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Abstract

Defining an (n + 1)-ary superposition operation Sn on the set
Wτ (Xn) of all n-ary terms of type τ , one obtains an algebra
n − clone τ := (Wτ (Xn); Sn, x1, . . . , xn) of type (n + 1, 0, . . . , 0). The
algebra n − clone τ is free in the variety of all Menger algebras ([9]).
Using the operation Sn there are different possibilities to define binary
associative operations on the set Wτ (Xn) and on the cartesian power
Wτ (Xn)n. In this paper we study idempotent and regular elements
as well as Green’s relations in semigroups of terms with these binary
associative operations as fundamental operations.
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1. Preliminaries

Let τ = (ni)i∈I be a type of algebras with an ni-ary operation symbol fi

for every i in some index set I. For each n ≥ 1 let Xn = {x1, . . . xn} be
an n-element alphabet. We denote by Wτ (Xn) the set of all n-ary terms of
type τ . It is very common to illustrate terms by tree diagrams. Consider
for example the type τ = (2) with a binary operation symbol f . Then the
term

t = f(f(x1, f(x1, x2)), f(x2, f(x2, x1)))

corresponds to the tree diagram below.
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On the set Wτ (Xn) one can define the following (n + 1)-ary superposition
operation

Sn : Wτ (Xn)n+1 → Wτ (Xn)

by

Sn(xi, t1, . . . , tn) := ti, for every 1 ≤ i ≤ n , and

Sn(fi(r1, . . . , rni
), t1, . . . , tn) := fi(S

n(r1, t1, . . . , tn), . . . , Sn(rni
, t1, . . . , tn)).

Together with the nullary operations x1, . . . , xn one obtains an algebra

n − clone τ := (Wτ (Xn);Sn, x1, . . . , xn),

which satisfies the identities
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(C1)
∼

Sn (
∼

Z,
∼

Sn (
∼

Y1,
∼

X1, . . . ,
∼

Xn), . . . ,
∼

Sn (
∼

Yn,
∼

X1, . . . ,
∼

Xn))

≈
∼

Sn (
∼

Sn (
∼

Z,
∼

Y1, . . . ,
∼

Yn),
∼

X1, . . . ,
∼

Xn),

(C2)
∼

Sn (λi,
∼

X1, . . . ,
∼

Xn) ≈
∼

Xi for 1 ≤ i ≤ n,

(C3)
∼

Sn (
∼

Xi, λ1, . . . , λn) ≈
∼

Xi for 1 ≤ i ≤ n.

Here
∼

Sn is an (n+1)-ary operation symbol, λ1, . . . , λn are nullary operation

symbols and
∼

Z,
∼

Y1, . . . ,
∼

Yn,
∼

X1, . . . ,
∼

Xn are new variables. The algebra
n-clone τ is an example of a unitary Menger algebra of rank n. Without
the nullary operations one speaks of a Menger algebra of rank n.

Now we consider a type τn consisting of n-ary operation symbols only.
Let X be an arbitrary countably infinite alphabet of variables and let Wτ (X)
be the set of all terms of type τ . On Wτ (X) we consider a generalized su-
perposition operation Sg

n which is defined for any n ≥ 1, n ∈ N
+, inductively

by the following steps:

Definition 1.1.

(i) If t = xi, 1 ≤ i ≤ n, then Sn
g (xi, t1, . . . , tn) := ti for t1, . . . , tn ∈

Wτn(X).

(ii) If t = xi, n < i, then Sn
g (xi, t1, . . . , tn) := xi.

(iii) If t = fi(s1, . . . , sn), then

Sn
g (t, t1, . . . , tn) := fi(S

n(s1, t1, . . . , tn), . . . , Sn
g (sn, t1, . . . , tn)).

Then we may consider the algebraic structure

clonegτn :=
(

Wτn(X);Sn
g , (xi)i∈N+

)

with the universe Wτn(X), with one (n+1)-ary operation and infinitely many
nullary operations. This algebra is called a Menger algebra with infinitely
many nullary operations. Without the nullary operations we have a Menger
algebra of rank n. It is not difficult to see ([1]) that this algebra satisfies the
axioms



88 K. Denecke and P. Jampachon

(Cg1) S̃n
g (T, S̃n

g (F1, T1, . . . , Tn), . . . , S̃n
g (Fn, T1, . . . , Tn))

≈ S̃n
g (S̃n

g (T, F1, . . . , Fn), T1, . . . , Tn).

(Cg2) S̃n
g (T, λ1, . . . , λn) = T .

(Cg3) S̃n
g (λi, T1, . . . , Tn) = Ti for 1 ≤ i ≤ n.

(Cg4) S̃n
g (λj, T1, . . . , Tn) = λj for j > n.

(Here S̃n
g , λi are operation symbols corresponding to the operations Sn

g and
xi, i ∈ N

+, respectively and T, Tj , Fi are new variables.)

In any Menger algebra (G;Sn) of rank n a binary operation + can be
defined by

x + y := Sn(x, y, . . . , y).

It is easy to see that the operation + is associative. The algebra (G; +) is
called diagonal semigroup (see e.g., [10]).

On the cartesian power Gn one may define a binary operation ∗ by
(x1, . . . , xn)∗(y1, . . . , yn) := (Sn(x1, y1, . . . , yn), . . . , Sn(xn, y1, . . . , yn)). Then
(Gn; ∗) is also a semigroup.

We notice that (G; +) can be embedded into (Gn; ∗). Actually the
subsemigroup (4G; ∗|4G

) of (Gn; ∗) where 4G := {(x, . . . , x) | x ∈ G} is
the diagonal of G, is isomorphic to (G; +).

An element x of a semigroup (S; ·) is called regular if there is an element
y of the same semigroup such that x · y · x = x. Clearly, every idempotent
element is regular. Further, we recall the definition of Green’s relations.

Green’s relations are special equivalence relations which can be defined
on any semigroup or monoid, using the idea of mutual divisibility of ele-
ments. Let S be a semigroup and let S+ be the monoid which arises from
S by adding a neutral element. For any semigroup S and any elements a, b
of S, we say aLb if and only if there are c and d in S+ such that c · a = b
and d · b = a. Dually, aRb if and only if there are c and d in S+ such that
a · c = b and b · d = a. It follows easily from these definitions that L is al-
ways a right congruence, while R is always a left congruence. The relation H
is defined as the intersection of R and L, and the relation D is the join L∨R.
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It is easy to see that L∨R = R◦L = L◦R, where ◦ here refers to the usual
composition of relations. Finally, the relation J is defined by aJ b if and
only if there exist elements c, d, p and q in S+ such that a = c · b ·d and b =
p · a · q. For Green’s relations we will use the following notation, (a, b) ∈ R
and aRb and similarly for the other relations. For more information about
Green’s relations in general, we refer the reader to [7].

Using Green’s relation R (L) the set of all regular elements of a semi-
group S can be described as follows (see e.g., [7]):

Theorem 1.2. Let x be an element of the universe of a semigroup S. Then
the following are equivalent:

(i) x is regular.

(ii) [x]R contains an idempotent element.

(iii) [x]L contains an idempotent element.

Then for the set Reg(S) of all regular elements of the semigroup S we have

Reg(S) =
⋃

{

[e]R | e ∈ E(S)
}

=
⋃

{

[a]R | [a]R ∩ E(S) 6= ∅
}

.

2. Idempotent elements

In this section we study idempotent terms of type τ with respect to the
operations + and ∗. To determine all idempotent elements we need some
lemmas. The first lemma answers to the following question:

Let s, t1, . . . tn ∈ Wτ (Xn). Under which conditions does there exist an
n-ary term q such that s = Sn(q, t1, t2, . . . , tn)?

For a term t ∈ Wτ (Xn) we denote by var(t) the set of all variables
occurring in t.

Lemma 2.1. Let s, t1, . . . , tn ∈ Wτ (Xn). Then s = Sn(s, t1, . . . , tn) if and
only if for each i, 1 ≤ i ≤ n, if xi ∈ var(s), then ti = xi.

Proof. “⇒” Assume that s = Sn(s, t1, . . . , tn) and that xi ∈ var(s), but
ti 6= xi. Then we have to substitute in s for xi a term different from xi and
obtain Sn(s, t1, . . . , tn) 6= s, a contradiction.
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“⇐” We assume now that from xi ∈ var(s) there follows ti = xi. We
will show s = Sn(s, t1, . . . , tn) by induction on the complexity of the term
s. If s = xj ∈ Xn, then tj = xj and so s = xj = Sn(xj , t1, . . . , xj , . . . , tn).
Now assume that for s = f(s1, . . . , sn) for all 1 ≤ i ≤ n we have si =
Sn(si, t1, . . . , tn). Then

Sn(s, t1, . . . , tn)

= Sn(f(s1, . . . , sn), t1, . . . , tn)

= f(sn(s1, t1, . . . , tn), . . . , Sn(sn, t1, . . . , tn))

= f(s1, . . . sn) = s.

Now we solve the equation xi = Sn(q, t1, t2, . . . , tn).

Lemma 2.2. Let q, t1, . . . , tn ∈ Wτ (Xn). For each i ∈ {1, 2, . . . , n} we have
xi = Sn(q, t1, . . . , tn) if and only if there is an integer j for 1 ≤ j ≤ n, such
that q = xj and tj = xi.

Proof. “⇐” This direction is clear.

“⇒” For the proof of this direction we use the following formula for the
operation symbol count op(t) of the term t ([3]). We denote by vbj(s) the
number of occurrences of the variable xj in the term s.

op(Sn(q, t1, . . . , tn)) =

n
∑

k=1

vbk(q)op(tk) + op(q).

(We mention that this formula is also valid for Sn
g and for terms q, t1, . . . , tn ∈

Wτn(X)). Then from 0 = op(xi) =
∑n

k=1 vbk(q)op(tk) + op(q) we obtain
op(q) = 0 and q ∈ Xn. Let q = xj for some xj ∈ Xn. Then from xi =
Sn(q, t1, . . . , tn) = Sn(xj, t1, . . . , tn), we have tj = xi.

Now we want to determine all vectors of terms which are idempotent with
respect to the operation ∗. Clearly, an n-vector (q1, . . . , qn) of n-ary terms is
an idempotent element with respect to the operation ∗ if Sn(qi, q1, . . . , qn) =
qi for all 1 ≤ i ≤ n.
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Then we have:

Theorem 2.3. For n ≥ 1 an n-vector (q1, . . . , qn) is idempotent if and only
if the following condition (ID) is satisfied:

(ID) xj ∈
n
⋃

i=1

var(qi) ⇒ qj = xj .

Proof. Assume that (q1, . . . , qn) satisfies condition (ID). Let var(qi) =
{xi1 , . . . , xik} ⊆ Xn. By condition (ID) we have qij = xij for all 1 ≤ j ≤ k
and then

Sn(qi, q1, . . . , qn)

= Sn(qi, q1, . . . , qi1−1, qi1 , qi1+1 . . . , qik−1, qik , qik+1, . . . , qn)

= Sn(qi, q1, . . . , qi1−1, xi1 , qi1+1 . . . , qik−1, xik , qik+1, . . . , qn)

= qi

by Lemma 2.1. Therefore, (q1, . . . , qn) is idempotent.
Conversely, assume that (q1, . . . , qn) is idempotent. Suppose (q1, . . . , qn)

does not satisfy the condition (ID). Then there exist integers i, j, 1 ≤ i,
j ≤ n such that xj ∈ var(qi), but qj 6= xj. Then by Lemma 2.1 we have
Sn(qi, q1, . . . , qj, . . . , qn) 6= qi which contradicts the idempotency of the
vector (q1, . . . , qn). Hence (q1, . . . qn) satisfies the condition (ID).

Considering idempotent elements with respect to the operation +, we obtain:

Corollary 2.4. An element t ∈ Wτ (Xn) is idempotent with respect to + if
and only if t = xi for some 1 ≤ i ≤ n.

Now we consider a type τn consisting of n-ary operation symbols and
the binary associative operations ∗g : (Wτn(X)n)2 → Wτn(X)n and +g :
Wτn(X)2 → Wτn(X) defined by

x +g y := Sn
g (x, y, . . . , y)

and

(x1, . . . , xn) ∗g (y1, . . . , yn) := (Sn
g (x1, y1, . . . , yn), . . . , Sn

g (xn, y1, . . . , yn)).
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Let X ′ := X \ Xn. Instead of Lemma 2.1 we now have:

Lemma 2.5. Let s, t1, . . . , tn ∈ Wτn(X). If var(s) 6⊆ X ′, then s =
Sn

g (s, t1, . . . , tn) if and only if for each i with 1 ≤ i ≤ n we have: if
xi ∈ var(s), then ti = xi.

If var(s) ⊆ X ′, then s = Sn
g (s, t1, . . . , tn).

Proof. The proof is clear for var(s) ⊆ X ′. If var(s) ∩ Xn 6= ∅, then we
conclude similar as in Lemma 2.1.

It is clear that instead of Lemma 2.2. we have now:

Lemma 2.6. Let q, t1, . . . , tn ∈ Wτn(X). For 1 ≤ i ≤ n we have xi =
Sn

g (q, t1, . . . , tn) if and only if there is an integer j with 1 ≤ j ≤ n such that
q = xj and tj = xi.

Then we obtain:

Theorem 2.7. An n-vector (q1, . . . , qn) of elements from Wτn(X) is idem-
potent with respect to ∗g if and only if the following condition (ID∗) is sat-
isfied

(ID)∗ xj ∈
n
⋃

i=1

var(qi) ∩ Xn ⇒ qj = xj .

Proof. If (q1, . . . , qn) is idempotent and if xj ∈
n
⋃

i=1
var(qi) ∩ Xn, then

by Lemma 2.5, qj = xj .

Assume that (ID∗) is satisfied. If
⋃n

i=1 var(qi)∩Xn = ∅, then application
of Lemma 2.5 gives Sn

g (qj , q1, . . . , qn) = qj and (q1, . . . , qn) is idempotent. If
⋃n

i=1 var(qi) ∩ Xn 6= ∅ and xj ∈
⋃n

i=1 var(qi) for some 1 ≤ j ≤ n, then by
(ID∗) we obtain qj = xj and Lemma 2.5 gives Sn

g (qj, q1, . . . , qn) = qj and
(q1, . . . , qn) is idempotent.

Further we have:

Corollary 2.8. If var(t) ⊆ X ′, then the term t ∈ Wτn(X ′) is idempotent
with respect to +g. If var(t) ∩ Xn 6= ∅, then an element t ∈ Wτn(X) is
idempotent with respect to +g if and only if t = xi for some 1 ≤ i ≤ n.
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3. Regular elements

A vector (q1, . . . , qn) is a regular element with respect to ∗ if there
exists a vector (s1, . . . , sn) such that (q1, . . . , qn)=(q1, . . . , qn) ∗ (s1, . . . , sn)∗
(q1, . . . , qn).

By definition of ∗, a vector (q1, . . . , qn) is regular with respect to ∗ if
and only if

qi = Sn(Sn(qi, s1, . . . , sn), q1, . . . , qn) for 1 ≤ i ≤ n.

Moreover we define (see [10]):

Definition 3.1. A vector (q1, . . . , qn) is called a v-regular element if there
exists an s such that (q1, . . . , qn) = (q1, . . . , qn) ∗ (s, . . . , s) ∗ (q1, . . . , qn).

By definition of + an element t ∈ Wτ (Xn) is regular with respect to +
if there exists a term s ∈ Wτ (Xn) such that t = Sn(Sn(t, s, . . . , s), t, t, . . . , t).

We define also (see [9]):

Definition 3.2. An element t ∈ Wτ (Xn) is called weakly regular if there
exist s1, . . . , sn ∈ Wτ (Xn) such that t = Sn(Sn(t, s1, s2, . . . , sn), t, t, . . . , t).

To determine regular vectors with respect to ∗ we need the following lemma:

Lemma 3.3. Let q1, q2, . . . , qn, s1, s2, . . . , sn ∈ Wτ (Xn). Then

(q1, . . . , qn) = (q1, . . . , qn) ∗ (s1, . . . , sn) ∗ (q1, . . . , qn)

if and only if for all i, j ∈ {1, 2, . . . , n} we have:

xj ∈ var(qi) ⇒ ∃ l ∈ {1, 2, . . . , n} (sj = xl and ql = xj).
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Proof.

(q1,. . . , qn) ∗ (s1, . . . , sn) ∗ (q1, . . . , qn) = (q1, . . . , qn)

⇔ (Sn(q1, S
n(s1, q1, . . . , qn), . . . , Sn(sn, q1, . . . , qn)), . . . ,

Sn(qn, Sn(s1, q1, . . . , qn), . . . , Sn(sn, q1, . . . , qn)))=(q1, . . . , qn)(using (C1))

⇔ ∀i ∈ {1, 2, . . . , n}(Sn(qi, S
n(s1, q1, . . . , qn), . . . , Sn(sn, q1, . . . , qn)) = qi)

⇔ ∀i ∈ {1, 2, . . . , n}(∀j ∈ {1, 2, . . . , n}

(xj ∈ var(qi) ⇒ Sn(sj, q1, . . . , qn) = xj)) (by Lemma 2.1)

⇔ ∀i, j ∈ {1, 2, . . . , n}(xj ∈ var(qi) ⇒ Sn(sj, q1, . . . , qn) = xj)

⇔ ∀i, j ∈ {1, 2, . . . , n}(xj ∈ var(qi) ⇒ sj = xl and ql = xj

for some l ∈ {1, 2, . . . , n}) (by Lemma 2.2).

Then we obtain the following result:

Theorem 3.4. Let q1, . . . , qn ∈ Wτ (Xn). Then (q1, . . . , qn) is a regular
vector in (Wτ (Xn)n; ∗) if and only if for any i, j ∈ {1, 2, . . . , n} we have: if
xj ∈ var(qi) then there exists l ∈ {1, 2, . . . , n} such that ql = xj .

Proof. “⇐” Follows from the previous lemma.

“⇒” Assume that for each i, j ∈ {1, 2, . . . , n} we have: if xj ∈ var(qi)
then there exists an element l ∈ {1, 2, . . . , n} such that ql = xj. For each

1 ≤ j ≤ n we obtain: if xj ∈
n
⋃

i=1
var(qi), then there exists an element l

with 1 ≤ l ≤ n such that ql = xj . We select an index lj , so that qlj = xj.

Since
n
⋃

i=1
var(qi) 6= ∅, let xk ∈

n
⋃

i=1
var(qi) be fixed. Then we define sj for

1 ≤ j ≤ n as follows:

sj =















xlj if xj ∈
n
⋃

i=1

var(qi)

xk otherwise.
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It is not difficult to see that for each 1 ≤ i, j ≤ n we get: if xj ∈ var(qi),
then there exists an element 1 ≤ l ≤ n such that sj = xl and ql = xj . By
Lemma 3.3 we have that (q1, . . . , qn) is a regular element.

Now we determine regular elements with respect to the operation +. We
need the following lemma:

Lemma 3.5. Let s, t ∈ Wτ (Xn). Then

Sn(s, t, t, . . . , t) = t if and only if s = xi for some 1 ≤ i ≤ n.

(That means, s + t = t if and only if s = xi for some 1 ≤ i ≤ n).

Proof. If s = xi for some 1 ≤ i ≤ n then Sn(s, t, t, . . . , t) = t. Now we
assume Sn(s, t, t, . . . , t) = t and s /∈ Xn. Then op(s) ≥ 1 and we get

op(t) = op(Sn(s, t, t, . . . , t))

=

n
∑

j=1

vbj(s)op(t) + op(s)

≥ op(t) + op(s)

> op(t)

which is a contradiction. Hence s ∈ Xn.

From Theorem 3.4 using the embedding described in section 1, for regular
elements with respect to + we obtain the following result:

Corollary 3.6. A term t ∈ Wτ (Xn) is regular with respect to + if and only
if it is idempotent.

By definition of the operation ∗ on Wτ (Xn)n a vector (q1, . . . , qn) is v-regular
if and only if there exists an element s ∈ Wτ (Xn) such that

qi = Sn(Sn(qi, s, . . . , s), q1, . . . , qn)

for 1 ≤ i ≤ n. By (C1) this means that

qi = Sn(qi, S
n(s, q1, . . . , qn), . . . , Sn(s, q1, . . . , qn)),
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for 1 ≤ i ≤ n. By Lemma 2.1 this is satisfied if and only if there is a j with
1 ≤ j ≤ n such that qi = xj for all 1 ≤ i ≤ n. Therefore, (q1, . . . , qn) is
v-regular if and only if there is an integer j with 1 ≤ j ≤ n such that qi = xj

for every i with 1 ≤ i ≤ n.

By Lemma 3.5 the term t ∈ Wτ (Xn) is weakly regular if and only if
there exists an integer i with 1 ≤ i ≤ n and terms s1, . . . , sn such that
xi = Sn(t, s1, . . . sn). By Lemma 2.2 this is satisfied if and only if there is
an integer j for 1 ≤ j ≤ n such that t = xj and sj = xi. Altogether, this
means that with respect to the binary operation + on Wτ (Xn) the concepts
of regular and of weakly regular elements are equal.

Now we consider regularity of terms of type τ n with respect to the op-
erations ∗g and +g, respectively, derived from the generalized superposition
operation Sn

g .

Let X ′ := X \ Xn. If q1, . . . , qn ∈ Wτn(X ′), then for any s1, . . . sn ∈
Wτn(X)

Sn
g (Sn

g (qi, s1, . . . , sn), q1, . . . , qn)

= Sn
g (qi, q1, . . . qn)

= qi for 1 ≤ i ≤ n,

i.e. every (q1, . . . , qn) ∈ Wτn(X ′)n is regular with respect to ∗g.

If t ∈ Wτn(X ′), then for every s ∈ Wτn(X) we have

Sn
g (Sn

g (t, s, . . . , s), t, . . . , t) = t.

Therefore, every t ∈ Wτn(X ′) is regular with respect to +g. This gives the
following results:

Theorem 3.7. Let q1, . . . , qn ∈ Wτn(X). Then (q1, . . . , qn) is a regular
vector in (Wτn(X)n; ∗g) if and only if for any i, j ∈ {1, 2, . . . , n} we have:
if xj ∈ var(qi) then there exists l ∈ {1, 2, . . . , n} such that ql = xj.

Theorem 3.8. A term t ∈ Wτn(X) is regular with respect to +g if and only
if it is idempotent.



Regular elements and Green’s relations in menger ... 97

4. Ideals in menger algebras and Green’s relations

In the next sections we will study Green’s relations in Menger algebras of
terms. Green’s relations are studied for semigroups or for monoids. There-
fore, it is quite natural to study Green’s relations for (Wτ (Xn);+) and for
(Wτn(X);+g). For Menger algebras of rank n in [7] Green’s relations were
defined by using of ideals.

In [9], different kinds of ideals in Menger algebras of rank n were defined
as follows:

Definition 4.1. Let (M ;Sn) be a Menger algebra of rank n. A nonempty
subset H of M is called an s-ideal, if from h ∈ H there follows
Sn(h, t1, . . . , tn) ∈ H for all t1, . . . , tn ∈ M. A set H is called a v-ideal,
if from h1, . . . , hn ∈ H there follows Sn(t, h1, . . . , hn) ∈ H for all t ∈ M .
The set H is called an l-ideal, if at least one of t, h1, . . . , hn belongs to H,
then Sn(t, h1, . . . , hn) belongs to H.

Definition 4.2. Let (M ;Sn) be a Menger algebra of rank n and let a, b ∈ M .

(i) aLb if either a = b or if there are elements s1, . . . , sn, t1, . . . , tn ∈ M
such that Sn(a, s1, . . . , sn) = b and Sn(b, t1, . . . , tn) = a.

(ii) aRb if either a = b or if there are elements s, t ∈ Wτ (Xn) such that
Sn(s, a, a, . . . , a) = b and Sn(t, b, b, . . . , b) = a.

(iii) D = R ◦ L(= L ◦ R).

(iv) H = R∩ L.

(v) aJ b if either a = b or if there are elements s, s1, . . . , sn ∈ Wτ (Xn) with
a = Sn(s, s1, . . . , sn) such that at least one of the factors is equal to b
and there are elements t, t1, . . . , tn ∈ M with b = Sn(t, t1, . . . , tn) such
that at least one of the factors is equal to a.

It can be proved that (a, b) ∈ L if and only if a and b generate the same
s-ideal, (a, b) ∈ R if and only if a and b generate the same v-ideal, and also
(a, b) ∈ J if and only if a and b generate the same l-ideal; L and R are
commuting equivalence relations ([9]).

Let 4Wτ (Xn) be the set of all pairs (s, s) of terms from Wτ (Xn) (the
diagonal of Wτ (Xn)).
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Theorem 4.3. Let a, b ∈ Wτ (Xn). Then aRb iff a = b, i.e., R =
4Wτ (Xn).

Proof. If a = b, then by definition of R we have aRb. Assume that
aRb. Then there exist s, t ∈ Wτ (Xn) such that a = Sn(s, b, b, . . . , b) and
b = Sn(t, a, a, . . . , a). This implies

a = Sn(s, Sn(t, a, a, . . . , a), Sn(t, a, a, . . . , a), . . . , Sn(t, a, a, . . . , a))

and then

a = Sn(Sn(s, t, t, . . . , t), a, a, . . . , a) by (C1).

By Lemma 3.3 and 2.2, we have Sn(s, t, . . . , t) = xi for some 1 ≤ i ≤ n and
so s = xj and t = xi for some 1 ≤ j ≤ n. We obtain a = Sn(xj , b, . . . , b) = b.

Then we get:

Corollary 4.4. H = R and L = D.

For Green’s relation L we have:

Theorem 4.5. Let a, b ∈ Wτ (Xn). Then aLb if and only if there
exists a permutation r on the set {1, 2, . . . , n} such that b = Sn(a, xr(1),
xr(2), . . . , xr(n)).

Proof. Assume that there exists a permutation r on {1, 2, . . . , n} such
that b = Sn(a, xr(1), xr(2), . . . , xr(n)). Then

Sn(b, xr−1(1), xr−1(2), . . . , xr−1(n))

= Sn(Sn(a, xr(1), xr(2), . . . , xr(n)), xr−1(1), xr−1(2), . . . , xr−1(n))

= Sn(a, Sn(xr(1), xr−1(1), xr−1(2), . . . , xr−1(n)), . . . ,

Sn(xr(n), xr−1(1), xr−1(2), . . . , xr−1(n))) (by (C1))

= Sn(a, xr−1(r(1)), . . . , xr−1(r(n)))

= Sn(a, x1, x2, . . . , xn) = a.
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Therefore aLb.

Conversely, assume that aLb. Then there exist elements t1, . . . , tn
and s1, . . . , sn ∈ Wτ (Xn) such that Sn(a, t1, . . . , tn) = b and
Sn(b, s1, . . . , sn) = a. Then we have:

Sn(Sn(a, t1, . . . , tn), s1, . . . , sn) = a

⇒ Sn(a, Sn(t1, s1, . . . , sn), . . . , Sn(tn, s1, . . . , sn)) = a (by (C1)).

If var(a) = {xi1 , xi2 , . . . , xik} then Sn(tij , s1, . . . , sn) = xij for all j =
1, 2, . . . , k and then for each ij there exists an lj such that tij = xlj and
slj = xij .

We notice that for 1 ≤ p, q ≤ k we have: if lp = lq then ip = iq because
of slp = slq ⇒ xip = xiq ⇒ ip = iq.

Therefore |{i1, i2, . . . , ik}| = |{l1, l2, . . . , lk}| implies that there exists a
permutation r on the set {1, 2, . . . , n} such that r(ij) = lj for all 1 ≤ j ≤ k.
Then we have

b = Sn(a, t1, . . . , ti1 , . . . , ti2 , . . . , tik , . . . , tn)

= Sn(a, t1, . . . , xl1 , . . . , xl2 , . . . , xlk , . . . , tn)

= Sn(a, t1, . . . , xr(i1), . . . , xr(i2), . . . , xr(ik), . . . , tn)

= Sn(a, xr(1), . . . , xr(i1), . . . , xr(i2), . . . , xr(ik), . . . , xr(n)).

(Since xr(p) /∈ var(a) if p /∈ {i1, i2, . . . , ik}).

Then for Green’s relation J we have:

Theorem 4.6.

(i) If n = 1 then J = 4Wτ (X1).

(ii) If n ≥ 2 then J = Wτ (Xn) × Wτ (Xn).
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Proof.

(i) Let a, b ∈ Wτ (X1) such that aJ b. Then we have the following four
cases.

(1) a = S1(b, t) and b = S1(a, s) for some t, s ∈ Wτ (X1).

(2) a = S1(b, t) and b = S1(s, a) for some t, s ∈ Wτ (X1).

(3) a = S1(t, b) and b = S1(a, s) for some t, s ∈ Wτ (X1).

(4) a = S1(t, b) and b = S1(s, a) for some t, s ∈ Wτ (X1).

In all cases we obtain op(a) = op(b)+op(t) and op(b) = op(a)+op(s). These
imply op(a) = op(a) + op(s) + op(t) and then op(s) = op(t) = 0 and hence
s = x1 = t. Thus, we have a = b in all four cases.

(ii) Let a, b ∈ Wτ (Xn) where n ≥ 2. Then

a = Sn(x1, a, b, b, . . . , b) and b = Sn(x1, b, a, a, . . . , a).

This means aJ b for all a, b,∈ Wτ (Xn). Hence J = Wτ (Xn) × Wτ (Xn).

Now for a type τn we consider the generalized superposition operation Sn
g

and the Menger algebra clonegτn with infinitely many nullary operations.
Corresponding to Definition 4.2 we define Green’s relations Lg,Rg,Dg,Hg

and J g. Let X ′ = X \ Xn. For Green’s relation Lg we have:

Theorem 4.7. Let a, b ∈ Wτn(X). Then aLgb if and only if there exists a
permutation r on the set {1, 2, . . . , n} such that b = Sn

g (a, xr(1), . . . , xr(n)).

Proof. By definition we have aLgb if either a = b or if there are ele-
ments s1, . . . , sn, t1, . . . , tn ∈ Wτn(X) such that Sn(a, s1, . . . , sn) = b and
Sn(b, t1, . . . , tn) = a.

We consider the following cases:

1. var(a) or var(b) ⊆ X ′: In this case from aLgb we get b =
Sn

g (a, s1, . . . , sn) = a.

2. var(a), var(b) 6⊆ X ′: In this case we have var(a) ∩ Xn 6= ∅ and
var(b) ∩ Xn 6= ∅. Now we proceed as in the proof of Theorem 4.5.
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For Rg we have:

Theorem 4.8.

Rg = Wτn(X ′)2 ∪4Wτn (X).

Proof. By definition we have aRgb if either a = b or if there are elements
s, t ∈ Wτn(X) such that Sn

g (s, a, . . . , a) = b and Sn
g (t, b, . . . , b) = a. We

consider again the following cases:

1. var(a) or var(b) ⊆ X ′: If var(a) ⊆ X ′, then var(Sn
g (s, a, . . . , a)) =

var(b) ⊆ X ′ and conversely, if var(b) ⊆ X ′, then var(a) ⊆ X ′. So,
we may assume that both, var(a) and var(b) are subsets of X ′. Let
Rg|Wτn (X′)2 ⊆ Wτn(X ′)2 be the restriction of Rg to Wτn(X ′). If var(a),
var(b) ⊆ X ′, then Sn

g (b, a, . . . , a) = b and Sn
g (a, b, . . . , b) = a and there-

fore aLgb. This shows Rg|Wτn (X′)2 = Wτn(X ′)2.

2. var(a) 6⊆ X ′ and var(b) 6⊆ X ′: In this case we have var(s) ∩
Xn 6= ∅, var(t) ∩ Xn 6= ∅, var(Sn

g (s, t, . . . , t)) ∩ Xn 6= ∅ and
var(Sn

g (t, s, . . . , s)) ∩ Xn 6= ∅. From aRgb we obtain by substitution
and by (Cg1), Sn

g (Sn
g (s, t, . . . , t), b, . . . , b) = b and Sn

g (Sn
g (t, s, . . . , s),

a, . . . , a) = a. Similar to Lemma 3.5 there follows

Sn
g (s, t, . . . , t) = xi, S

n
g (t, s, . . . , s) = xj

for some 1 ≤ i, j ≤ n. But then similar as in Lemma 2.2 we conclude
that s = xj , t = xi and t = xi, s = xj , i.e. s = t = xi. Then we have
a = b. The converse is clear.

For Green’s relation J g we have:

Theorem 4.9. If n = 1, then J g = Wτ1
(X ′) × Wτ1

(X ′) ∪4Wτ1
(X).

Proof. We consider the following two cases:
1. var(a) ⊆ X ′ or var(b) ⊆ X ′: In this case from var(a) ⊆ X ′ we have

a = S1
g(a, b) and then var(b) ⊆ X ′ and from var(b) ⊆ X ′ and b = S1

g (b, a),
we obtain var(a) ⊆ X ′. Therefore in this case we get J g|Wτ1

(X ′)2 =
Wτ1

(X ′)2.

2. var(a) ∩ Xn 6= ∅ and var(b) ∩ Xn 6= ∅: Assume that a 6= b and aJ gb,
then the following cases are possible:
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(1) a = S1
g (b, t) and b = S1

g(a, s) for some t, s ∈ Wτ1
(X).

(2) a = S1(b, t) and b = S1(s, a) for some t, s ∈ Wτ1
(X).

(3) a = S1(t, b) and b = S1(a, s) for some t, s ∈ Wτ1
(X).

(4) a = S1(t, b) and b = S1(s, a) for some t, s ∈ Wτ1
(X).

Since in the first case a = S1
g(b, t) and var(a)∩X1 6= ∅ we have var(t)∩X1 6=

∅ and similarly we have var(s) ∩ X1 6= ∅. In the other three cases one has
also var(t) ∩ X1 6= ∅ and var(s) ∩ X1 6= ∅. Using the formula

op(S1
g (q, t)) = op(t) + op(q), q, t ∈ Wτ1

(X)

it is not difficult to see that for arbitrary terms u, v, w ∈ Wτ1
(X) from

u = S1
g(v, w), var(u) ∩ X1 6= ∅ and var(v) ∩ X1 6= ∅ there follows op(u) ≥

op(v)+op(w). Using this inequality we obtain in all four cases op(s) = 0 and
op(t) = 0 and thus by var(t)∩X1 6= ∅, var(s)∩X1 6= ∅ we get s = t = x1 and
then a = b, a contradiction. Altogether we have J g = Wτ1

(X ′)2 ∪4Wτ1
(X).

For n ≥ 2 we obtain

Theorem 4.10. If n ≥ 2, then J g = Wτn(X) × Wτn(X).

Proof. Let (a, b) ∈ Wτn(X)2. Then

a = Sn
g (x1, a, b, . . . , b) and b = Sn

g (x1, b, a, . . . , a).

This means aJ gb.

Moreover, we have Hg = Rg ∩ Lg = 4Wτn(X) and Dg = Rg ∨ Lg =
Wτn(X ′)2 ∨ Lg. For Dg we have even:

Corollary 4.11. Dg = Rg ∪ Lg = Wτn(X ′)2 ∨ Lg.

Proof. The inclusion Rg ∪ Lg ⊆ Dg is clear. Let (a, b) ∈ Dg. By
Dg = Lg ◦ Rg, there is a term c ∈ Wτn(X) such that (a, c) ∈ Rg and
(c, b) ∈ Lg. We consider the following two cases:
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1. var(a) ⊆ X ′ or var(b) ⊆ X ′: Since (c, b) ∈ Lg, by Theorem 4.7 there is
a permutation r on {1, 2, . . . , n} such that b = Sn

g (c, xr(1), . . . , xr(n)). If
var(b) ⊆ X ′, we get var(c) ⊆ X ′ and b = c. It follows (a, b) = (a, c) ∈ Rg

and var(a) ⊆ X ′. If var(a) ⊆ X ′, then (a, c) ∈ Rg implies var(c) ⊆ X ′

and then by (c, b) ∈ Lg also var(b) ⊆ X ′ and we continue as we did in
the first case. This shows also

var(a) ⊆ X ′ or var(b) ⊆ X ′ ⇔ var(a) ⊆ X ′ and var(b) ⊆ X ′.

2. var(a)∩Xn 6= ∅ and var(b)∩Xn 6= ∅: Then by Theorem 4.8 we get a = c
and this implies (a, b) = (c, b) ∈ Lg.

Altogether we have Dg ⊆ Rg ∪ Lg.

5. Green’s Relations on (Wτ (Xn);+)

Now we consider Green’s relations with respect to the the semigroup
(Wτ (Xn);+) where + is defined by a+b := Sn(a, b, b . . . , b). Let (Wτ (Xn))+

be the monoid arising from (Wτ (Xn);+) by adding a neutral element 0.
Corresponding to the usual definition for Green’s relations L+,R+,D+,J+,
and H+ we have:

aR+b :⇔ a = b or a = Sn(b, s, s, . . . , s) and

b = Sn(a, t, t, . . . , t) for some s, t ∈ Wτ (Xn).

aL+b :⇔ a = b or a = Sn(s, b, b, . . . , b) and

b = Sn(t, a, a, . . . , a) for some s, t ∈ Wτ (Xn).

aJ+b :⇔ a = Sn(s, Sn(b, t, t, . . . , t), . . . , Sn(b, t, t, . . . , t)) and

b = Sn(s′, Sn(a, t′, t′, . . . , t′), . . . , Sn(a, t′, t′, . . . , t′))

for some s, s′, t, t′ ∈ (Wτ (Xn))+.

H+ = L+ ∩R+ and D+ = R+ ◦ L+(= L+ ◦ R+).

By definition and Theorem 4.3 we have L+ = R = 4Wτ (Xn),H+ = L+,
and D+ = R+. It is left to determine R+ and J+.
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Theorem 5.1. Let a, b ∈ Wτ (Xn). Then

aR+b :⇔ a = b or a = Sn(b, xi, xi, . . . , xi) and b = Sn(a, xj , xj, . . . , xj)

for some i, j ∈ {1, 2, . . . , n}.

Proof. Assume that aR+b. If a 6= b then a = Sn(b, s, s, . . . , s) and
b = Sn(a, t, t, . . . , t) for some s, t ∈ Wτ (Xn), so we have

a = Sn(b, s, s, . . . , s)

= Sn(Sn(a, t, t, . . . , t), s, . . . , s)

= Sn(a, Sn(t, s, s, . . . , s), . . . , Sn(t, s, s, . . . , s)) (by (C1)).

By Lemma 2.2, we get Sn(t, s, . . . , s) = xj for some j and then var(a) = {xj}
because of a = Sn(a, xj , . . . , xj). Since Sn(t, s, . . . , s) = xj , by Lemma 2.2
we have t = xi and s = xj for some 1 ≤ i ≤ n. Then b = Sn(a, t, . . . , t) =
Sn(a, xi, . . . , xi) and a = Sn(b, xj , . . . , xj).

Conversely, if a = b or a = Sn(b, xi, . . . , xi) and b = Sn(a, xj , . . . , xj)
for some i, j ∈ {1, 2, . . . , n}, then by definition of R+ we have aR+b.

This means, if aR+b and a 6= b, then var(a) = xi and var(b) = xj and a
arises from b by exchanging xi and xj.

For J+ we have:

Theorem 5.2. J+ = R+.

Proof. We will show that J+ ⊆ R+. Let a, b ∈ Wτ (Xn) such that aJ+b.
Then a = s + b + t and b = s′ + a + t′ for some s, s′, t, t′ ∈ (Wτ (Xn))+. So
we have

op(a) = op(s + b + t)

= op(Sn(s, Sn(b, t, . . . , t), . . . , Sn(b, t, . . . , t))

≥ op(s) + op(Sn(b, t, . . . , t))

≥ op(s) + op(b) + op(t)

= op(s) + op(s′ + a + t′) + op(t)

≥ op(s) + op(s′) + op(a) + op(t′) + op(t).



Regular elements and Green’s relations in menger ... 105

It follows that op(s) + op(s′) + op(t′) + op(t) = 0, and then s, s′, t, t′ are
variables or the neutral element of the monoid (Wτ (Xn))+. It is not
difficult to see that in all of the cases we get

a = b + t and b = a + t′.

This means aR+b. Since R+ ⊆ J+, we get J+ = R+.

Altogether we have H+ = L+ = 4Wτ (Xn), R+ = D+ = J+.

If we consider only unary terms, then S1 = +. In this case, all of Green’s
relations are equal.

Proposition 5.3. In the diagonal Menger algebra (Wτ (X1);+) (in the
monoid (Wτ (x1);S

1, x1)) , we have

H+ = L+ = R+ = D+ = J+ = 4Wτ (X1).

Proof. It is enough to show that J ⊆ 4Wτ (X1). Let a, b ∈ Wτ (X1) and
aJ b. Then there are elements s, t, s′, t′ ∈ (Wτ (X1))

1 such that a = s + b + t
and b = s′ + a + t′. Consider

a = s + b + t

= S1(s, S1(b, t))

= S1(s, S1(s′ + a + t′, t))

= S1(s, S1(S1(s′, S1(a, t′)), t)).

Then op(a) = op(s) + op(s′) + op(a) + op(t′) + op(t).

This implies op(s) = op(s′) = op(t′) = op(t) = 0, and so s = s′ = t =
t′ = x1. Since x1 is a neutral element of (Wτ (X1);+), we get a = x1 + b +
x1 = b. Hence J = 4Wτ (X1).

Now for a type τn we consider the generalized superposition operation Sn
g

and the diagonal algebra (Wτn(X);+g), where a +g b := Sn
g (a, b, . . . , b).

Then we define Green’s relations Lg
+,Rg

+,Dg
+,Hg

+ and J g
+ in the usual way.

Let X ′ = X \ Xn. For Green’s relation Rg
+ we have:
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Theorem 5.4. Let a, b ∈ Wτn(X). Then

aRg
+b :⇔ a = b or a = Sn

g (b, xi, xi, . . . , xi) and b = Sn
g (a, xj , xj, . . . , xj)

for some i, j ∈ {1, 2, . . . , n}.

Proof. We consider the following two cases:

1. var(a) ⊆ X ′ or var(b) ⊆ X ′: If var(a) ⊆ X ′, then Sn
g (a, t, . . . , t) = a

for arbitrary t ∈ Wτn(X) and if var(b) ⊆ X ′, then Sn
g (b, s, . . . , s) = b for

arbitrary s ∈ Wτn(X) . This shows that Rg
+|Wτn (X′)2 = 4Wτn(X′).

2. var(a) ∩ Xn 6= Xn and var(b) ∩ Xn 6= Xn: If aRg
+b and a 6= b, then

a = Sn
g (b, s, . . . , s) and b = Sn

g (a, t, . . . , t) for some s, t ∈ Wτn(X). Then
we obtain

a = Sn
g (b, s, . . . , s)

= Sn
g (Sn

g (a, t, . . . , t), s, . . . , s)

= Sn
g (a, Sn

g (t, s, . . . , s), . . . , Sn
g (t, s, . . . , s)) by (Cg1).

By var(a)∩Xn 6= ∅, similar to Lemma 2.1 we obtain Sn
g (t, s, . . . , s) = xi for

xi ∈ var(a)∩Xn and then similar as in Lemma 2.2 we get t = xj and s = xi

for some 1 ≤ j ≤ n.

By definition and Theorem 4.8 we have Lg
+ = Rg = Wτn(X ′)2 ∪ 4Wτn (X)

and then Hg
+ = Rg

+ ∩ Lg
+ = 4Wτn(X). For Dg

+ we get Dg
+ = Rg

+ ∨ Lg
+ =

Rg
+ ∨ Wτn(X ′)2. It is left to determine J g

+.

Theorem 5.5.

J g
+ = Rg

+ ∪ Lg
+ = Rg

+ ∪ Wτn(X ′)2.

Proof. Let a, b, a 6= b ∈ Wτn(X) such that aJ g
+b. Then a = s +g b +g t

and b = s′+ga+g t′ for some s, s′, t, t′ ∈ Wτn(X)+. We consider the following
two cases:
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1. var(a) ⊆ X ′ or var(b) ⊆ X ′: Then a +g t′ = a and therefore b = s′ +g a.
Similarly, from var(b) ⊆ X ′ there follows a = s +g b. Now we show that
var(a) ⊆ X ′ if and only if var(b) ⊆ X ′. Indeed, if var(a) ⊆ X ′, and if
we assume that var(s′) ⊆ X ′, then s′ +g a = s′ and b = s′ +g a implies
b = s′ and thus var(b) ⊆ X ′. If var(s′) ∩ Xn 6= ∅, then from b = s′ +g a
we obtain

var(b) = var(a) ∪ (var(s′) ∩ X ′) ⊆ X ′ ∪ X ′ = X ′.

Similarly, from var(b) ⊆ X ′ there follows var(a) ⊆ X ′. This means, that
var(a) ⊆ X ′ or var(b) ⊆ X ′ implies a = s +g b and b = s′ +g a for some
s, s′ ∈ Wτn(X) and then aLg

+b. From Lg
+|Wτn (X′)2 = Wτn(X ′)2 we obtain

J g
+|Wτn(X′)2 = Wτn(X ′)2.

2. var(a)∩Xn 6= ∅ and var(b)∩Xn 6= ∅: From a = s+g b+g t we get var(s)∩
Xn 6= ∅, since from var(s) ⊆ X ′, we obtained a = s and so var(a) ⊆ X ′,
a contradiction. In a similar way we show that var(s′) ∩ Xn 6= ∅. The
next step is to show that var(t) ∩ Xn 6= ∅ and var(t′) ∩ Xn 6= ∅. Indeed,
if var(t) ∩ Xn = ∅, then var(t) ⊆ X ′ and then

var(a) ⊆ var(t) ∪ (var(s +g b) ∩ X ′) ⊆ X ′ ∪ X ′ = X ′,

a contradiction. This proves var(t) ∩ Xn 6= ∅. Similarly, we show that
var(t′) ∩ Xn 6= ∅.
Using the formula

op(Sn
g (q, t1, . . . , tn))

=
n
∑

k=1

vbk(q)op(tk) + op(q), q, t1, . . . , tn ∈ Wτn(X)

it is not difficult to see that for arbitrary terms u, v, w ∈ Wτn(X) from
u = v +g w and var(u) ∩ Xn 6= ∅ and var(v) ∩ Xn 6= ∅ there follows
op(u) ≥ op(v) + op(w). Using this inequality we obtain
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op(a) = op(s +g b +g t)

= op(Sn
g (s, Sn

g (b, t, . . . , t), . . . , Sn
g (b, t, . . . , t))

≥ op(s) + op(b) + op(t)

= op(s) + op(s′ +g a +g t′) + op(t)

≥ op(s) + op(s′) + op(a) + op(t′) + op(t).

It follows that op(s) + op(s′) + op(t′) + op(t) = 0, and then s, s′, t, t′

are variables or the neutral element of the monoid (Wτ (Xn))+. It is not
difficult to see that in all of the cases we get

a = b +g t and b = a +g t′,

i.e. aRg
+b and because of Rg

+ ⊆ J g
+ we have J g

+ = Rg
+ in the second case

and together with the first case we obtain J g
+ = Rg

+ ∪ Wτn(X ′)2.

As a final result we get Lg
+ = Dg

+ = J g
+ = 4Wτn(X) ∪ Wτn(X ′)2, Hg

+ =
4Wτn(X) and Rg

+ as in Theorem 5.4.
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