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Abstract

Characterizations of ‘almost associative’ binary operations gener-
ating a minimal clone are given for two interpretations of the term
‘almost associative’. One of them uses the associative spectrum, the
other one uses the index of nonassociativity to measure how far an
operation is from being associative.
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1. Minimal clones

A clone on a set A is a set of finitary operations on A that is closed under
composition of functions and contains all the projections. The base set A
can be arbitrary; we will never assume finiteness in this paper. If A = (A; F )
is an algebra, then the set of term functions, denoted by Clo (A), is a clone
on A, the clone of the algebra A. In this case Clo (A) is the smallest clone
containing F , therefore we say that F generates the clone, and we write
[F ] = Clo (A). (Clearly, every clone arises as the clone of an algebra: we
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just need to pick a generating set for the clone, and let these be the basic
operations of the algebra.) We can also speak about Clo (V), the clone of a
variety V. By this we mean the clone of Fℵ0

(V), the countably generated
free algebra of V.

The n-ary part of Clo (A), denoted by Clo(n) (A) can be identified nat-
urally with Fn (V (A)), the n-generated free algebra of the variety generated
by A. Projections correspond to variables under this identification: the first
binary projection is e1 : (x, y) 7→ x and the second one is e2 : (x, y) 7→ y,
therefore we will sometimes think of the variables x and y as projections
(most of the time we will work with binary operations).

All clones on a given set A form a lattice with respect to inclusion; the
smallest element of this lattice is the trivial clone, the clone of all projections
on A, while the greatest element is the clone of all finitary operations on A.
Minimal clones are the atoms of this lattice, i.e. a clone is minimal, if its
only proper subclone is the trivial clone. A minimal clone is generated by
any of its nontrivial (i.e. non-projection) elements, thus all minimal clones
are singly generated, and therefore arise as clones of algebras with just one
basic operation. If A = (A; f) is such an algebra, then in order to prove
that it has a minimal clone, one needs to verify that f ∈ [g] holds for every
nontrivial g ∈ Clo (A). This fact can be expressed by identities, so if A has
a minimal clone, then so does V (A), and if a variety V has a minimal clone,
then the clone of any algebra in V is either minimal or trivial.

To prove that a clone [f ] on A is not minimal one needs to find a non-
trivial operation g ∈ [f ] such that f /∈ [g]. This can be done for example
by showing that there is an equivalence relation ρ on A (a subset of A),
such that ρ is a congruence (subuniverse) of the algebra (A; g), but is not
a congruence (subuniverse) of (A; f). (There is a general notion of preser-
vation of relations of arbitrary arity, and this gives a Galois-correspondence
between operations and relations on finite sets [1, 8], but we will use only
the previous observation, which is valid for infinite sets as well.)

It is convenient to generate a minimal clone by a nontrivial operation
of the smallest arity. Minimal clones are classified with respect to this
generator; there are five types, and for two of them there is a complete
characterization of minimal clones (Rosenberg’s Theorem, see [25] and [29]).

One of the three types where the description of minimal clones is not
complete yet is the binary case. Clones of this type are generated by an
idempotent binary operation, so they can be (and will be) viewed as clones
of idempotent groupoids. (In this paper the term groupoid refers to an
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algebra with a single binary operation.) The basic operation of a groupoid
will be denoted by f (x, y) = xy, and by the dual of A = (A; f) we mean the
groupoid A

d =
(

A; fd
)

with fd (x, y) = f (y, x) = yx. Similarly, Vd denotes
the variety formed by the duals of the elements of V. Obviously, a groupoid
has a minimal clone if and only if its dual does (actually they have the very
same clone).

A groupoid has a trivial clone if and only if it is a left or right zero
semigroup. The simplest examples of groupoids (or varieties) with a minimal
clone are semilattices and rectangular bands. Before giving more examples
of varieties with a minimal clone, let us make some notational conventions.

To save parentheses we use the notation←−−−−−−−x1 · . . . · xn for the left-associated
product (· · · ((x1x2) x3) · · · ) xn, and similarly −−−−−−−→x1 · . . . · xn for the
right-associated product x1 (· · · (xn−2 (xn−1xn)) · · · ). We abbreviate
←−−−−−−−−x · y · . . . · y to xyn (where n is certainly the number of y’s appearing in
the product). Analogously nxy stands for −−−−−−−−→x · . . . · x · y.

Let B denote the variety defined by the identities xx ≈ x, x (xy) ≈
x (yx) ≈ (xy) x ≈ (xy) y ≈ (xy) (yx) ≈ xy; let Cp be the variety of p-cyclic
groupoids (cf. [23]) defined by xx ≈ x, x (yz) ≈ xy, (xy) z ≈ (xz) y, xyp ≈ x,
and finally, let D be defined by x (yx) ≈ (xy) x ≈ (xy) y ≈ (xy) (yx) ≈ xy
and x · ←−−−−−−−−−x · y1 · . . . · yn ≈ x (for all n ≥ 0). The clone of B and D is minimal,
while the clone of Cp is minimal iff p is a prime. The minimality of the
clone of B and D is proved in [20]; these are the clones in parts (c) and
(d) in Theorem 5.2. For the proof of the minimality of the clones of p-
cyclic groupoids see [22]. (From now on we always assume that p is a prime
number, when we speak about p-cyclic groupoids.)

The following propositions show the usefulness of absorption identities
in the study of minimal clones. These are identities of the form t ≈ x, i.e.
identities with a single variable on one side. The proofs of these propositions
can be found in [20] and [12].

Proposition 1.1. Let V be a variety with a minimal clone, and let A ∈V
have a nontrivial (hence minimal) clone. Then V satisfies every absorption
identity that holds in A.

Proof. See Lemma 2.1 in [20] or Lemma 3.6 in [12].

Proposition 1.2. Let V be a variety with a minimal clone, and suppose that
V contains a p-cyclic groupoid (rectangular band) with a nontrivial clone.
Then V is the variety of p-cyclic groupoids (rectangular bands).
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Proof. By the previous proposition, it suffices to show that p-cyclic
groupoids and rectangular bands are axiomatizable by absorption identi-
ties. For p-cyclic groupoids such an axiomatization is given in Lemma 3.10
of [12], and the method described in Lemma 2.3 of [20] yields (almost) the
same identities. For rectangular bands see Lemma 3.8 of [12] or Theorem
5.2 (b) of [20] for a list of absorption identities. Note that the conclusion of
the proposition says that “V is the variety of p-cyclic groupoids (rectangular
bands)”, not that “V is a variety of p-cyclic groupoids (rectangular bands)”.
This is because the only nontrivial subvariety of Cp is the variety of left zero
semigroups (see the last paragraph of the proof of Lemma 3.5 in [12] or
Corollary 2.1 in [20]), and clearly the variety of rectangular bands does not
have a proper subvariety with a nontrivial clone either.

Proposition 1.3. Let V be a variety with a minimal clone satisfying the
identities xx ≈ x, x (yx) ≈ (xy) x ≈ (xy) y ≈ (xy) (yx) ≈ xy, x (xy) ≈ x.
Then V is a subvariety of D.

Proof. This is part (d) of Theorem 5.2 in [20]. The identities listed here are
sufficient to determine the two-generated free algebra of V. Its multiplication
table is the following (the four elements have to be distinct, since otherwise
Clo (V) would be trivial).

· x y xy yx

x x xy x xy
y yx y yx y
xy xy xy xy xy
yx yx yx yx yx

It is not hard to check that this groupoid satisfies every identity of the form
x ·←−−−−−−−−−x · y1 · . . . · yn ≈ x (this is a special case of Lemma 4.2 in [20]). These are
absorption identities, therefore we can apply Proposition 1.1 with A = F2 (V)
to show that V satisfies these identities, too. The remaining identities in the
definition of D are the same as that were assumed.
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Characterizing minimal clones in general is a hard task, even in
the binary case. All known results describe minimal clones under certain
restrictions [4, 5, 11, 12, 13, 20, 24, 28, 31, 32]. Another result of this kind is
the description of associative binary operations generating a minimal clone
[21, 30]: a semigroup has a minimal clone iff it is a rectangular band, a left
regular band (idempotent semigroup satisfying xyx ≈ xy) or a right regular
band (dual of a left regular band). Note that left and right regular bands
belong to the varieties B and Bd, respectively. In this paper we slightly gen-
eralize this result by characterizing ‘almost associative’ binary operations
generating a minimal clone. To explain what we mean by being ‘almost
associative’, we need a way to measure how far a certain operation is from
being associative. We discuss two such measures: the associative spectrum
and the index of nonassociativity. In Section 2 we characterize groupoids
with a minimal clone and small associative spectrum (Theorem 2.8), and in
Section 3 we describe groupoids with a minimal clone and small index of
nonassociativity (Theorem 3.3).

2. Minimal clones with small associative spectrum

One way of measuring associativity is possible by considering the identities
implied by associativity, and somehow counting how many of these are (not)
satisfied. To make this more precise, let us say that B is a bracketing, if
B is a groupoid term, and each variable occurs exactly once in B. If these
variables are x1, x2, . . . , xn and they appear in this order (as we will suppose
most of the time), then B is nothing else but a way to put brackets into
the product x1 · . . . · xn such that the order of the n − 1 multiplications is
well determined. In this case we say that B is a bracketing of the product
x1 · . . . · xn, and we write B = B (x1, . . . , xn). The number of variables
appearing in B is called the size of B, and is denoted by |B|.

In every bracketing there is an outermost multiplication, and this splits
the bracketing into two parts, the left factor and the right factor of the
bracketing. Let B = B (x1, . . . , xn), and let P,Q be the left and right
factors of B. Then B = PQ, and P = P (x1, . . . , xk) , Q = Q (xk+1, . . . , xn),
where k = |P |. Sometimes we will use the notation l (B) for the left factor
of B.

The number of bracketings of the product x1 · . . . ·xn is Cn−1 = 1
n

(2n−2
n−1

)

,
the (n− 1)st Catalan number. In a semigroup, all of these Cn−1 many
terms induce the same term function, but in an arbitrary groupoid they
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may induce more than one term function. Intuitively, the more term
functions of this kind there are, the less associative the multiplication is.
Therefore we define the associative spectrum of a groupoid A to be the
sequence sA (1) , sA (2) , . . . , sA (n) , . . ., where sA (n) is the number of
different term functions on A arising from bracketings of x1 ·. . .·xn. Thus the
associative spectrum gives (only quantitative) information about
identities of the form B1 (x1, . . . , xn) ≈ B2 (x1, . . . , xn) satisfied by the
groupoid. The associative spectrum was introduced and investigated in [6].

Clearly, sA (1) = sA (2) = 1 for every groupoid A, and sA (3) = 1 iff
A is a semigroup. In the latter case sA (n) = 1 for all n by the general
law of associativity. The smallest possible spectrum for a nonassociative
multiplication is 1, 1, 2, 1, 1, . . ., so we could say that a binary operation
is almost associative, if its spectrum is this sequence. However, there
is no groupoid having a minimal clone with this spectrum (not even an
idempotent groupoid) as we will see later. Therefore we have to be more
generous: in Theorem 2.8 we determine groupoids with a minimal clone
satisfying s (4) < 5 = C3. First we prove three theorems which show that
certain identities of the form B1 (x1, . . . , xn) ≈ B2 (x1, . . . , xn) cannot hold
in nonassociative groupoids with a minimal clone, and then we discuss the
four-variable case in detail. (In the first two theorems we actually assume
only idempotence.)

Theorem 2.1. If an idempotent groupoid satisfies the identity

(2.1) ←−−−−−−−x1 · . . . · xn ≈
−−−−−−−→x1 · . . . · xn

for some n ≥ 3, then it is a semigroup.

Proof. Applying (2.1) with x1 = . . . = xk = x, xk+1 = . . . = xn = y we
obtain

(2.2) xyn−k ≈ ←−−−−−−−−−−−−−x · . . . · x · y · . . . · y ≈ −−−−−−−−−−−−−→x · . . . · x · y · . . . · y ≈ kxy

for 1 ≤ k ≤ n− 1.
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Let us use (2.1) again, for x1 = x, x2 = u = xy2 ≈ n−2xy, x3 = . . . = xn = y:

(2.3) (xu) yn−2 ≈ ←−−−−−−−−−−x · u · y · . . . · y ≈ −−−−−−−−−−→x · u · y · . . . · y ≈ x (uy) .

The left hand side is (xu) yn−2 ≈
(

n−1xy
)

yn−2 ≈ (xy) yn−2 ≈ xyn−1 ≈ xy
(we used (2.2) twice, with k = n − 1 and k = 1 respectively). We can
compute the right hand side of (2.3) in a similar manner: x (uy) ≈ x

(

xy3
)

≈
x

(

n−3xy
)

≈ n−2xy ≈ xy2. Thus we have xy ≈ xy2, i.e. right multiplications
are idempotent.

Finally, to prove associativity, we write up (2.1) one more time:

(xy) zn−2 ≈ ←−−−−−−−−−−x · y · z · . . . · z ≈ −−−−−−−−−−→x · y · z · . . . · z ≈ x (yz) .

By the idempotence of right multiplication (by z) the left hand side reduces
to (xy) z, and therefore associativity is established.

Theorem 2.2. An idempotent groupoid satisfying the following two
identities for some n ≥ 3, must be a semigroup.

x0 ·
←−−−−−−−x1 · . . . · xn ≈ x0 ·

−−−−−−−→x1 · . . . · xn

←−−−−−−−x1 · . . . · xn · x0 ≈
−−−−−−−→x1 · . . . · xn · x0.

Proof. Substituting ←−−−−−−−x1 · . . . · xn into x0 in the first identity we have

←−−−−−−−x1 · . . . · xn ≈
←−−−−−−−x1 · . . . · xn ·

−−−−−−−→x1 · . . . · xn

by idempotence. Similarly, if we substitute −−−−−−−→x1 · . . . · xn for x0 in the second
identity, then we get
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←−−−−−−−x1 · . . . · xn ·
−−−−−−−→x1 · . . . · xn ≈

−−−−−−−→x1 · . . . · xn,

and thus (2.1), hence also associativity follows by the previous theorem.

Theorem 2.3. If a groupoid has a minimal clone and satisfies

(2.4) ←−−−−−−−x1 · . . . · xn ≈ x1 ·
←−−−−−−−x2 · . . . · xn

for some n ≥ 3, then it is a semigroup.

Proof. The case n = 3 is trivial, so let us suppose that n ≥ 4. First we
draw a consequence of (2.4) and idempotence (putting x and z for x1 and
xn, and y for the rest of the variables):

(2.5)
(

xyn−2
)

z ≈ x (yz) .

As a special case (with z = y) we get

(2.6) xyn−1 ≈ xy.

Now we suppose that A = (A; ·) is a groupoid with a minimal clone that
satisfies identity (2.4). The binary operation s (x, y) = xyn−2 belongs to the
clone of A, therefore if it is nontrivial, then [s] contains the basic operation
f (x, y) = xy.

Suppose that a and b are arbitrary elements of A such that
c = (ab)an−3 6= a. We claim that s is a semilattice operation on the
two-element set {a, c}. With the help of (2.6) we see that s (c, a) =
(

(ab) an−3
)

an−2 = (ab) a2n−5 =
(

(ab) an−1
)

an−4 = ((ab) a) an−4 =
(ab) an−3 = c. To compute s (a, c) let us first consider ac:

(2.7) ac = a
(

(ab)an−3
)

= ((aa)b) an−3 = (ab)an−3 = c.

In the middle two steps we used identity (2.4) and idempotence. Now it
is easy to conclude that s (a, c) = acn−2 = c, proving that s is indeed a
semilattice operation on {a, c}.



Almost associative operations generating a minimal clone 53

Since f ∈ [s], the restriction of f to {a, c} is either trivial, or coincides with
s. In the latter case we have f (c, a) = c, so

(2.8)
(

(ab)an−3
)

a = (ab)an−2 = (ab)an−3.

If f is trivial on our two-element set, then it has to be a second projection,
because f (a, c) = ac = c as we have already observed in (2.7). Thus we have
f (c, a) = ca = a, which means that (ab)an−2 = a. Multiplying by a from
the right we get (ab)an−1 = a, therefore (ab) a = a by (2.6). If we multiply
both sides of this equality n− 4 times by a, then we get (ab)an−3 = a, i.e.
c = a, contrary to our assumption.

If (ab)an−3 = a holds for a, b ∈ A, then (2.8) holds trivially. Thus we
have proved that if a groupoid A has a minimal clone, and satisfies (2.4),
then (2.8) holds for all a, b ∈ A. In other words, A satisfies the following
identity.

(2.9) (xy)xn−3 ≈ (xy)xn−2.

It suffices to show now that (2.4) and (2.9) together with idempotence imply
associativity. Let us multiply both sides of (2.9) by x from the right. We
get (xy)xn−2 ≈ (xy)xn−1 and then (2.6) shows that (xy)xn−2 ≈ (xy)x.
Therefore

(

(xy)xn−2
)

z ≈ ((xy)x) z also holds. The left hand side of this
identity reduces to (xy) (xz) according to (2.5), with xy, x and z playing
the role of x, y and z, respectively. Thus we have obtained the following
identity.

(2.10) ((xy) x) z ≈ (xy) (xz) .

Now we go back to (2.9), and this time we multiply it by y from the left.
The left hand side becomes y

(

(xy)xn−3
)

, which turns to ((yx) y) xn−3 if
we apply (2.4). With the help of (2.10) and idempotence we can sim-
plify this expression: ((yx) y) xn−3 ≈ (((yx) y) x) xn−4 ≈ ((yx) (yx)) xn−4 ≈
(yx) xn−4 ≈ yxn−3. The right hand side of (2.9) becomes y

(

(xy) xn−2
)

.
This can be considered as a product of n factors, if we keep the x and
the y in the middle together. We can rearrange this product according
to (2.4), and we get (y (xy)) xn−2. The y (xy) at the beginning of this
term can be written as y · ←−−−−−−−−x · . . . · x · y, and an application of (2.4) yields
←−−−−−−−−−−y · x · . . . · x · y ≈

(

yxn−2
)

y. Substituting this back into the original expres-
sion we get (y (xy)) xn−2 ≈

((

yxn−2
)

y
)

xn−2. If we consider yxn−2 as one
factor, then this is again a (left-associated) product of n factors, and we can
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use (2.4) one more time:
((

yxn−2
)

y
)

xn−2 ≈
(

yxn−2
) (

yxn−2
)

. Clearly this
is just yxn−2, and if we compare the results we have obtained from the two
sides of (2.9) we can conclude the following identity

yxn−3 ≈ yxn−2.

Multiplying this by x we get yxn−2 ≈ yxn−1 ≈ yx by (2.6). Now the left
hand side of (2.5) can be simplified as

(

xyn−2
)

z ≈ (xy) z, and therefore
associativity follows.

Remark. Idempotence and identity (2.4) for n ≥ 4 do not imply associa-
tivity, as we can see from the following example. For every k ≥ 2 we define
a groupoid Ak on the set Ak = Zk∪̇ {e} by

xy =



















y if y 6= e;

x + 1 if y = e 6= x;

e if y = e = x.

This groupoid is idempotent, but not associative, because (0e) e = 2 6= 1 =
0 (ee). Let B (x1, . . . , xn) be a bracketing, and let li denote the left depth of
xi in B (see [6] for the definition of left depth). It is not hard to prove by
induction on n, that for any c1, . . . , cn ∈ Ak we have B (c1, . . . , cn) = ci + li
if ci is the last element of the sequence c1, . . . , cn that is different from e
(if there is no such element, then clearly B (c1, . . . , cn) = e). Thus two
bracketings give the same term function on Ak iff their left depth sequences
are congruent modulo k. The left depth sequence of the bracketing on the
left hand side of (2.4) is (n− 1, n− 2, n− 3, . . . , 1, 0) and that of the right
hand side is (1, n− 2, n− 3, . . . , 1, 0). Hence Ak satisfies (2.4) iff k divides
n−2. For example, An−2 is an idempotent nonassociative groupoid satisfying
(2.4).

The associative spectrum of Ak is the same as that of the operation
x + εy on C, where ε is a primitive k-th root of unity: both count the
number of zag sequences modulo k (cf. [6] 2.8. and 6.4.). If k = 2, then
we have ε = −1, and the spectrum is 2n−2 (cf. [6] 3.1.). For k = 3 the
spectrum is sequence A005773 in the Encyclopedia [26]; this sequence is
related to Motzkin numbers (A001006). The spectrum for k = 4 does not
appear in the Encyclopedia, but the superseeker found that it is a transform
of the sequence A036765.
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Let us now turn to the investigation of four-variable ‘associativity
conditions’. There are five bracketings of size four:

B1 = x (y (zu)) ;

B2 = x ((yz) u) ;

B3 = (xy) (zu) ;

B4 = ((xy) z) u;

B5 = (x (yz)) u.

Many of the possible
(5
2

)

identities cannot be satisfied by a nonassociative
idempotent groupoid. For example, identifying z and u in B1 and B3 we
see that B1 ≈ B3 implies associativity if idempotence is assumed. A similar
argument works for B3 ≈ B4 and B2 ≈ B5. For B2 ≈ B3 we need two steps:
multiplying both sides by a variable from the left yields x (y ((zu) v)) ≈
x ((yz) (uv)) (after renaming the variables), while replacing u with uv gives
x ((yz) (uv)) ≈ (xy) (z (uv)). Now x (y ((zu) v)) ≈ (xy) (z (uv)) follows by
transitivity, and identifying z, u and v we get x (yz) ≈ (xy) z. We can treat
B3 ≈ B5 similarly (this is actually the dual of B2 ≈ B3).

Specializing Theorems 2.1 and 2.3 to n = 4 we see that B1 ≈ B4 and
B2 ≈ B4 cannot hold in a nonassociative groupoid with a minimal clone,
and neither can B1 ≈ B5, because it is the dual of B2 ≈ B4. Only three
possibilities remain: our groupoid satisfies B1 ≈ B2 or B4 ≈ B5 or both.
Theorem 2.2 shows that the third case is impossible, hence we can conclude
that if a groupoid A has a minimal clone, and 1 < sA (4) < 5 holds for its
spectrum, then sA (4) = 4, and A satisfies either B1 ≈ B2 or its dual, but not
both. We are going to characterize such groupoids in the next theorem, but
first we need three lemmas. Let A denote the variety defined by B1 ≈ B2,
i.e. x (y (zu)) ≈ x ((yz) u).

Lemma 2.4. If t1 ≈ t2 is an identity that is true in every semigroup, then
A satisfies xt1 ≈ xt2 (where x is an arbitrary variable).

Proof. If t1 ≈ t2 holds in the variety of semigroups, then t1 and t2 are
two bracketings of the same product. Therefore it suffices to prove that A
satisfies x ·B (x1, . . . , xn) ≈ x ·−−−−−−−→x1 · . . . · xn for any bracketing B (x1, . . . , xn).
We prove this by induction on n.
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Repeatedly applying x ((yz) u) ≈ x (y (zu)) we can transform x·B (x1, . . . , xn)
to the form x · (x1 · B

′ (x2, . . . , xn)). By the induction hypothesis we have
that x1 · B

′ (x2, . . . , xn) ≈ x1 ·
−−−−−−−→x2 · . . . · xn = −−−−−−−→x1 · . . . · xn holds in A, hence

x ·B (x1, . . . , xn) ≈ x · −−−−−−−→x1 · . . . · xn is true as well. (Note that we did nothing
else but gave a proof for the general law of associativity, but we had to avoid
implications of the form p ≈ q ⇒ pr ≈ qr).

Lemma 2.5. Let V be a subvariety of A, and let W be the intersection of
V and the variety of semigroups. If an identity t1 ≈ t2 holds in W, then
xt1 ≈ xt2 holds in V (where x is an arbitrary variable).

Proof. Let ΘV , ΘW , Θsgr denote the equational theories of V,W and the
variety of semigroups, respectively. These are fully invariant congruences of
the free groupoid on countably many generators, and ΘW equals ΘV ∨Θsgr,
i.e. the transitive closure of ΘV ∪Θsgr. Therefore, if W satisfies an identity
t1 ≈ t2, then there are terms p1, . . . , pn such that p1 = t1, pn = t2 and
pi ≈ pi+1 holds in V if i is odd, and pi ≈ pi+1 is a semigroup identity if i
is even. Then xpi ≈ xpi+1 is true in V for every i and any variable x. (For
odd i’s this is obvious; for even ones it follows from the previous lemma.)
Now xt1 ≈ xt2 follows by transitivity.

The next lemma is based on the method used in the proof of Lemma 3.8 in
[13], and is basically just a slight generalization of the situation considered
there.

Lemma 2.6. Suppose that A is a groupoid with a minimal clone, and M is a
subset of Clo(2) (A) containing the first projection and at least one nontrivial
element, such that for all f, g, h ∈M

(i) f (g, h) = g

(ii) f
(

g, hd
)

= f (g, e2) ∈M.

Then A or its dual belongs to the variety D or Cp for some prime number p.

Proof. Let us recall that e1 and e2 are the first and second binary pro-
jection respectively (we can write gd as g (e2, e1) with this notation). Note
that e2 = ed

1, hence (ii) means that f
(

g, hd
)

does not depend on h (as long
as h ∈ M). We have e1 ∈ M , but e2 ∈ M is impossible, because then (ii)
would imply (with f = e2) that hd = e2 for every h ∈M , contradicting that
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M has at least two elements. If f ∈M is nontrivial and f d also belongs to
M , then we have f

(

e1, f
d
)

= e1 by (i), and f
(

e1, f
d
)

= f (e1, e2) = f by
(ii), hence f = e1, a contradiction. Thus M and M d =

{

fd : f ∈M
}

are
disjoint.

The operation f ∗ g = f (g, e2) is associative in any clone, and (M ; ∗)
is a semigroup in virtue of (ii). The first projection is an identity element
for ∗, hence (M ; ∗) is a monoid. If N is a submonoid of M , then N ∪ N d

is closed under binary compositions. In a minimal clone such a set must
be either {e1, e2} or the whole binary part of the clone. This fact together
with the disjointness of M and M d shows that Clo(2) (A) = M ∪Md, and
the only submonoids of M are {e1} and M itself. Such a monoid is called
minimal, and it was shown in Claim 3.11 of [13] that every minimal monoid
is isomorphic to a two-element semilattice or a cyclic group of prime order.

Suppose first that (M ; ∗) ∼= ({0, 1} ;∨) with f0 and f1 corresponding to
0 and 1 at this isomorphism. Then there are only four binary operations in
Clo (A), namely e1 = f0, e2 = fd

0 , f1, f
d
1 and we can suppose (after passing

to the dual of A if necessary) that f1 (x, y) = xy, the basic operation in A.
By the above isomorphism we have f1 = f1∨1 = f1 ∗ f1 = f1 (f1, e2), and
this means that xy ≈ (xy) y holds in A. Writing out (i) with f = f1, g =
f1, h = f0 and f = f1, g = f0, h = f1 we get f1 (f1, f0) = f1 and f1 (f0, f1) =
f0 implying that A satisfies the identities (xy) x ≈ xy and x (xy) ≈ x.
Similarly we obtain f1

(

f0, f
d
1

)

= f1 (f0, e2) and f1

(

f1, f
d
1

)

= f1 (f1, e2) as
special cases of (ii), and they translate to the identities x (yx) ≈ xy and
(xy) (yx) ≈ (xy) y. All the identities in Proposition 1.3 are established,
therefore A ∈D follows.

Now let us suppose that (M ; ∗) ∼= (Zp; +) with fi ∈M corresponding to
i ∈ Zp. We have f0 = e1 and we can suppose (after dualizing if necessary)
that fi (x, y) = xy for some i ∈ {1, . . . , p− 1}. Since the automorphism
group of Zp acts transitively on {1, . . . , p− 1}, we can suppose without loss
of generality that f1 (x, y) = xy. Then fi+1 = f1 ∗ fi = f1 (fi, e2), thus
fi+1 (x, y) = fi (x, y) · y, therefore fi (x, y) = xyi and the binary part of
Clo (A) consists of the 2p operations fi, f

d
i (i = 0, 1, . . . , p− 1). Similarly

to the previous case, F2 (V (A)) can be determined: (i) implies fi · fj =

f1 (fi, fj) = fi, and (ii) implies fi · f
d
j = f1

(

fi, f
d
j

)

= f1 (fi, e2) = fi+1;

dualizing these we get f d
i · f

d
j = fd

i and fd
i · fj = fd

i+1. It is easy to check
that F2 (V (A)) is a p-cyclic groupoid with a nontrivial clone (actually it is
isomorphic to F2 (Cp)), hence V (A) = Cp by Proposition 1.2.
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Theorem 2.7. Let V be a subvariety of A having a minimal clone. Then
V or its dual is a subvariety of B, Cp,D or the variety of rectangular bands.

Proof. Let W be the intersection of V and the variety of semigroups.
Then W has a minimal or trivial clone, therefore it is a subvariety of the
variety of left zero semigroups, right zero semigroups, rectangular bands,
left regular bands or right regular bands (cf. [21, 30]). We treat these five
cases separately.

Case 1. If W is the variety of left zero semigroups, then Lemma 2.5
shows that V satisfies t1x ≈ t1t for arbitrary terms t1, t if x is the first
variable of t. Specializing to t = t1 we have that V |= tx ≈ tt ≈ t, i.e. a
V-term does not change if we multiply it by its first variable from the right.
Using these observations it is easy to check that M =

{

x, xy, xy2, xy3, . . .
}

satisfies the conditions of Lemma 2.6 for any A ∈V with a nontrivial clone
(especially also for Fℵ0

(V)), and hence V ⊆ D or V = Cp for some prime
p. (Note that V satisfies x (yz) ≈ xy, therefore Lemma 4.3 of [32] could be
used as well.)

Case 2. If W is the variety of right zero semigroups, then similarly to
the previous case we have the identities t1x ≈ t1t and tx ≈ t in V, where x
is the last variable of t. Now we can apply Lemma 2.6 with A = Fℵ0

(V) and
M = {x,←−−xyx,←−−−−xyxyx,←−−−−−−xyxyxyx, . . .} to show that V ⊆ D or V = Cp for some
prime p, provided ←−−xyx is nontrivial in Fℵ0

(V). If (xy) x is a projection in
Fℵ0

(V), then V |= (xy) x ≈ x or V |= (xy) x ≈ y. The latter is impossible,
since x ((xy) x) ≈ xx ≈ x holds in V. Now we can write up the multiplication
table of F2 (V).

· x y xy yx

x x xy xy x

y yx y y yx

xy x xy xy x

yx yx y y yx
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This is a semigroup in V, but it is not a right zero semigroup, contradicting
that W is the variety of right zero semigroups. (Actually this groupoid is
isomorphic to the two-generated free rectangular band, hence Proposition
1.2 could be applied as well.)

Case 3. If W is the variety of rectangular bands, then V = W by
Proposition 1.2.

Case 4. Suppose now that W is a variety of left regular bands. Then
W |= t1 ≈ t2 if t1 and t2 are binary terms such that both x and y appear
in both terms, and they have the same first variable. Lemma 2.5 implies
that tt1 ≈ tt2 holds in V for every term t, if t1 and t2 satisfy the above
conditions. This allows us to perform the following computations in V with
g (x, y) = x (xy).

g(x, g (x, y)) ≈ x (x (x (xy))) ≈ x (xy) ≈ g (x, y)

g(x, g (y, x)) ≈ x (x (y (yx))) ≈ x (xy) ≈ g (x, y)

g(g (x, y), x) ≈ (x (xy)) ((x (xy)) x) ≈ (x (xy)) (x (xy)) ≈ g (x, y)

g(g (x, y), y) ≈ (x (xy))((x (xy)) y)≈(x (xy))(x (xy))≈g(x, y)

g(g(x, y), g (y, x)) ≈ (x (xy))((x (xy))(y (yx)))≈(x (xy))(x (xy))≈g(x, y).

These identities show that the subclone of Clo (V) generated by g contains
at most four binary operations, namely g, gd and the two projections. If
g is nontrivial, then the minimality of the clone implies that g (x, y) = xy
or g (y, x) = yx. In the first case the above identities are just the axioms
of B, and in the second case they show that V ⊆ Bd. If g is trivial, then
x (xy) ≈ x holds in V (since x (xy) ≈ y is clearly impossible), and hence also
in W. Since W is a variety of bands, W |= x (xy) ≈ xy, and therefore it is
the variety of left zero semigroups, and we have Case 1.

Case 5. Finally, let W be a variety of right regular bands. Now V |=
tt1 ≈ tt2 whenever the last variable of the binary terms t1 and t2 is the
same, and the same variables occur in them. Proceeding similarly to the
previous case, we show that [g](2) =

{

e1, e2, g, gd
}

for g (x, y) = x (yx). This
is established by the following identities.
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g(x, g (x, y)) ≈ x ((x (yx)) x) ≈ x (yx) ≈ g (x, y)

g(x, g (y, x)) ≈ x ((y (xy)) x) ≈ x (yx) ≈ g (x, y)

g(g (x, y) , x) ≈ (x (yx)) (x (x (yx))) ≈ (x (yx)) (x (yx)) ≈ g (x, y)

g(g (x, y) , y) ≈ (x (yx)) (y (x (yx)))≈(x (yx)) (x (yx))≈g (x, y)

g(g(x, y), g(y, x)) ≈ (x (yx))((y (xy))(x (yx))) ≈ (x (yx))(x (yx))≈g(x, y).

If g is nontrivial, then we have V ⊆ B or V ⊆ Bd just as in Case 4. If g is
trivial, then it has to be a first projection, hence x (yx) ≈ x holds in V.
Right regular bands satisfy x (yx) ≈ yx, hence W |= yx ≈ x, and we have
Case 2.

Now we are ready to prove the main result of this section, the characteriza-
tion of groupoids with a minimal clone, that are almost semigroups in the
‘spectral’ sense.

Theorem 2.8. For a groupoid A the following two conditions are
equivalent

(i) A has a minimal clone, and 1 < sA (4) < 5;

(ii) A is not a semigroup, and A or its dual belongs to one of the varieties
B ∩ A, Cp, or D ∩A.

If these conditions are fulfilled, then we have sA (n) = 2n−2 for n ≥ 2.

Proof. First we show that (i) implies (ii). The considerations preceding
Lemma 2.4 show that if A has a minimal clone, and 1 < sA (4) < 5, then
either A or its dual satisfies x (y (zu)) ≈ x ((yz) u), i.e. A ∈ A or A ∈ Ad.
Applying Theorem 2.7, we get that A or A

d belongs to B, Cp or D (for some
prime p). Thus we have to consider varieties of the from V1 ∩ V2, where
V1 = A or V1 = Ad, and V2 ∈

{

B, Cp,D,Bd, Cd
p ,Dd : p is a prime

}

, but up
to duality we have only six cases, because we may suppose that V2 = B, Cp
or D.
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We show that if A ∈ V2, and a, b are elements of A such that ax = bx holds
for all x ∈ A, then a = b. Letting x = a and x = b we see that {a, b} is
a right zero subsemigroup of A. The identity x (yx) ≈ xy holds in V2 in
all of the three cases, hence a (ba) = ab. Since a and b form a right zero
semigroup we have a (ba) = a and ab = b, thus a = b as claimed. We see
that V2 ∩ A

d is a variety of semigroups, because the defining identity of
Ad is ((xy) z) u ≈ (x (yz)) u, and according to the previous observation this
implies that (xy) z ≈ x (yz) holds in V2. Thus V1 = A, and we end up with
the varieties of (ii). (Note that Cp |= x (y (zu)) ≈ xy ≈ x ((yz) u), therefore
Cp ∩A = Cp.)

Now suppose that A (or its dual) belongs to one of the varieties men-
tioned in (ii), and A is not a semigroup. The clone of B, Cp and D is minimal,
thus the clone of A is minimal, too (note that A has a nontrivial clone, be-
cause it is not a semigroup). The other assertion of (i) will follow at once,
if we prove that sA (n) = 2n−2. We will do this in two steps: first we show
that A ∈ A implies sA (n) ≤ 2n−2, and then we prove that sA (n) ≥ 2n−2

holds if we suppose in addition that A ∈ B, Cp or D.

Let B and B ′ be bracketings of the product x1 · . . . · xn. Lemma 2.4
implies that A |= B ≈ B ′ if |l (B)| = |l (B ′)| and A |= l (B) ≈ l (B ′). Ap-
plying Lemma 2.4 again, we see that |l (B)| = |l (B ′)| ,

∣

∣l2 (B)
∣

∣ =
∣

∣l2 (B′)
∣

∣

and l2 (B) ≈ l2 (B′) is sufficient for B ≈ B ′. Proceeding this way we ar-
rive at left factors of size 1 (i.e. the single variable x1) finally, and we see
that if

∣

∣li (B)
∣

∣ =
∣

∣li (B′)
∣

∣ for all i (where it makes sense), then B ≈ B ′

holds in A. Clearly, the numbers
∣

∣li (B)
∣

∣ (and
∣

∣li (B′)
∣

∣) are strictly de-
creasing in i, therefore it is sufficient if the sets

{
∣

∣li (B)
∣

∣ : i = 1, 2, . . .
}

and
{
∣

∣li (B′)
∣

∣ : i = 1, 2, . . .
}

coincide. They are subsets of {1, 2, . . . , n− 1}, con-
taining 1, hence there are 2n−2 many choices for these sets. This shows that
sA (n) ≤ 2n−2 for any A ∈ A.

Now let A ∈ A ∩ V2, where V2 ∈ {B, Cp,D : p is a prime}, and let
B and B′ be bracketings as before. Suppose that A |= B ≈ B ′, but
{∣

∣li (B)
∣

∣ : i = 1, 2, . . .
}

6=
{∣

∣li (B′)
∣

∣ : i = 1, 2, . . .
}

, and let i be the small-
est value where

∣

∣li (B)
∣

∣ and
∣

∣li (B′)
∣

∣ are different. Applying Lemma 2.4
and the observation made in the second paragraph of this proof (a cer-
tain right cancellation property) we can delete the right factors in the
identity B ≈ B ′, if they have the same size. Doing this i − 1 times we
arrive at bracketings whose left factors have different size, thus we may
suppose that i = 1, and we can also suppose that

∣

∣l1 (B)
∣

∣ <
∣

∣l1 (B′)
∣

∣.
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Let us substitute x for the first
∣

∣l1 (B)
∣

∣ variables, y for the next
∣

∣l1 (B′)
∣

∣ −
∣

∣l1 (B)
∣

∣ variables, and z for the rest. Then B becomes (x · · · x) (y · · · yz · · · z)
(with some bracketing of the two products), and B ′ has the
form (x · · · xy · · · y) (z · · · z). Thus A satisfies an identity of the form
(x · · · x) (y · · · yz · · · z) ≈ (x · · · xy · · · y) (z · · · z) (with the same number of
x, y and z on the two sides).

In B this identity reduces to x (yz) ≈ (xy) z, showing that if sA (n) <
2n−2 for some n, then A is a semigroup. If V2 = Cp or D, then let us put
y = x, then we have A |= (x · · · x) (x · · · xz · · · z) ≈ (x · · · xx · · · x) (z · · · z).
The right hand side is clearly xz, and on the left hand side the bracket-
ing of the factor (x · · · xz · · · z) is irrelevant according to Lemma 2.4. Thus
A |= x (xz) ≈ xz, and since x (xz) ≈ x holds in Cp and D we see that A is
a left zero semigroup. We have proved that the associative spectrum of a
groupoid in any one of the varieties mentioned in (ii) is either (1, 1, 1, 1, . . .)
or (1, 2, 4, 8, . . .), and this completes the proof of the theorem.

Remark. Each of the varieties B ∩ A, Cp and D ∩ A contain groupoids
with a nonassociative operation. For Cp it is clear, because the only p-
cyclic groupoids that are semigroups are the left zero semigroups. The
two-generated free algebra of D is not a semigroup, and satisfies x (y (zu)) ≈
x ((yz) u), hence belongs to D∩A. (See the multiplication table in the proof
of Proposition 1.3.) Let us now construct some nonassociative algebras in
B ∩ A.

Let S = (S;∨) be a semilattice, and let C be the set of finite chains in
S. We define a multiplication in C by the following formula (note that if
bl ≤ ak, then the right hand side is the same as the first factor on the left
hand side).

(a1 < a2 < · · · < ak) · (b1 < b2 < · · · < bl) = (a1 < a2 < · · · < ak ≤ ak ∨ bl) .

For a = (a1 < a2 < · · · < ak) , b = (b1 < b2 < · · · < bl) and c =(c1 < c2 <
· · · < cm) we have (a · b) · c = (a1 < a2 < · · · < ak ≤ ak ∨ bl ≤ ak ∨ bl ∨ cm)
and a·(b · c) = (a1 < a2 < · · · < ak ≤ ak ∨ bl ∨ cm). Since the top element of
both chains is ak∨bl∨cm, right multiplication by (a · b)·c is the same as right
multiplication by a · (b · c), hence C = (C; ·) satisfies x (y (zu)) ≈ x ((yz) u).
It is not hard to check, that the defining identities of B also hold in C,
hence C ∈ B ∩ A. If the height of S is at least three, i.e. there is a chain
of length three, then C is not a semigroup. Indeed, if a < b < c, then
(a · b) · c = (a < b < c) 6= (a < c) = a · (b · c).
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Remark. The variety D∩A was defined by an infinite set of identities, but
it has a finite basis, namely xx ≈ x, x (yz) ≈ xy, (xy) y ≈ xy. Indeed, it
is quite straightforward to check that any algebra satisfying these identities
belongs to D ∩A. Conversely, if A ∈D ∩A, then A |= x (yz) ≈ x ((yy) z) ≈
x (y (yz)) ≈ xy, and A also satisfies xx ≈ x and (xy) y ≈ xy as they are
among the defining identities of D. This latter axiomatization of D ∩ A
resembles to the definition of p-cyclic groupoids. It is an interesting fact
that every groupoid that has a minimal clone and satisfies x (yz) ≈ xy
belongs to one of the varieties Cp or D ∩A (cf. Lemma 4.3 of [32]).

3. Szász-Hájek groupoids with a minimal clone

Another way to measure associativity is to count the number of nonassocia-
tive triples in the groupoid; this number (or cardinal, in the infinite case) is
called the index of nonassociativity, and is denoted by ns. Formally, we have
ns (A) =

∣

∣

{

(a, b, c) ∈ A3 : (ab) c 6= a (bc)
}∣

∣. This notion has been studied by
several authors [2, 3, 7, 14, 27]. Clearly A is a semigroup iff ns (A) = 0,
and it is natural to say that the multiplication of A is almost associative, if
ns (A) = 1. Such groupoids are called Szász-Hájek groupoids (SH-groupoids
for short). SH-groupoids were investigated in [9, 10] and [16, 17, 18, 19] in
much detail. Following the terminology of these papers, we say that an SH-
groupoid is of type (a, b, c), if its only nonassociative triple is (a, b, c) ∈ A3

and a 6= b 6= c 6= a. Types (a, a, a) , (a, b, a) , (a, a, b) and (a, b, b) are defined
analogously. (Note that by saying e.g. that A is an SH-groupoid of type
(a, b, c) we mean not only that the components of the unique nonassociative
triple are pairwise distinct, but implicitly we assume that these components
are denoted by a, b and c respectively.) Let us recall a result from [16]
(Proposition 1.2(i)).

Proposition 3.1. If A is an SH-groupoid, and (a, b, c) is the unique nonas-
sociative triple, then xy = a (xy = b, xy = c) implies x = a (x = b, x = c)
or y = a (y = b, y = c) for all x, y ∈ A.

Proof. Suppose that xy = a, but x 6= a 6= y. Since x 6= a, we have
(x, y, bc) 6= (a, b, c), hence (x, y, bc) is an associative triple: (xy) (bc) =
x (y (bc)). Now y 6= a implies that (y, b, c) 6= (a, b, c), so x (y (bc)) =
x ((yb) c). Similarly x ((yb) c) = (x (yb)) c = ((xy) b) c, because x 6= a. We
have obtained that (xy) (bc) = ((xy) b) c, thus (xy, b, c) = (a, b, c) is an as-
sociative triple, which is a contradiction. The other two assertions can be
proved similarly.
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Clearly, a subgroupoid of an SH-groupoid A with nonassociative triple (a, b, c)
is an SH-groupoid or a semigroup, depending on whether it contains a, b
and c or not. Specially, A is generated by {a, b, c} iff all proper subgroupoids
of A are semigroups. Such a groupoid is called a minimal SH-groupoid. In
[16, 17, 18, 19] the project of characterizing minimal SH-groupoids was be-
gun, but completed only for the type (a, a, a). In Theorem 3.3 we prove
that SH-groupoids having a minimal clone belong to the varieties B or Bd,
and in Theorem 3.4 we give a complete list of minimal SH-groupoids with a
minimal clone up to isomorphism. We need the following lemma before we
state and prove the main result.

Lemma 3.2. If an SH-groupoid has a minimal clone, then it is of type
(a, b, c).

Proof. Let A be an SH-groupoid with a minimal clone. Then A is idem-
potent, hence it cannot be of type (a, a, a). If it is of type (a, b, a), then
the subgroupoid generated by a and b is a minimal SH-groupoid of type
(a, b, a) with a minimal clone. The description of minimal SH-groupoids of
type (a, b, a) given in [17] is not complete, but it covers the idempotent case
(subtypes (α) and (β)). There are four idempotent minimal SH-groupoids
of type (a, b, a) up to isomorphism: the following two groupoids and their
duals (the second groupoid is a factor of the first one).

· a b d e

a a a e e

b d b d d

d d d d d

e e e e e

· a b d

a a a d

b d b d

d d d d

In both cases the operation g (x, y) = x (yx) is nontrivial, and preserves the
equivalence relation corresponding to the partition whose only nontrivial
block is {b, d}, but the basic operation f (x, y) = xy does not preserve this
relation. This shows that f /∈ [g], hence the clone is not minimal.

Suppose now that A is of type (a, a, b). From the computations in
[18] it follows that d = ba = b (combine Lemmas 1.5, 1.6, 2.4 and 2.19),
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therefore the subgroupoid generated by a and b is a minimal SH-groupoid of
type (a, a, b) and of subtype (ε). Up to isomorphism there is only one such
groupoid, namely the following one.

· a b c e

a a c e e

b b b b b

c c c c c

e e e e e

The clone of this groupoid is not minimal, because x (xy) is a nontrivial
operation preserving the set {a, b, e}, while the basic operation xy does not
preserve this set.

Dually, the type (a, b, b) is not possible either, thus we can conclude that
an SH-groupoid with a minimal clone has to be of type (a, b, c).

Theorem 3.3. For a Szász-Hájek groupoid A the following two conditions
are equivalent.

(i) A has a minimal clone;

(ii) A or its dual belongs to the variety B.

Proof. It is clear that (ii) implies (i), since B has a minimal clone. For
the other direction let us suppose that A is an SH-groupoid with a minimal
clone. As we have seen in the previous lemma, A is of type (a, b, c). Therefore
(x, x, y) is an associative triple for all x, y ∈ A, hence A |= x (xy) ≈ xy by
idempotence. Similarly, we obtain A |= (xy) y ≈ xy and A |= x (yx) ≈
(xy) x. Proposition 3.1 shows that (x, y, xy) is an associative triple for all
x, y ∈ A, because x = a, y = b, xy = c is impossible. Thus A |= x (y (xy)) ≈
(xy) (xy) ≈ xy. By another application of Proposition 3.1 we can see that
(xy, y, x) 6= (a, b, c), so (xy) (yx) ≈ ((xy) y) x ≈ (xy) x holds in A.

The identities derived so far are almost sufficient to fill out the mul-
tiplication table of the two-generated free algebra in the variety generated
by A (see the table below). The only entries that are not determined yet
are (xyx) (yxy) and (yxy) (xyx). In order to compute these, let us ob-
serve that (xyx, yx, y) is always an associative triple, because yx = b and
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y = c implies x = b by Proposition 3.1, but then xyx = bb = b 6= a.
Therefore A |= (xyx) (yxy) ≈ ((xyx) (yx)) y ≈ (xyx) y ≈ xy.

· x y xy yx xyx yxy

x x xy xy xyx xyx xy

y yx y yxy yx yx yxy

xy xyx xy xy xyx xyx xy

yx yx yxy yxy yx yx yxy

xyx xyx xy xy xyx xyx xy

yxy yx yxy yxy yx yx yxy

We see that the binary part of Clo (A) contains at most six operations
(some of the six elements in the table may coincide). In [20] we can find the
complete description of minimal clones with at most six binary operations,
so we could finish the proof by simply examining the list of clones given
there.

Another way is to observe that for g (x, y) = xyx the binary part
of [g] is

{

e1, e2, g, gd
}

. If g is a nontrivial operation, then [g] = Clo (A),
hence A satisfies xyx ≈ xy or xyx ≈ yx, and then the defining identities
of B or Bd can be read from the above multiplication table. If g is triv-
ial, then A |= xyx ≈ x, because xyx ≈ y would imply xy ≈ (xyx) y ≈
yy ≈ y. In this case F2 (V (A)) is a rectangular band (we get the same
multiplication table as in Case 2 of the proof of Theorem 2.7), hence A is a
rectangular band by Proposition 1.2, contradicting that A is an
SH-groupoid.

Finally we describe minimal SH-groupoids in the varieties B and Bd up to
isomorphism.

Theorem 3.4. Every minimal SH-groupoid having a minimal clone is
isomorphic or dually isomorphic to one of the groupoids G1, . . . , G10 (see
the multiplication tables in the proof).
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Proof. Let A be a minimal SH-groupoid with a minimal clone. Then A

is of type (a, b, c), and up to duality we may suppose that A belongs to the
variety B. Following the notation of [19] we set d = ab, e = bc, f = a (bc) =
ae and g = (ab) c = dc. Some of these elements may coincide, but a, b, c are
pairwise distinct and f 6= g. Since A is idempotent, we have d = a or e = c
by Lemma 1.7 of [19]. If d = a, then ba = b or ba = a (Lemma 1.9 (iii));
if e = c, then cb = b or cb = c (Lemma 1.9 (iv)). Thus we have four cases,
and we will deal with them separately.

Case 1. d = ab = a and ba = b

We have g = dc = ac = c by Lemma 1.4 (ii) of [19], and then ca = c (ca) =
(ac) (ca) = ac = c follows applying the defining identities of B. Some other
products may be computed with the help of these identities, for example
be = b (bc) = bc = e and eb = (bc) b = bc = e. For others, we can use the
fact that (a, b, c) is the only nonassociative triple, e.g.: cb = (ca) b = c (ab) =
ca = c, and bf = b (ae) = (ba) e = be = e.

We can fill out the multiplication table this way except for the entry fc.
Here we have two possibilities. If f 6= a or e 6= b, then (f, e, c) 6= (a, b, c),
therefore fc = (fe) c = f (ec) = fe = f , and we get the groupoid G1.
If f = a and e = b, then fc = ac = c, and we arrive at the groupoid
G3. In both cases we have to consider the possibility that some of the
elements (denoted by different letters so far) coincide. This amounts to
forming factor groupoids, but only with respect to congruences where f
and g belong to different congruence classes (otherwise the factor groupoid
would be a semigroup). There is no such congruence on G3, while G1 has
exactly one nontrivial congruence not collapsing f and g (= c); its classes
are {a} , {b} , {c} , {e, f}, and the corresponding factor groupoid is G2.

G1 :

· a b c e f

a a a c f f

b b b e e e

c c c c c c

e e e e e e

f f f f f f

G2 :

· a b c e

a a a c e

b b b e e

c c c c c

e e e e e
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G3 :

· a b c

a a a c

b b b b

c c c c

Case 2. d = ab = a and ba = a

Let us start again with the product ca. We claim that (a, b, ca) is a nonas-
sociative triple. Indeed, (ab) (ca) = a (ca) = ac = (ab) c, while a (b (ca)) =
a ((bc) a) = a (ea) = ae = a (bc). Since the only nonassociative triple is
(a, b, c), we can conclude that ca = c. Then cb = (ca) b = c (ab) = ca = c,
and the rest of the multiplication table can be filled out without any diffi-
culty (we will not have to deal with a situation like that of fc in the previous
case). We get the groupoid G4, and the only possible coincidence between
the six elements is e = f ; this yields G5.

G4 :

· a b c e f g

a a a g f f g

b a b e e f g

c c c c c c c

e e e e e e e

f f f f f f f

g g g g g g g

G5 :

· a b c e g

a a a g e g

b a b e e g

c c c c c c

e e e e e e

g g g g g g

Case 3. e = bc = c and cb = b

As the following computation shows, this case is not possible, because the
identities of B imply that A is a semigroup. (We have indicated where we
used the axioms of B and the Szász-Hájek property.)

g = dc
B
= (dc) c = (dc) e

SH
= d (ce) = d (c (bc))

B
= d (cb) = (ab) (cb)

SH
= a (b (cb))

B
=a (bc) = f
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Case 4. e = bc = c and cb = c

We prove that cd = c by showing that (a, b, cd) is a nonassociative triple.
Indeed, (ab) (cd) = d (cd) = dc = g, while a (b (cd)) = f can be derived in
the following way.

a (b (cd))
SH
= a ((bc) d) = a (cd)

SH
= (ac) d = (ac) (ab)

SH
= ((ac) a) b

B
= (ac) b

SH
= a (cb) = ac = a (bc) = f

Now we can compute that ca = (cd) a = c (da) = c ((ab) a) = c (ab) =
cd = c, and the rest of the multiplication table of G6 is not hard to fill
out (we set h = ba and i = bf). The only entries whose calculation is not
straightforward are ag, ai and di. Since f 6= g, at least one of these two
elements is different from c, hence (a, d, f) or (a, d, g) is an associative triple
(even if d = b). Therefore we have either ag = a (df) = (ad) f = df = g, or
ag = a (dg) = (ad) g = dg = g (after computing df = dg = g and ad = d,
which is easy). Writing ai either as a (bf) or a (bg) and di as d (bf) or d (bg)
we get by a similar argument that ai = g and di = g.

There are four congruences of G6 that do not collapse f and g, the
corresponding factor groupoids are G7, G8, G9 and G10.

G6 :

· a b c d f g h i

a a d f d f g d g

b h b c h i i h i

c c c c c c c c c

d d d g d g g d g

f f f f f f f f f

g g g g g g g g g

h h h i h i i h i

i i i i i i i i i
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G7 :

· a b c d f g h

a a d f d f g d

b h b c h g g h

c c c c c c c c

d d d g d g g d

f f f f f f f f

g g g g g g g g

h h h g h g g h

G8 :

· a b c d f g

a a d f d f g

b d b c d g g

c c c c c c c

d d d g d g g

f f f f f f f

g g g g g g g

G9 :

· a b c d f h

a a d f d f d

b h b c h h h

c c c c c c c

d d d d d d d

f f f f f f f

h h h h h h h

G10 :

· a b c d f

a a d f d f

b d b c d d

c c c c c c

d d d d d d

f f f f f f

Remark. Let us mention that there is a third possibility to measure associa-
tivity with the help of the Hamming distance of multiplication tables. This
yields the notion of the semigroup distance of a groupoid. Groupoids with
small semigroup distance, and connections between the semigroup distance
and the index of nonassociativity were studied in [15].

The different ways of measuring associativity do not seem to be closely
related. For example, the groupoid G3 is an SH-groupoid, with the largest
possible associative spectrum: sG3

(n) = Cn−1 for every n. (For the proof of
the latter fact see 5.1 in [6]; G3 is isomorphic to the groupoid with number
17 there.)
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Therefore it is not surprising that the class of groupoids found in
Theorem 2.8 is disjoint from the class described in Theorem 3.3, i.e. there
is no groupoid with a minimal clone that is almost associative in both the
‘spectral’ and the ‘index’ sense. Indeed, if A satisfies the conditions of
both theorems, then A (or its dual) satisfies x (y (zu)) ≈ x ((yz) u) by the
considerations preceding Lemma 2.4, and A (or its dual) contains a sub-
groupoid isomorphic to one of the groupoids G1, . . . , G10 by Theorem 3.4.
However, this is impossible, because neither of these ten groupoids and
neither of their duals satisfy x (y (zu)) ≈ x ((yz) u) as it can be seen from
their multiplication tables (let x = a, y = a, z = b, u = c for G1, . . . , G10 and
x = a, y = c, z = b, u = a for their duals).
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[11] J. Ježek and R.W. Quackenbush, Minimal clones of conservative functions,
Internat. J. Algebra Comput. 5 (6) (1995), 615–630.

[12] K.A. Kearnes, Minimal clones with abelian representations, Acta Sci. Math.
(Szeged) 61 (1–4) (1995), 59–76.
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