
Discussiones Mathematicae 21
General Algebra and Applications 26 (2006 ) 21–43

UNIQUE PRIME FACTORIZATION IN A PARTIAL

SEMIGROUP OF MATRIX-POLYNOMIALS
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Abstract

We establish a unique factorization result into irreducibel elements
in the partial semigroup of 2 × 2-matrices with entries in K[x] whose
determinant is equal to 1, where K is a field, and where multiplication
is defined as the usual matrix-multiplication if the degrees of the factors
add up. This investigation is motivated by a result on matrices of entire
functions.
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1. Introduction

Let K be a field. We consider divisability and factorization into irreducibel
elements in the partial semigroup of 2× 2-matrices with entries in K[x] and
determinant 1, where multiplication is defined as matrix-multiplication if
the degrees of the factors add up, cf. Section 2. Our aim is to establish a
unique factorization result, cf. Theorem 3.1.

Although our considerations are purely algebraic and in fact
quite elementary, they should be seen in connection with some
results of complex analysis. Let us explain this motivation: Let
W (z) = (wij(z))i,j=1,2 be a 2 × 2-matrix function whose entries are entire
functions, i.e. are defined and holomorphic in the whole complex plane.
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We say that W belongs to the class Mκ where κ is a nonnegative integer,
if wij(z) = wij(z), W (0) = I, det W (z) = 1, and if the kernel

KW (w, z) :=
W (z)JW (w)∗ − J

z − w

has κ negative squares. There by

J :=

(

0 −1
1 0

)

.

The latter condition means that for every choice of n ∈ N, z1, . . . , zn ∈ C,
a1, . . . , an ∈ C

2, the quadratic form

Q(ξ1, . . . , ξn) :=
n
∑

l,k=1

(

KW (zk, zl)al, ak

)

C2

ξlξk

has at most κ negative squares and that this bound is actually attained for
some choice of n, zl, al.

The following result lies at the core of the theory of L. de Branges on
Hilbert spaces of entire functions [1] and its generalization to the Pontryagin
space setting [4, 5, 6].

Maximal Chain Theorem:

Let W ∈ Mκ be given. Then there exists a (essentially unique) family
(Wi)i∈I of entire 2×2-matrix functions, where the index set I is of the form
I = [0, 1] \ {σ1, . . . , σn}, σi ∈ (0, 1), such that

(i) W0 = I, W1 = W .

(ii) Wi ∈ Mκ(i) and κ(i) is a nondecreasing function of i which is constant
on each connected component of I.

(iii) If i, j ∈ I, i ≤ j, then W−1
i Wj ∈ Mκ(j)−κ(i).

(iv) If j ∈ I and M ∈ Mν , ν ≤ κ(j), is such that M−1Wj ∈ Mκ(j)−ν , then
M = Wi for some i ∈ I, i ≤ j.
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This result tells us, in particular, that the family (Wi)i∈I gives all possible
factorizations W = M · M̂ so that the number of negative squares add up
(M̂ = M−1W ).

If W (z) is a 2 × 2-matrix function whose entries are polynomials with
real coefficients, W (0) = I and det W (z) = 1, then the number of negative
squares of KW is finite, in fact it is less than or equal to the maximal degree
of an entry of W , cf. [4]. The simplest example is a matrix polynomial with
degree 1. Due to the conditions W (0) = I and detW (z) = 1 those matrix
polynomials are of the form (l ∈ R, φ ∈ [0, π))

W(l,φ) :=

(

1 − lz sinφ cos φ lz cos2 φ

−lz sin2 φ 1 + lz sinφ cos φ

)

.

For a matrix polynomial W the chain (Wi)i∈I given by the Maximal Chain
Theorem is of a particularly simple form: There exist unique matrix poly-
nomials Mk, k = 1, . . . , n, with Mk ∈ Mνk

, values φk ∈ [0, π) and indices
ik ∈ I with ik < ik+1, such that

(i)

M1 · . . . · Mk = Wik , k = 1, . . . , n ,

in = 1, i.e. M1 · . . . · Mn = W .

(ii) If ik−1 ≤ i ≤ ik then for some l, l′ ∈ R,

W−1
i Wik = W(l,φk), W−1

ik−1
Wi = W(l′,φk).

There by k = 1, . . . , n and we have put i0 := 0.

The factorization W = M1 · . . . · Mn has the property that degrees add up:
For a matrix polynomial P denote by δP the maximal degree of one of its
entries. Then

δW = δM1 + . . . + δMn .
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In fact, it is characterized by this property: If W = M̂1 · . . . · M̂m is any
factorization of W into matrix polynomials with M̂i(0) = I, det M̂i(z) = 1,
such that δW = δM̂1 + . . . + M̂m, then n = m and M̂i = Mi, i = 1, . . . , n.
We conclude in particular that the following result holds true:

Unique Factorization Theorem:

Let W be a 2 × 2-matrix polynomial with real coefficients, W (0) = I and
det W (z) = 1. Then there exists a unique number n ∈ N and unique
2 × 2-matrix polynomials M1, . . . ,Mn with real coefficients, Mi(0) = I and
det Mi(z) = 1, such that

W = M1 · . . . · Mn, δW = δM1 + . . . + δMn ,

and no Mi can be further decomposed.

It was noted by A. Dijksma (personal communication, see also [3]) that
this fact can also be proved without employing the deep machinery of L.
de Branges theory and the Maximal Chain Theorem. In fact, the desired
factorization of a matrix polynomial can be constructed with the help of the
so-called Schur algorithm, first invented by I. Schur in the study of some
classical interpolation and moment problems.

Although the proof of the stated Maximal Chain Theorem relies heav-
ily on the theory of analytic functions, it seems to be promising to try to
generalize the Maximal Chain Theorem to matrix functions with values in
fields different to the complex number field, e.g. in a locally compact field.
Of course then in particular a similar Unique Factorization Theorem would
have to hold. It is therefore a noteworthy fact that the Unique Factorization
Theorem actually is true for 2 × 2-matrix polynomials over arbitrary fields.
It is the aim of this note to establish this result.

We give a purely algebraic and elementary proof of the Unique
Factorization Theorem for 2 × 2-matrix polynomials with coefficients in an
arbitrary field K based on the euclidean algorithm in the polynomial ring
K[x]. It is seen that the Unique Factorization Theorem boils down to the
fact that the greatest common divisor of two polynomials a, b can be
written as a linear combination of a and b and that the coefficients of this
linear combination can be constructed explicitly from the factors and
remainders in the euclidean algorithm.
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In the particular case K = R our result gives another proof of the above
stated Unique Factorization Theorem. It is worth to be noted that the
previous approaches to factorization in the case K = R, via the theory of
de Branges spaces or via the Schur algorithm, involve deep methods of
complex analysis, whereas the proof obtained as a specialization of the
present Theorem 3.1 is completely elementary.

A possible direction of future work is also motivated from recent
developments in the theory of the Schur algorithm. In fact a factorization
result for rational matrix functions with real coefficients which is obtained
via the Schur algorithm was recently communicated to the authors by
Aad Dijksma. It seems a promising task to find a similar factorization
theorem for rational matrix functions over arbitrary fields. Another
direction of future development could be motivated from [2] where a
factorization theorem for a certain class of rational matrix functions over
the complex field is given. There by this class of functions is related to
the unit circle in a similar way as the class of real matrix functions is
related to the real axis. Thus it seems likely that the present result can be
carried over.

2. The partial semigroup (S, ·)

Let K be a field and let M(2,K[x]) be the ring of 2 × 2-matrices whose
entries are elements of the polynomial ring K[x]. For p ∈ K[x] denote by
deg p the degree of p where we put deg 0 := −∞. We will use in the sequel
that the function deg : K[x] → N0 ∪ {−∞} satisfies

deg(p1 + p2) ≤ max{deg p1,deg p2} ,

where strict inequality can hold only if deg p1 = deg p2, and that

deg(p1 · p2) = deg p1 + deg p2 ,

where −∞ + n = n + (−∞) = −∞ + (−∞) = −∞.

Let A ∈ M(2,K[x]) and write

A =

(

a b

c d

)

.
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We define the degree δA of A as

δA := max{deg a,deg b,deg c,deg d} .

Note that δA is nothing else but the degree of A if we identify M(2,K[x])
canonically with M(2,K)[x]. We clearly have

δ(AB) ≤ δA + δB, A,B ∈ M(2,K[x]) .

Consider the set S := {A ∈ M(2,K[x]) : det A = 1}. Then S is closed
with respect to matrix multiplication and, by Cramers rule, with respect to
taking inverses. We will endow S with the partially defined binary operation

· :

{

D ⊆ S × S → S

(A,B) 7→ AB

where

D := {(A,B) ∈ S × S : δ(AB) = δA + δB} .

For further reference let us collect a couple of elementary properties of (S, ·).

Lemma 2.1. We have

(i) If A ∈ S then δA ≥ 0.

(ii) If A,B,C ∈ S and B · C as well as A · (B · C) are defined, then also
A · B and (A · B) · C are defined and

A · (B · C) = (A · B) · C.

(iii) Denote by I the 2 × 2-identity matrix. Then for all A ∈ S we have
(A, I), (I,A) ∈ D and

A · I = I · A = A.
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(iv) Put S× := {U ∈ S : (U,U−1) ∈ D}. Then S× = {U ∈ S : δU = 0}. If
U ∈ S×, then for all A ∈ S we have (U,A), (A,U) ∈ D. Hence (S×, ·)
is a (totally defined) subgroup of S, the subgroup of units of (S, ·).

(v) If A,B,C ∈ S, (A,C), (B,C) ∈ D, and A · C = B · C, then A = B.
Similarly the left-cancellation law holds.

Proof.

Ad (i): Obvious, since 0 6∈ S.

Ad (ii): By assumption

δ[A(BC)] = δA + δ(BC) = δA + δB + δC.

It follows that

δ[A(BC)] = δ[(AB)C] ≤ δ(AB) + δC ≤

≤ δA + δB + δC = δ[A(BC)].

Hence δ(AB) = δA + δB and δ[(AB)C] = δ(AB) + δC.

Ad (iii): Obvious.

Ad (iv): If (U,U−1) ∈ D, then 0 = δI = δ(UU−1) = δU + δ(U−1). This
is only possible if δU = 0. Conversely, assume that δU = 0. Then also
δU−1 = 0 and we obtain

0 = δI = δU + δ(U−1).

Let A ∈ S, U ∈ S×. Then

δA = δ[
(

AU)U−1
]

≤ δ(AU) + δ
(

U−1
)

=

= δ(AU) ≤ δA + δU = δA ,

and hence δ(AU) = δA + δU . The fact that (U,A) ∈ D follows in the same
way.

Ad (v): Obvious, since S contains only invertible matrices.
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Remark 2.2. Note that (A,B) ∈ D not necessarily implies (B,A) ∈ D, as
is seen from the example

A =

(

1 + x2 x

x 1

)

, B =

(

1 x

0 1

)

.

Notational Convention:

We agree that, whenever we use the notation A · B, this implies that
(A,B) ∈ D.

The following property plays a technically important role: We say that
a matrix

(2.1) A =

(

a b

c d

)

∈ S

satisfies the property (D) , if deg b > deg a.

Lemma 2.3. Let A ∈ S be written as in (2.1).

(i) Assume that a, b, c, d 6= 0. Then

(2.2) deg d − deg c = deg b − deg a

(ii) Assume that δA > 0. Then A satisfies (D) if and only if
deg d > deg c.

Proof.

Ad (i): If δA = 0, the desired relation trivially holds true. Hence assume
that δA > 0. Since a, b, c, d 6= 0, in this case at least one of deg(ad) and
deg(bc) is greater than 0. It follows from ad−bc = detA = 1 that deg(ad) =
deg(bc), and hence that (2.2) holds.

Ad (ii): Assume that A satisfies (D) . If a = 0, we have −bc = 1, and
hence deg b = deg c = 0. Since δA > 0, we obtain deg d > 0, and thus
deg d > deg c. If c = 0, we have ad = 1, and hence deg a = deg d = 0. Thus
also in this case deg d > deg c. It remains to consider the case that a, c 6= 0.
Then, by (D) , deg b > 0 and hence also deg(bc) > 0. Since ad− bc = 1, and
hence the desired conclusion follows, in fact (2.2) holds.

The converse implication follows in the same way.
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The validity of (D) can always be achieved by multiplying with units:

Lemma 2.4. Let A ∈ S, δA > 0, be given. Then there exist U, V ∈ S×

such that V AU satisfies (D) . Let A be written as in (2.1). If b 6= 0, we can
choose V = I. If c = 0, we can choose U = V = I. If b = 0, we can choose
V = U = J , where

J :=

(

0 −1

1 0

)

.

Assume that A satisfies (D) and U ∈ S×. Then AU satisfies (D) if and only
if U is upper triangular.

Proof. If c = 0, we have deg a = deg d = 0, and since δA > 0, this implies
that deg b > 0. Thus A satisfies (D) . If b = 0, the same argument yields
deg a = deg d = 0 and deg c > 0. Hence

JAJ =

(

−d c

0 −a

)

satisfies (D).

It remains to consider the case that b, c 6= 0.

Case 1. deg b > deg a or deg d > deg c: Then we can, by Lemma 2.3,(ii),
choose U = V = I.

Case 2. deg b < deg a or deg d < deg c: Then Case 1 can be applied to
the matrix

AJ =

(

b −a

d −c

)

and we see that we can choose V = I, U = J .

Case 3. deg b = deg a and deg d = deg c: Choose λ ∈ K such that
deg(a + λb) < deg a = deg b. Then
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A

(

1 0

λ 1

)

=

(

a + λb b

c + λd d

)

satisfies (D) , i.e. we can choose V = I and

U =

(

1 0

λ 1

)

.

We come to the proof of the uniqueness statement. Write U ∈ S× as

U =

(

α β

γ δ

)

.

Then

AU =

(

αa + γb βa + δb

αc + γd βc + δd

)

.

Hence in order that AU satisfies (D) it is necessary and sufficient that γ = 0.

The next statement is an important step towards factorization results.

Proposition 2.5. Let A ∈ S. Assume that for some p ∈ K[x], deg p > 0,
and A1 ∈ S the matrix A can be factorized as

(2.3) A = A1 ·

(

1 p

0 1

)

.

Then A satisfies (D) and δA > 0. Conversely, if A satisfies (D) and δA > 0,
then there exists a unique polynomial p with p(0) = 0, and a unique element
A1 ∈ S, such that A factorizes as in (2.3).

Proof. Assume that A factorizes as in (2.3). Clearly δA > 0. The relation
(2.3) writes explicitly as
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(

a b

c d

)

=

(

a1 b1

c1 d1

) (

1 p

0 1

)

=

(

a1 pa1 + b1

c1 pc1 + d1

)

.

Since

δA = δA1 + deg p > δA1 ≥ max{deg a1,deg c1}

we have either deg b > deg a or deg d > deg c, and hence see that A satisfies
(D), cf. Lemma 2.3, (ii) .

Let A be given, δA > 0, such that (D) holds. We show existence of a
factorization (2.3).

Case 1. c = 0: Then deg a = deg d = 0, deg b = δA > 0, and thus

A =

(

a b(0)

0 d

)

·

(

1 b−b(0)
a

0 1

)

is a factorization of the desired form.

Case 2. a = 0: Apply Case 1 to the matrix

JA =

(

−c −d

0 b

)

to obtain

JA = A1 ·

(

1 p

0 1

)

.

Then

A = (−JA1) ·

(

1 p

0 1

)

is a factorization of A of the desired form (2.3).
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Case 3. a, c 6= 0: Choose p, r ∈ K[x] with p(0) = 0, deg r ≤ deg a, such
that b = pa + r. Define

A1 =

(

a1 b1

c1 d1

)

:= A

(

1 −p

0 1

)

=

(

a r

c d − pc

)

.

It follows that deg(d − pc) ≤ deg c: For if deg(d − pc) = 0, this relation is
true since c 6= 0, and if deg(d− pc) > 0, we must have r 6= 0 and by Lemma
2.3, (i) ,

deg(d − pc) − deg c = deg r − deg a ≤ 0 .

We conclude that

δA1 = max{deg a,deg c} .

Since

deg(b − pa) = deg r ≤ deg a < deg b

we must have deg b = deg(pa). Similarly, deg(d − pc) ≤ deg c < deg d, cf.
Lemma 2.3, (ii) , and thus deg d = deg(pc). Alltogether, we conclude that

δA1 + deg p = max{deg a,deg c} + deg p

= max{deg(pa),deg(pc)} = max{deg b,deg d} = δA.

Hence, A1 and p yield a factorization of the desired form.

Finally, let us prove uniqueness. If p ∈ K[x], p(0) = 0, and A1 ∈ S,
are such that A factorizes as in (2.3), then a1 = a, c1 = c, b = pa1 + b1,
d = pc1 + d1.

We have δA = max{deg b,deg d}. Say δA = deg b; the case δA = deg d

can be treated in the same way. Then

deg b = δA = δA1 + deg p ≥ deg b1 + deg p .

Hence deg b > deg b1, and we see that deg b = deg(pa1). In particular,
a1 6= 0. Moreover,
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deg p + deg a1 = deg b ≥ deg b1 + deg p ,

and hence deg b1 ≤ deg a1. Thus p ∈ K[x], is such that p(0) = 0 and
deg(b − pa) ≤ deg a. By this condition, however, p is determined uniquely.
Clearly with p also A1 is determined uniquely.

3. The unique factorization theorem

An element B ∈ S, δB > 0, is called irreducible if for all A,A′ ∈ S with
B = A · A′ we must have A ∈ S× or A′ ∈ S×. This amounts to saying that
for any A,A′ ∈ S with B = AA′ and δB = δA + δA′ necessarily δA = 0 or
δA′ = 0.

Let us define a relation ∼ on S by

A ∼ B : ⇐⇒ ∃U, V ∈ S× : A = U · B · V.

By Lemma 2.1, ∼ is an equivalence relation. Clearly, the set of all irreducible
elements is saturated with respect to the relation ∼.

In the following theorem, which basically follows from the euclidean
algorithm in K[x], we characterize the set of irreducible elements (up to ∼)
and show that every element of S can be factorized uniquely (up to ∼) into
irreducibles. There by item (iii) is exactly the general version of the Unique
Factorization Theorem mentioned in the introduction.

Theorem 3.1. We have

(i) An element B ∈ S is irreducible if and only if there exists p ∈ K[x],
p(0) = 0, such that

B ∼

(

1 p

0 1

)

.

(i) Let A ∈ S, δA > 0. Then there exist n ∈ N and W1, . . . ,Wn, δWi > 0,
irreducible in S, such that

A = W1 · . . . · Wn.
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If A = Ŵ1 · . . . · Ŵm is another factorization of A into irreducibles in S,
δŴi > 0, then n = m and Wi ∼ Ŵi, i = 1, . . . , n.

(i) Assume that A ∈ S, δA > 0, A(0) = I. Then there exists a unique
number n ∈ N and unique irreducible elements Wi, i = 1, . . . , n, δWi >

0, Wi(0) = I, such that A = W1 · . . . · Wn.

For the sake of completeness let us remark that the case of matrices A or B

with δA = 0 or δB = 0, respectively, is trivial.

The rest of this section is devoted to the proof of Theorem 3.1, which
will be carried out in several steps.

Proof. (of (i), sufficiency) We show that whenever p ∈ K[x], deg p > 0,
the matrix

B :=

(

1 p

0 1

)

is irreducible.

Assume on the contrary that B = AA′ where (A,A′) ∈ D and
δA, δA′ > 0. From δB = δA + δA′ it thus follows that δA, δA′ < δB.
Write

A =

(

a b

c d

)

, A′ =

(

a′ b′

c′ d′

)

so that

B =

(

1 p

0 1

)

=

(

aa′ + bc′ ab′ + bd′

ca′ + dc′ cb′ + dd′

)

.

First note that

c′ = c′(cb′ + dd′) − d′(ca′ + dc′) = c(c′b′ − d′a′) = −c

and that

d = d(aa′ + bc′) − b(ca′ + dc′) = a′(da − bc) = a′.

Next let us exclude the cases that one of the entries of A or A′ is equal to 0.
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Assume that b = 0. Then deg a = deg d = 0 and p = ab′. Thus δB =
deg p = deg b′ ≤ δA′, and we have reched a contradiction. The cases that
either of a, b′ or d′ vanishes can be excluded in the same way.

Assume that c, and with it also c′, is equal to 0. Then a, d, a′, d′ are
nonzero constants. Hence

δB = deg p = deg(ab′ + bd′) ≤ max{deg b′,deg b} ≤

≤ max{δA′, δA} < δB ,

and again we obtained a contradiction. The case that d, and with it also a′,
vanishes is treated in the same way.

If U ∈ S×, then

B = (AU−1) · (UA′)

is again a factorization with δ(AU−1), δ(UA′) > 0.

From the above elaborations and the Lemmata 2.3, 2.4, we conclude
that it can be assumed without loss of generality that all entries of A and
A′ are nonzero and that

deg b − deg a = deg d − deg c > 0.

In particular then deg b,deg d > 0.

It follows from 1 = aa′ + bc′ and 1 = cb′ + dd′ that

deg a + deg a′ = deg b + deg c′, deg c + deg b′ = deg d + deg d′ .

Summing up and using that c′ = −c, d = a′, we obtain

deg a + deg b′ = deg b + deg d′ .

We obtain a contradiction:

δB = deg p = deg(ab′ + bd′) ≤ max{deg(ab′),deg(bd′)}

= deg a + deg b′ < deg b + deg b′ ≤ δA + δA′ .

Proof. (of (ii), existence) In fact the existence of a factorization of A into
irreducibles is clear, either by a descending chain argument or by inductive
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application of Proposition 2.5. However, we shall establish an algorithmic
way to obtain a factorization of a specific form.

Let A ∈ S be given and write A as in (2.1). Since det A = 1, we have
gcd{a, b} = 1. Define n ∈ N and polynomials r−1, r0, . . . , rn, p1, . . . , pn by
carrying out the euclidean algorithm for (a, b):

r−1 := b, r0 := a ,

rk−2 = pkrk−1 + rk, k = 1, . . . , n ,

where deg rk < deg rk−1, k = 1, . . . , n. There by let n ∈ N be such that rn

is the first vanishing remainder, so that we have deg rn−1 = 0.

Define matrices Vk, Dk, k = 1, . . . , n, by

Vk :=



































(

1 −pk

0 1

)

, k odd

(

1 0

−pk 1

)

, k even

Dk := A · V1 · . . . · Vk .

We show that for all k = 1, . . . , n

(1, 0)Dk =

{

(rk−1, rk) , k odd

(rk, rk−1) , k even.

For k = 1 we have

(1, 0)D1 = (1, 0)AV1 = (a, b)

(

1 −p1

0 1

)

= (r0, r−1)

(

1 −p1

0 1

)

= (r0,−p1r0 + r−1) = (r0, r1).
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Let 1 < k ≤ n be given and assume that the assertion for (1, 0)Dk−1 has
already been proved.

Case k odd: Then k − 1 is even and we obtain

(1, 0)Dk = (1, 0)Dk−1Vk = (rk−1, rk−2)

(

1 −pk

0 1

)

= (rk−1,−pkrk−1 + rk−2) = (rk−1, rk) .

Case k even: Then k − 1 is odd and thus

(1, 0)Dk = (1, 0)Dk−1Vk = (rk−2, rk−1)

(

1 0

−pk 1

)

= (rk−2 − pkrk−1, rk−1) = (rk, rk−1) .

Consider the matrix Dn. Since detDn = 1, we must have

Dn =











































rn−1 0

q
1

rn−1



 , n odd





0 rn−1

−
1

rn−1
q



 , n even

for some polynomial q.

We have found a factorization of A in M(2,K[x]), in fact

(3.1) A = DnV −1
n · . . . · V −1

1 .
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We can write

Dn = U

(

1 −
q

rn−1

0 1

)

U ′

with

U := −J =

(

0 1

−1 0

)

, U ′ :=











































0 −
1

rn−1

rn−1 0



 , n odd





1

rn−1
0

0 rn−1



 , n even

Moreover,

V −1
k =































(

1 pk

0 1

)

, k odd

U

(

1 −pk

0 1

)

U ′ , k even

where U = U ′ = J .

We have δ(V −1
k

) = deg pk and in the euclidean algorithm

max{deg a,deg b} = deg p1 + . . . + deg pn .

Since (with appropriate ĉ, d̂)

(3.2) V −1
n · . . . · V −1

1 = D−1
n A =











































1

rn−1
a

1

rn−1
b

ĉ d̂



 , n odd





−ĉ −d̂

1

rn−1
a

1

rn−1
b



 , n even

we obtain
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max{deg a,deg b} ≤ δ(V −1
n · . . . · V −1

1 ) ≤ deg(V −1
n ) + . . . + δ(V −1

1 )

= deg pn + . . . + deg p1 = max{deg a,deg b} .

This means that the product V −1
n · . . . · V −1

1 is defined in S. Moreover,
δ(D−1

n A) = max{deg a,deg b}, and hence in (3.2)

max{deg ĉ,deg d̂} ≤ max{deg a,deg b}.

We have

A = Dn(D−1
n A) =































































rn−1 0

q
1

rn−1















1

rn−1
a

1

rn−1
b

ĉ d̂






, n odd









0 rn−1

−
1

rn−1
q

















−ĉ −d̂

1

rn−1
a

1

rn−1
b









, n even

=









a b

qa

rn−1
+

ĉ

rn−1

qb

rn−1
+

d̂

rn−1









.

It follows that δA = δDn + max{deg a,deg b} = δDn + δ(D−1
n A). Hence the

factorization (3.1) is actually a factorization in S.

Since in the euclidean algorithm deg rk < deg rk−1 for k = 1, . . . n, we
have deg pk > 0 for k = 2, . . . , n. Hence, for k = 2, . . . , n the matrices V −1

k

are irreducible in S. The matrices V −1
1 and Dn are either irreducible or

belong to S×, depending whether deg p1 > 0 or deg p1 ≤ 0 (deg q > 0 or
deg q ≤ 0, respectively).
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We have proved that A admits a factorization

(3.3) A = W1 · . . . · Wn′ ,

where Wi are irreducible elements of S of the form

Wi = Ui

(

1 qi

0 1

)

U ′
i = Ui

(

1 qi − qi(0)

0 1

) (

1 qi(0)

0 1

)

U ′
i

with appropriate qi ∈ K[x], deg qi > 0, and Ui, U
′
i ∈ S×.

Proof. (of (i), necessity) Assume that B ∈ S is irreducible. Then in the
factorization (3.3) only one factor can appear, i.e. B = W1, and hence B is
of the desired form.

Proof. (of (iii), existence) Let A, A(0) = I, be given. Choose any factor-
ization A = W1 · . . . · Wn into irreducible elements and define

Vn := Wn(0)−1Wn

Vn−1 := Wn(0)−1Wn−1(0)
−1 Wn−1 Wn(0)

...

V1 := Wn(0)−1 · · ·W1(0)
−1 W1 W2(0) · · ·Wn(0) = W1 W2(0) · · ·Wn(0).

Then Vi ∼ Wi and Vi(0) = I. Moreover,

V1 · . . . · Vn = W1 · . . . · Wn = A.

Proof. (of (iii), uniqueness) We use induction on the minimum number n

such that A admits a factorization A = W1 · . . . · Wn with Wi irreducible,
Wi(0) = I.
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Assume that n = 1. Then A can be written as A = W1 and thus is
irreducible. Hence in any other factorization A = Ŵ1 · . . . · Ŵm we must
have m = 1 and W1 = Ŵ1.

Let A = W1 · . . . · Wn = Ŵ1 · . . . · Ŵm, 1 < n ≤ m, be given. Choose
U,U ′ ∈ S× according to Lemma 2.4 such that U ′AU satisfies (D), and let p

be the unique polynomial as in Proposition 2.5. It follows from the already
established item (i) of the present theorem that we can write

Wn = V −1





1 q

0 1



V

with appropriate q, deg q > 0, q(0) = 0, and V ∈ S×. Thus

U ′AU = U ′W1 · . . . · Wn−1 · V
−1





1 q

0 1



 V U

and hence by Proposition 2.5 and Lemma 2.4

V U =







α β

0
1

α






=





1 αβ

0 1











α 0

0
1

α






.

It follows that

U ′AU = U ′W1 · . . . · Wn−1V
−1





1 q

0 1









1 αβ

0 1











α 0

0
1

α







= U ′W1 · . . . · Wn−1V
−1





1 αβ

0 1











α 0

0
1

α






·





1

α
0

0 α









1 q

0 1











α 0

0
1

α







= U ′W1 · . . . · Wn−1U





1
q

α2

0 1



 .
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We conclude from Proposition 2.5 that q

α2 = p and hence that

A′ := AU





1 −p

0 1



U−1 = W1 · . . . · Wn−1.

The same argument starting from A = Ŵ1 · . . . ·Ŵm yields that A′ = Ŵ1 · . . . ·
Ŵm−1. Our inductive hypothesis applied to A′ now implies that n−1 = m−1
and

Wi = Ŵi, i = 1, . . . , n − 1 .

Thus also Wn = Ŵn.

Proof. (of (ii), uniqueness) Let A be given and assume that A = W1·. . .·Wn

and also A = Ŵ1 · . . . · Ŵm. By the proof of item (iii) , existence, we find
V1, . . . , Vn and V̂1, . . . , V̂m such that

Vi ∼ Wi, Vi(0) = I, i = 1, . . . , n ,

V̂i ∼ Ŵi, V̂i(0) = I, i = 1, . . . ,m ,

AA(0)−1 = V1 · . . . · Vn = V̂1 · . . . , ·V̂m .

By the already established item (iii) , uniqueness, it follows that

n = m, Vi = V̂i, i = 1, . . . , n .

Thus also Wi ∼ Ŵi, i = 1, . . . , n.

To conclude let us note that the euclidean algorithm or -better to say- its
corollary that the greatest common divisor of two polynomials a, b can be
written as a linear combination of a and b, can be viewed as a solution of
the following completion problem:

Remark 3.2. Let a, b ∈ K[x] with gcd{a, b} = 1 be given.

(i) There exists a matrix A ∈ S such that
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(3.4) (1, 0)A = (a, b).

The matrix A can be chosen such that, with (c, d) := (0, 1)A,

(3.5) deg c ≤ deg a, deg d ≤ deg b.

(ii) Let A0 ∈ S be fixed such that (3.4) and (3.5) hold. Then a matrix
A ∈ S satisfies (3.4) if and only if there exists p ∈ K[x] such that

A =

(

1 0

p 1

)

A0.
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