1)1'2] =
S?(wizjay,

S?(zizjay, x1, 1), T2)

S%(xixjwy, 1,

52(ac,-acjxk, x2,x2))

5':Eimjmk [331332] =

S?(wixjw, T, T1)

1= 1,j = 2, k>2 T1T1 T ToT} T1T2X2X T T1X2T}
1=1,5,k>2 T1TjTRT Ty, T1T T T1T; T,
1=2,5,k>2 ToX Ty, TOLjTRT T, ToT T,
1,7,k >2 TiX T ;T I ;T

Using the associative law, the commutative law and identities 2379 ~ 7123 ~ 122,27 ~ 23 we have both

sides are equal.

SAdNOYUDINIS HAILLVLNNINOD A0 SHILAITYVA dI'TOS ATONOYULS-HYJ

L€
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If we apply o; where t = z;,z;,...7;, and k,i1,...,4; € N,k > 3 on the both
sides of the associative law we have &;[(x122)z3] = S?(t, S%(t, 21, 22), 73)
and 6¢[z1(zow3)] = S%(t, w1, S?(t, x2, 73)).

(i) If there exists a unique n € {1,..., k} such that i,, = 1 and i, > 2 for
all m # n, then

Jt[(wlwg)wg] =Ty Ly Ly oLy L1LGy g oL Ly g -+ Ly -

&t[xl (.1‘2.%'3)] = .1‘1‘1 ...xinflxlxinﬂ ka .

(ii) If there exists a unique n € {1,..., k} such that ¢, = 2 and i, > 2 for
all m # n, then

5’t [(561562):63] = xh ~-~xin_1 CCg.’Ein_H SCZk .

5’t [fEl (SCQ(Eg)] = Tjy e Lijp_1 Ly Lijpy_q CCg.’Ein_H <Ly, xin+1 <Ly,
(iii) If there exists a unique n € {1, ..., k} such that i,, = 1 and there exists

a unique [ € {1,...,k} such that i; = 2, i,, > 2 for all m # n # [ and
n < [, then

6t[(z122)73]

=gy Ly Ly Ly, T1T4,, 1 ...xil_lxgxilﬂ oLy Ly 4 g ...xil_1$3$il+l <Ly

Gi[z1(z223)]
= Ty oWy T1Tgy | Ty oLy 2T g ey 3Ty ey, Ty o Ty
(iv) If iy, > 2 for all m € {1,2,...,k}, then
G[(r122)23] = @iy o4
o1 (zox3)] = @i, ... x, -

Using the associative law, the commutative law and identities 2229 ~ z173 ~
T179, 3 ~ 75 we have both sides are equal.
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If we apply o; where t = z;,24,...7;, and k,i1,...,9; € N,k > 3 on the
both sides of the commutative law we have 6y[z129] = S%(t,71,22) and
5’t[$2$1] == 52(t,$2,$1).

(i) If there exists a unique n € {1, ..., k} such that i,, = 1 and i, > 2 for
all m # n, then

Jt[.%'l.%'g] =Tjy L  L1Ljpyyq -+ Ly, -

Jt[.%'g.%'l] =Tjy L 1 L2Tjpyy g -+ Ly, -

(ii) If there exists a unique n € {1,..., k} such that ¢, = 2 and i, > 2 for
all m # n, then

Oilw122] = T4y .., T2T4, o T

ke

O¢lwom1] = T4y T, T1 T4y o Ty -

(iii) If there exists a unique n € {1, ..., k} such that i,, = 1 and there exists
a unique [ € {1,...,k} such that i; = 2, i,, > 2 for all m # n # [ and
n < [, then

Ge[T122] = T4y Ty T1TG Ty T2y Ty

Jt[.%'g.%'l] = xil...xinflxgxinﬂ...xil_lxlxilﬂ...xi .

(iv) If i, > 2 for all m € {1,2,...,k}, then

5’t[$1$2] = Tjy.--Tjy,-

&t[.%'g.%'l] = Ty .- T4

ket

Using the associative law, the commutative law and identities 2229 ~ z173 ~
T179, 3 ~ 75 we have both sides are equal.
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If we apply o; where t = z;,24,...7;, and k,i1,...,9; € N,k > 3 on the

both sides of the identity 22 ~ z3 we have 6y[r121] = S%(¢,71,21) and

5’t[$2$2] = 52(7f, o, .’EQ).

(i) If there exists a unique n € {1,...,k} such that i,, = 1 and i, > 2 for
all m # n, then

Jt[.%'l.%'l] =Tjy L  L1Ljpyyq -+ Ly, -

¢ [.%'2.%'2] =Tjy L 1 L2Tjpy g g -+ Ly, -

(ii) If there exists a unique n € {1,..., k} such that ¢, = 2 and i, > 2 for
all m # n, then

Oilw11] = T4 T, BTy Ty -

O¢|woma] = 4 .., ToT4, g o Ty -

(iii) If there exists a unique n € {1, ..., k} such that i,, = 1 and there exists
a unique [ € {1,...,k} such that i; = 2, i,, > 2 for all m # n # [ and
n < [, then

Ge[r121] = T4y Ty TITG Ty TGy Ty

¢ [.%'2.%'2] =Ty Ly 2Ty g -+ Ly .’I]Q.’L'Z‘l+1 oLy

(iv) If i, > 2 for all m € {1,2,...,k}, then
5’t[$1$1] = Tjy.--Tjy, -

Gtlxoxa) = T4, ... i, .

Using the associative law, the commutative law and identities 2229 ~ z173 ~
T179, 3 ~ 75 we have both sides are equal.
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If we apply o; where t = z;,24,...7;, and k,i1,...,9; € N,k > 3 on the
both sides of the identity 23wy ~ 2173 ~ z179 we have 64(x121)w2] =
S2(t,S?(t, x1, 1), 2) and &;[x1 (wax0)] = S?(t, 21, S%(t, 71, 22)) and 6¢[z172)
= SQ(t,xl,xg).

(i) If there exists a unique n € {1,...,k} such that i,, = 1 and i, > 2 for
all m # n, then

5’t[($1$1)$2] = xh ---xin_lxh ...$in_1$1$in+1 ...St?l'kfbin+1 fEZk
5’t[$1($2$2)] = St?l'l...$in_1$1$in+1...$ik.

Jt[.%'l.%'g] =Ty L L1Ljpyyq -+ Ly, -

(ii) If there exists a unique n € {1, ..., k} such that i, = 2 and 7, > 2 for
all m # n, then

5’t[($1$1)$2] = T4, ...$in_1$2$in+1 <Ly,
5’t [fEl (SCQ(EQ)] = Tjy - Lijy_1 Ly Ly _q CCQ.’Ein_H <Ly, xin+1 <Ly,
5’t [fEleQ] = T4, ...$in_1$2$in+1 <Ly, -
(iii) If there exists a unique n € {1, ..., k} such that i,, = 1 and there exists

a unique [ € {1,...,k} such that i; = 2, i,, > 2 for all m # n # [ and
n < [, then

Ge[(z121) 2]

= Ljy e Tjp_1Liyq ...xinflxlxinﬂ ...xil_1$1$il+l ...$ik.%'in+1 ...xil_lxgxilﬂ xlk .
Ge[r1(2m2)]
=Ty Ly X1y Ly oLy L2LG, 4 ...xil_lxgxmrl "‘xikxil+1 <Ly

Ge[T122] = T4y Ty T1TG, Ty T2y Ty
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(iv) If i, > 2 for all m € {1,2,...,k}, then

5’t[($1$1)$2] = Tjy.--Tjy, -

o1 (zoxa)] = i, ... x, -

Gtlx122) = T4, ...y,

Using the associative law, the commutative law and identities 23zo ~ 7123 ~

7172, 73 ~ 23 we have both sides are equal. [

Theorem 4.2. The variety Z := Mod{x1xo ~ x314} is the least pre-
strongly solid variety of commutative semigroups.

Theorem 4.3. The variety Vo := Mod{(x1x2)x3 ~ x1(x2x3), v122 ~ ToX71,
T1Toxs & wix3} is the greatest pre-strongly solid variety of commutative
Semigroups.

Proof. The greatest pre-strongly solid variety of commutative semigroups
is the class of all commutative semigroups for which the associative law and
the commutative law are satisfied as pre-strong hyperidentities, i.e the class
HpreMod{(z122)x3 = x1(x223), x122 = 221 }. Applying 0420, Oz12;) Oaizn
(i > 2) € Preg on the associative law, 0,4, gives (z1x2)z3 ~ x1(x273),
Opyz; gives xlx? R XT1Ti, Og;z, GiVEs xfx ~ x;x. If we substitute for x; a new
variable x5, then we have the identities xlx% X T1To, x%xl ~ x9x1. That
means 137y ~ 1173 ~ 1179 €Id(Hpre,Mod{(z179)x3 ~ x1(7273), 1172 ~
x2x1}). Applying 04,44, 04,2;(0 > 2) on the commutative law, 0,4, gives
T1To R ToT1, Opq; gives x;x1 ~ x;we. Then z;x129 & ;w220 & T;T2, SO
T;T1T9 & T;xo. If we substitute x; by z1, 1 by o and x5 by z3. Then we
have z1x9x3 ~ x123. Thus Hpre,Mod{(x122)x3 = x1(x223), x122 ~ Tox1}
satisfies all identities of Vi, i.e Hpp ,Mod{(z122)xz3 ~ x1(x223),x122 ~
x9x1} C Va. To prove the converse inclusion we have to check the associative
law , the commutative law and the rectangular law, i.e. z1x9x3 ~ 123 using
all pre-generalized hypersubstitutions. We can restrict our checking to the
following pre-generalized hypersubstitutions o, (7,5 € N).
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If we apply 04,4;; ,j € N on the both sides of the associative law we have
the following table.

i,j €N O;[(T172) 73] = Oy [21(2273)] =
52(1‘1‘1‘]‘, Sz(xixj, 1, .%'2), .1‘3) 52(1‘1‘1‘]‘, 1, Sz(xixj, 9, .%'3))
1=35=1 T1T1X121 12T
1=1,7=2 T1T2T3 T1T2T3
1=7=2 r3x3 L3T3T3T3
= 1,j > 2 T1T;T T1%;
1=2,7>2 T3Tj T3T;FT 5
1,5 > 2 TiT TiTj

Using the associative law, the commutative law and the identity zizox3 =~
x1x3 we have both sides are equal.

If we apply 04,4,; 7,7 € N on the both sides of the commutative law we
have the following table.

’i,j eN &mimj [.1‘1.%'2] = Sz(.%'i.%'j, X1, .%'2) 6—$ixj [.%'2.1‘1] = 52(1‘1‘1‘]‘, X9, .%'1)
1=35=1 1T ToXo
1=1,7=2 T1T2 Tox1
1=7=2 ToTo Tr1x1
= 1,j > 2 T1T; T2
1=2,7>2 T2T; L1
1,5 > 2 TiT TiT;

Using the associative law, the commutative law and the identity zizox3 =~
x1x3 we have both sides are equal.
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If we apply Omizji 4] € N on the both sides of the identity z1xox3 ~ x12x3 we have the following table.

i,j EN Opiz;|(T172) 23] = S%(wixj, S*(xizj, 21, 22), T3) Oz [ T123] = S%(w;xj, 1, x3)
1=4 = T1X12121 171
1= 1,j =2 T1T2X3 13
i=j=2 373 L33
1=1,7>2 T1T5T T1%;
1=2,7>2 I3T; T3
1,9 > 2 Tixj TiZj

Using the associative law, the commutative law and the identity xizox3 ~ x123 we have both sides are equal.
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