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Abstract

In this paper we derive a priori error estimates for linear-quadratic
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1. Introduction

In this paper we consider elliptic optimal control problems with finite di-
mensional controls and pointwise state constraints in a compact subset Ω0

of the spatial domain Ω of the form

(P)















min
u∈Uad

J(y, u) =
1

2

∫

Ω

(y − yd)
2 dx +

κ

2

M
∑

i=1

u2
i

subject to y(x) ≤ b, ∀x ∈ Ω0,
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where y is the solution to the state equation

(1) Ay(x) =

M
∑

i=1

uiei(x) in Ω, y(x) = 0 on Γ,

with a uniformly elliptic second order differential operator A and fixed func-
tions ei, i = 1, . . . ,M . There is a wide range of literature on a priori error
analysis for elliptic optimal control problems governed by partial differential
equations where the controls are given as functions. We mention for exam-
ple [1, 3, 18, 10, 14, 4] or [6] for state constrained-problems. However, there
are not many published results on problems with finite-dimensional control
space, although they are very common for applications. In this paper, we
aim at extending the optimal error estimates from [12], where a semilinear el-
liptic control problem with finite dimensional control space as well as finitely
many state constraints has been considered. There, error estimates of order
h2| log(h)| for the control have been derived. For our model, the situation is
more difficult, since the presence of pointwise state constraints in the domain
Ω0 rather than in finitely many points does not allow to reduce the prob-
lem to a finite dimensional nonlinear programming problem. Instead of, we
obtain a semi-infinite programming problem formulation. Well-established
theory for semi-infinite optimization is available, we refer for example to
[17, 21, 2] and the references therein for an overview, as well as to [9, 11, 20]
for numerical aspects. We also point out [19], where a discretization ap-
proach is considered and a rate of convergence for the discrete solution is
shown depending not only on the mesh size but also on the choice of the
mesh. Yet, we are looking at additional challenges not usually found in semi-
infinite programming. In contrast to the majority of papers on semi-infinite
programming problems, our objective function and the constraint function
are not given in explicit terms. Both are implicitly defined by the solu-
tion of a PDE, such that aspects of finite-element discretization have to be
considered in the numerical analysis, and the smoothness assumptions with
respect to perturbations, which are standard in semi-infinite optimization,
cannot be expected.

The main focus of the paper is on estimating the error in the optimal
control due to a finite element discretization of the problem. We are able
to prove an order of h

√

| log h|. Then, we improve this order to h2| log h|
under certain conditions, and also construct examples where this higher or-
der cannot be expected. We conclude the paper with a section on numerical
experiments.
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2. Analysis of the optimal control problem

For the analysis of Problem (P ) we make the following general assumptions:

Assumption 1. Throughout the paper, let Ω ⊂ R
2 be a convex polygonal

spatial domain and denote by Ω0 ⊂ Ω a compact interior subset. The
differential equation is characterized by a uniformly elliptic and symmetric
differential operator A of order two. For simplicity, we choose A := −∆.
Furthermore, let κ ∈ R

+ be a regularization parameter, and consider bounds
for the control and state, respectively, that are given by real numbers ua <
ub, and b. Moreover, yd is a given function from L2(Ω). For a given positive
number M ∈ N consider fixed basis functions ei ∈ C0,β(Ω), i = 1, . . . ,M ,
for the control, with some 0 < β < 1, that are linearly independent on
each open set. For convenience, we define the set of admissible controls
Uad = {u ∈ R

M : ua ≤ u ≤ ub}, where the inequality is to be understood
component-wise. Alternatively, Uad = R

M may be considered due to the
presence of the regularization parameter κ > 0. By ‖ · ‖, we denote the
natural norm in L2(Ω), and (·, ·) will denote the associated inner product.
The Euclidean norm in R

M will be denoted by | · |, and the inner product
in R

M will be denoted by 〈·, ·〉. Last, let Br(x) denote the open ball in R
2

centered in x and with radius r.

We point out that for each basis function ei, i = 1, . . . ,M , there exists a
unique solution yi ∈ C2,β(Ω) of the equation

−∆yi = ei in Ω, yi = 0 on Γ.

This follows from the regularity results in [7, Theorem 6.13] by the convexity
of Ω. Moreover, by H2-regularity according to [8] we obtain:

Theorem 1. For each u ∈ Uad, there exists a unique solution y(u) ∈
H2(Ω) ∩ C2,β(Ω) of the state equation (1) and the mapping u 7→ y is con-

tinuous from R
M to H2(Ω).

Due to the linearity of the state equation we can use the superposition
principle and deduce that the solution y(u) associated with u ∈ Uad takes
the form y(u)(x) =

∑M
i=1 uiyi(x). This allows to rewrite Problem (P ) as a
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semi-infinite programming problem of the form

(P)



















min
u∈Uad

f(u) :=
1

2
‖

M
∑

i=1

uiyi − yd‖
2 +

κ

2
|u|2

subject to
M
∑

i=1
uiyi(x) ≤ b, ∀x ∈ Ω0.

The existence of a unique solution ū ∈ Uad to (P ) with associated optimal
state ȳ follows by standard arguments, if the feasible set

Ufeas := {u ∈ Uad : y(u)(x) ≤ b ∀x ∈ Ω0}

is not empty. Next, we assume the Slater condition.

Assumption 2. There exist ũ ∈ Uad and ε > 0 such that

(2) y(ũ)(x) ≤ b − ε ∀x ∈ Ω0.

Assumption 2 guarantees the existence of a regular Borel measure as La-
grange multiplier such that the first order optimality conditions can be for-
mulated as a Karush-Kuhn-Tucker system. However, for the moment let us
handle the state and control constraints in the set of feasible controls Ufeas

rather than by means of a Lagrange multiplier. The convex nature of the
problem yields the standard variational inequality f ′(ū)(u − ū) ≥ 0 for all
u ∈ Ufeas, and hence we obtain:

Theorem 2. Let ū be the optimal control for Problem (P ). Then, the fol-

lowing inequality is fulfilled:

(3)
M
∑

j=1

[κūj + (ȳ − yd, yj)] (vj − ūj) ≥ 0 ∀v ∈ Ufeas.

3. Discretization and error estimates

3.1. The discrete problem formulation

In order to solve the problem numerically, we apply a standard finite-element
discretization of the problem on regular meshes with piecewise linear and
continuous ansatz functions. In this section, we are interested in the error
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in the optimal control between the solution of Problem (P ) and the solution
of Problem (Ph) defined below. We assume that the reader is familiar with
the concept of the FEM and we do not explain the discretization in detail.
Let us denote by yh

i the finite element approximates of yi, i = 1, . . . ,M, and
let a discretization parameter h measure the mesh size of the discretization.

Assumption 3. We assume the following accuracy of the approximation:

‖yh
i − yi‖ ≤ Ch2, ‖yh

i − yi‖L∞(Ω0) ≤ Ch2| log h|

with a constant C > 0 not depending on h.

Remark 1. For later use, we introduce the notation α(h) := ch2| log h| with
a generic constant c > 0, i.e., α(h) stands for O(h2| log h|).

The first estimate is known to hold without restrictive assumptions. We
refer for example to [5] for a discussion of the discretization of an elliptic
problem. The second estimate was shown in [16] under assumptions that are
met in our problem setting. Note that these estimates are also valid for any
linear combination y(u) =

∑M
i=1 uiyi and yh(u) =

∑M
i=1 uiy

h
i with u ∈ Uad.

By the FE discretization, we obtain the discretized problem formulation

(Ph)



















min
u∈Uad

fh(u) :=
1

2

∥

∥

∥

M
∑

i=1

uiy
h
i − yd

∥

∥

∥

2
+

κ

2
|u|2

subject to
M
∑

i=1
uiy

h
i (x) ≤ b, ∀x ∈ Ω0.

Thanks to Assumption 2, it can be shown that the feasible set of (Ph) is not
empty, since the convex combination û = ū + t(ũ− ū) ∈ Uad for 0 < t < 1 is
feasible for (Ph) for h small enough. As a direct consequence we obtain the
existence of a unique optimal solution ūh of Problem (Ph) for all sufficiently
small h > 0. Expressing the constraints by the feasible set

Uh
feas :=

{

u ∈ Uad :
M
∑

i=1

uiy
h
i (x) ≤ b ∀x ∈ Ω0

}

we obtain the following first-order optimality condition:

(4)
M
∑

j=1

[

κūj,h + (ȳh − yd, y
h
j )

]

(vj,h − ūj,h) ≥ 0 ∀vh ∈ Uh
feas.
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3.2. Convergence analysis

We will prove at first the convergence result for the controls of order
h
√

| log h| and then improve it under certain conditions. Let us mention the
standard result that the Slater point ũ from Assumption 2 is also a Slater
point for the discretized problem (Ph) with associated constant εh = ε

2 , if
h > 0 is small enough. This is not difficult to show. By means of this Slater
point, we now construct an auxiliary sequence of controls feasible for (Ph),
but converging to ū, as well as another auxiliary sequence feasible for (P )
but converging to ūh: Define ut := ū+ t(h)(ũ− ū) with t(h) tending to zero
as h tends to zero, to be defined below. Obviously, {ut}t(h) converges to ū
as h tends to zero. By considering

M
∑

i=1

ut,iy
h
i = (1 − t(h))

M
∑

i=1

ūiyi + (1 − t(h))
M
∑

i=1

ūi(y
h
i − yi) + t(h)

( M
∑

i=1

ũiy
h
i

)

≤ (1 − t(h))b + (1 − t(h))Ch2| log h| + t(h)b − t(h)
ε

2
≤ b

in Ω0, we obtain the feasibility of ut for (Ph), where the last inequality follows

by choosing t(h) = Ch2| log h|
Ch2| log h|+ε/2

. With τ(h) = Ch2| log h|
Ch2| log h|+ε

and uτ,h :=

ūh +τ(h)(ũ− ūh), we obtain the existence of the second sequence converging
to ūh, but feasible for (P ), and an associated estimate.

Lemma 1. Let ū be the optimal solution of Problem (P ) and let ūh be the

optimal control for (Ph). Then, with a C > 0, there holds

|ū − ūh| ≤ Ch
√

| log h|.

This result follows by inserting ut(h) ∈ Uh
feas as a test function in the

variational inequality (4) for ūh, and uτ,h as a test function in the varia-
tional inequality (3) for ū and adding both variational inequalities. Then
|ū − ūh|

2 ≤ Ch2| log h| is obtained with some C > 0 depending on the
Tikhonov parameter κ > 0, and the assertion follows immediately. We omit
the details, since this is a common technique used in many papers. For
instance, we refer to [13, Theorem 5.1].

This error estimate is true without any other assumption than the Slater
condition (2). In order to improve the error estimate in some cases, we
impose an additional assumption on the structure of the active set of (P ).
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Assumption 4. Let Ω0 have a nonempty interior. The optimal state ȳ
is active in exactly N points x̄1, . . . , x̄N ∈ int Ω0, i.e., ȳ(x̄i) = b, and all

associated Lagrange multipliers are not smaller than some µ0 > 0. We say

that all x̄i are strongly active. Moreover, there exists σ > 0 such that

(5) − 〈ξ,∇2ȳ(x̄j)ξ〉 ≥ σ|ξ|2 ∀ξ ∈ R
n, ∀j = 1, . . . , N.

Notice that ∇ȳ(x̄i) = 0 holds for all i = 1, . . . , N , since the x̄i are local
maxima of ȳ. In general, the structure of the active set can be quite di-
verse as associated examples show, see [12]. For instance, ȳ can be active
on a nonempty open set or pieces of curves. However, these cases are, in
some sense pathological. For instance, if ȳ is active on a nonempty open
set, then, since b is constant, −∆y vanishes. This can only happen, if ū = 0
or the functions ei are linearly dependent on this set. Therefore, we will
consider the situation of finitely many active points discussed in the follow-
ing. Moreover, we will assume that Uad = R

M . In the case of constraints,
strong activity of the active constraints is usually required for convergence
results. Then, however, we would readily obtain that for h small enough
the associated discrete controls are also active, and hence known. Then the
analysis could be restricted to the inactive constraints.

As a consequence of Assumption 4 we obtain, by Taylor expansion and
the Hölder-continuity of ∇2ȳ, the existence of a real number R1 > 0 such
that

ȳ(x) ≤ ȳ(x̄j) −
σ

4
|x − x̄j|

2 = b −
σ

4
|x − x̄j|

2 ∀x ∈ Ω0 with |x − x̄j | ≤ R1.

We know by assumption and continuity of ȳ that for x ∈ Ω0 \
⋃N

j=1 BR1
(x̄j)

there exists δ > 0 such that ȳ(x) ≤ b − δ. Moreover, from the convergence
of ūh to ū we can conclude that ȳh converges uniformly to ȳ in Ω0. Then
we obtain the existence of an h0 > 0 such that ȳh(x) ≤ b − δ/2 for all
x ∈ Ω0 \

⋃N
j=1 BR1

(x̄j) for all h ≤ h0. This implies that the discrete state
can only be active in a neighborhood of the continuous active points x̄j,
j = 1, . . . , n. Indeed, if x̄h

j ∈ BR1
(x̄j) is an active point of (Ph), we obtain

b = ȳh(x̄h
j ) = ȳ(x̄h

j ) +
√

α(h) ≤ ȳ(x̄j) −
σ

4
|x̄j − x̄h

j |
2 +

√

α(h)

by Assumption 4 and Lemma 1. From ȳ(x̄j) = b it follows that |x̄j − x̄h
j | ≤

α(h)
1

4 . Hence, x̄h
j ∈ Br(h)(x̄j) where r(h) tends to zero with order α(h)

1

4 .
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Moreover, we can show the existence of at least one associated active point x̄h
j

of Problem (Ph) in such a ball Br(h)(x̄j) assuming the contrary. If there were
no associated discrete active point, all approximated Lagrange multipliers
would vanish in all node points in Br(h)(x̄

h
j ) with r(h) tending to zero with

order α(h)
1

4 and we finally would arrive at vanishing Lagrange multipliers
in x̄j for the continuous problem (P ), which is a contradiction to the strong
activity required by Assumption 4. For brevity, we leave the details to the
reader.

After these considerations, let us now point out that the control ūh is
optimal for (Ph) if and only if it is optimal for

(P̂h)



















min
u∈Uad

fh(u) :=
1

2

∥

∥

∥

∥

M
∑

i=1

uiy
h
i − yd

∥

∥

∥

∥

2

+
κ

2
|u|2

subject to
M
∑

i=1
uiy

h
i (xj) ≤ b, ∀xj ∈ Ĉh,

where Ĉh is the set of nodes of the given triangulation Th of Ω in Ω0. Note
that (P̂h) is a completely finite-dimensional problem. To see this, we argue
as follows: Let Th ∈ Th denote a triangular element. In any Th ⊂ Ω0, we have
ȳh(x) ≤ b for all x ∈ Th if and only if ȳh(xj) ≤ b for all corners xj of Th, since
ȳh is linear in Th. The triangles in Ω \Ω0 need not be considered. All other
triangles Th intersect ∂Ω0 and we can assume Th ∩ Ω0 ⊂ Ω0 \

⋃M
j=1 BR1

(x̄j)
for small h. Therefore, we have ȳh(x) ≤ b − δ/2 for all x ∈ Th ∩ Ω0. By
continuity of ȳ and the uniform convergence of ȳh towards ȳ we find that
ȳh(x) ≤ b − δ/4 for x ∈ Th \ Ω0 if Th is a triangle intersecting ∂Ω. Hence,
even if constraints are imposed in these triangles lying outside Ω0 they will
remain inactive if h is sufficiently small. Therefore, it is not relevant for
optimality of ūh whether the constraints are considered in xj ∈ Ĉh or in all
x ∈ Ω0. Hence, for simplicity we will denote (P̂h) by (Ph).

Lemma 2. For any j = 1, . . . , N, there exists some C > 0 and at least one

grid point x̄h
j ∈ Br(h)(x̄j) of Problem (Ph) where ȳh is active, with

|x̄j − x̄h
j | ≤ Ch

√

| log h|.

Proof. We present only the key ideas of the proof. Let x̄j be an active

point of Problem (P ) and let x̄h
j ∈ Br(h)(x̄j) with |r(h)| ≤ α(h)

1

4 be an
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associated active point for Problem (Ph), whose existence has already been
argued.

• We consider first the auxiliary state ỹh :=
∑M

i=1 ūi,hyi and define F (x, u)

:=
∑M

i=1 ui∇yi(x). By Assumption 4 we know that F (x̄j , ū) = 0 and
∂F
∂x (x̄j , ū) is not singular. Hence, by applying the implicit function theo-
rem, we obtain the existence of ρ, τ, c > 0 such that for all u ∈ R

M with
|u − ū| ≤ ρ, there exists a unique x̃j(u) ∈ Bρ(x̄j) with F (x̃j(u), u) = 0 and
|x̃j(u) − x̄j| ≤ c|u − ū|. Applying this to u := ūh yields the existence of
x̃h

j := x̃j(ūh) with |x̃h
j − x̄j | ≤

√

α(h) by Lemma 1. By Assumption 4 and

the Hölder continuity of ∇2ȳ(x̄j) we obtain coercivity of −∇2ỹh(x̃h
j ) so that

ỹh has a strict local maximum in x̃h
j . Note, however, that ỹh may violate

the constraints.

• We obtain ỹh(x) = ȳh(x) +
∑M

i=1 ūi,h(yi(x) − yh
i (x)) ≤ b + α(h) and it is

clear that ỹh converges uniformly towards ȳ as h tends to zero. By taking
δ > 0 sufficiently small, we can therefore assume w.l.o.g. that in addition to
ȳh(x) ≤ b− δ/2, it also holds ỹh(x) ≤ b− δ/2 for all x ∈ Ω0 \

⋃M
i=1 BR1

(x̄j).

Moreover, ȳh(x) = ỹh(x) +
∑M

i=1 ūi,h(yh
i − yi) ≤ ỹh + α(h) for all x ∈ Ω0,

from which we deduce that ȳh can only be active where ỹh(x) ≥ b − α(h)
holds. By the uniform estimate ỹh(x) ≤ b − δ/2 stated above, this can only
hold inside the balls BR1

(x̄j). By Taylor expansion we obtain

ỹh(x) = ỹh(x̃h
j ) +

1

2
〈x − x̃h

j ,∇2ỹh(xθ
j)(x − x̃h

j )〉

≤ ỹh(x̃h
j ) +

1

2
〈x − x̃h

j ,∇2ỹh(xh
j )(x − x̃h

j )〉 +
L

2
|x − x̃h

j |
β |x − x̃h

j |
2,

with some xθ
j = x+θ(x̃h

j −x), θ ∈ (0, 1), and β ∈ (0, 1) by Hölder continuity

of ∇2ỹh and ∇ỹh(x̃h
j ) = 0. Hence, by coercivity of −∇2ỹ(x̃h

j ), we obtain the

existence of R2 > 0 not depending on h such that ỹh(x) ≤ ỹh(x̃h
j )− σ

8 |x−x̃h
j |

2

if h is small enough and |x− x̃h
j | ≤ R2. Note that by |x̄h

j − x̃h
j | ≤ |x̄h

j − x̄j|+

|x̄j − x̃j| ≤ α(h)
1

4 , for h small enough we have x̄h
j ∈ BR2

(x̃h
j ). Knowing that

ỹh(x̃h
j ) = ȳh(x̃h

j ) +
∑M

i=1 ūi,h(yi − yh
i ) ≤ b + α(h), we obtain from the last

inequality for ỹh, that ỹh(x) ≤ b+α(h)− σ
8 |x−x̃h

j |
2 for all x ∈ BR2

(x̃h
j ) if h is

sufficiently small. Hence, collecting all estimates, we find that ȳh(x) can only
be active if b+α(h)− σ

8 |x− x̃h
j |

2 ≥ b−α(h), which implies |x− x̃h
j | ≤

√

α(h)

for an x ∈
⋃N

j=1 BR2
(x̃h

j ), where ȳh is active, i.e., |x̄h
j − x̃h

j | ≤
√

α(h). The

assertion then follows from |x̄h
j − x̄j | ≤ |x̄h

j − x̃h
j | + |x̃h

j − x̄j | ≤
√

α(h).
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Still, even the structural Assumption 4 will not necessarily guarantee a bet-
ter error estimate, as an example in Section 4 will show. It is, however,
possible to improve the estimate under yet an additional assumption:

Theorem 3. Let ū be the optimal solution of Problem (P ), let ūh be optimal

for (Ph), and let the Assumptions 1–4 be satisfied. Assume further that

the number of active points N is equal to the number of control variables

M . Moreover, let the (M,M)-matrix Y with entries yij = (yi(x̄j)), i, j =
1, . . . ,M , be regular. Then the following estimate is true:

|ū − ūh| ≤ Ch2| log h|.

Proof. For each active point x̄j, j = 1, . . . ,M , choose one associated dis-
crete active point x̄h

j with |x̄j−x̄h
j | ≤

√

α(h). We obtain for all j = 1, . . . ,M :

M
∑

i=1

ūiyi(x̄j) = b =

M
∑

i=1

ūi,hyh
i (x̄h

j ) =

M
∑

i=1

ūi,h(yh
i (x̄h

j ) − yi(x̄
h
j )) + ūi,hyi(x̄

h
j ).

Since ūh is bounded and |yh
i (x̄h

j ) − yi(x̄
h
j )| ≤ α(h) by Assumption 3,

α(h) ≥

∣

∣

∣

∣

∣

M
∑

i=1

(

ūiyi(x̄j) − ūi,hyi(x̄
h
j )

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

i=1

(ūi − ūi,h)yi(x̄j) − ūi,h∇yi(x̄j)(x̄
h
j − x̄j) + O(|x̄h

j − x̄j|
2)

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

M
∑

i=1

(ūi − ūi,h)(yi(x̄j) −∇yi(x̄j)(x̄
h
j − x̄j)) + O(|x̄h

j − x̄j|
2)

∣

∣

∣

∣

∣

is obtained by Taylor expansion and Assumption 4, which implies
∇ȳ(x̄j) = 0. With Lemmas 1 and 2 we obtain

∣

∣

∑M
i=1(ūi−ūi,h)yi(x̄j)

∣

∣ ≤ α(h)
for all j = 1, . . . ,M. The last inequality is equivalent to |Y (ū− ūh)| ≤ α(h).
By regularity of Y , the assertion is obtained.

4. Examples and numerical experiments

We show by means of a simple example that the result of Theorem 3, which
was proven under quite strong assumptions, cannot generally be expected
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under Assumption 4 only. Therefore, consider the optimization problem
without relation to PDEs,

(P1)







min
u1,u2∈R

J(u) := (u1 − 1)2 +
1

4
u2

2 − u2 +
1

4
u1

subject to − u1x
2 + u2x ≤ 1

4 ∀x ∈ (−1, 1).

The reader may verify that the unique optimal solution to this problem is
given by ū1 = ū2 = 1, with exactly one active point x̄ = 1

2 . Prescribing
the constraints only in the grid points xi, i = 0, . . . , n, of a discretiza-
tion of (−1, 1) yields an associated discrete problem formulation. Note
that this can be interpreted as approximation of the functions y1 = x and
y2 = −x2 by their piecewise linear nodal interpolants yh

1 , yh
2 . We choose a

grid with discretization parameter h = 2
n and grid points xi = −1+(i+ 1

3)h,
i = 1, . . . , n − 1, as well as x0 = −1 and xn = 1. Note the special struc-
ture of the grid, where the active point of the continuous solution, x̄ = 1

2 ,
has the distance 2

3h to its nearest neighboring grid point to the left, and
distance 1

3h to its nearest neighboring grid point to the right for each h.
For a given h > 0, the unique optimal solution to the discretized problem is
given by

ūh
1 =

17
4 + 2

3h

4 +
(

1
2 + 1

3h
)2 , ūh

2 = 2 −
2

1
2 + 1

3h

(

2
(

ūh
1 − 1

)

+
1

4

)

with one active grid point x̄h = 1
2 + 1

3h. Obviously, (ūh
1 , ūh

2) converges
to (ū1, ū2) with order h only, even though ‖yh

i − yi‖C(Ω̄) ≤ ch2, i = 1, 2.

Note here that the
√

| log h|-term in Lemma 1 originates in the FEM-error
of the state equation. Since here we use the piecewise linear interpolants
instead of finite element approximations, the logarithmic term does not ap-
pear in the error estimate. For completeness, we have solved the problem in
Matlab, using the solution routine quadprog, and show in Figure 1 the
experimental error in the control in logarithmic scale. Clearly, linear con-
vergence is observed. This example suggests that also in the case of PDEs
the convergence result of Lemma 1 cannot generally be improved except for
special cases such as discussed in Theorem 3. To illustrate this, we con-
sider the following one-dimensional elliptic PDE example motivated by the
problem above.
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(P2)















































min
u1,u2∈R

1

2
‖u1y1 + u2y2 − yd‖

2 + (u1 − 1)2 +
1

4
u1 +

1

4
u2

2 −
235

228
u2

subject to the constraints:
−∆y1(x) + y1(x) = u1(2 − x2) −∆y2(x) + y2(x) = u2x

y1(0) = 0 y2(0) = 0
y1(1) = −1 y2(1) = 1
y(x) ≤ 1

4 , ∀x ∈ (0, 1).

The example is constructed such that y1 = −x2 and y2 = x are solutions
of the PDEs and the optimal solution of Problem (P2) is again given by
ū1 = ū2 = 1 with one active point at x̄ = 1

2 . We point out that, strictly
speaking, this example does not fit into our theoretical setting, since y1 and
y2 do not admit homogeneous Dirichlet boundary conditions on the given
boundary. Nevertheless, we compute linear finite element approximations
yh
1 and yh

2 of y1 and y2, respectively. We choose the same grid as in example
(P h

1 ) and solve the associated discrete problem with Matlab’s optimization
routine quadprog. Figure 2 shows the error in the control in logarithmic
scale, which indicates linear convergence, only. Note that we do not expect
to see the influence of the | log |-term numerically.
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Figure 1. Example (P1).
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Figure 2. Example (P2).

Let us also show an example where the higher order of convergence from
Theorem 3 is to be expected. The following example is the semi-infinite
linear-quadratic version of Example 1 in [12], which was motivated by [15],
with a linear partial differential equation in two dimensions and one single
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strongly active point located at the origin.

(P3)







































min
u∈R

1

2
‖y(u) − yd‖

2 +
1

2
|u − ud|

2

subject to the constraints:
−∆y(x) + y(x) = u(1 − 1/5(x2

1 + x2
2)) in Ω = B(0, 1)

y(x) = 0. on Γ = S(0, 1)
y(x) ≤ 1, ∀x ∈ B0.9(0).

The desired control and state are chosen to be ud = 5 + 19/80 and yd =
1−(x2

1+x2
2)+

1
2π log(|x|), respectively. We compare the numerical solution of

this problem computed using MATLAB’s optimization routine quadprog

with the known solution ū = 5 with associated optimal state ȳ = 1 −
(x2

1 + x2
2). We choose an initial grid such that the continuous active point

x̄ = 0 is neither a grid point nor exactly in the center of the containing
triangle. We observe that the distance of the active points, |x̄ − x̄h|, is
not decreasing uniformly, which seems to influence the convergence process.
Nevertheless, the numerical results indicate quadratic convergence, as can
be seen in Figure 3, where we show the computed error in the control in
logarithmic scale, compared to a quadratic error bound, and also include
the distance |x̄ − x̄h|. To explain the nonuniform decrease in the error, we
consider a simple, non-PDE-related example given by

(P4)







min
u∈R

J(u) := (u − 1)2 −
1

4
u

subject to u(−x2 + x) ≤ 1
4 ∀x ∈ (−1, 1).

The unique optimal solution to this problem is given by ū = 1, admitting
exactly one active point x̄ = 1

2 , such that the number of controls equals
the number of active points. From the convergence result of Theorem 3
we expect an order of h2 for the error in the control variable, without the
| log |-term if the piecewise linear interpolants of the state are used instead
of a finite-element discretization. We use this example to show how the
grid influences not the order but the constants of the error estimate. For
the numerical approximation, we choose two different grids with principal
mesh-size h, xi = (i + 1

3)h, and xi = (i + 1
5 )h for i = 1, . . . , n − 1, with

h = 2
n . The optimal solution on the first grid is given by ūh/3 = 9

9−4h2 ,

the optimal solution on the second grid is ūh/5 = 25
25−4h2 , which obviously
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converge to ū = 1 with order h2. In Figure 4 we show the experimental order
of convergence for the control alternating between both grids as h decreases.
For comparison, we show lines indicating quadratic order of convergence with
two computed constants associated with the two grids. It becomes clear
that the error shows quadratic convergence behavior with grid-dependent
constants. Here, the constants depend on the distance of the active points,
|x̄ − x̄h|. We expect to see this behavior in PDE examples, but point out
that due to the FEM-discretization this effect is blurred by an additional
error.
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Figure 3. Example (P3).
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Figure 4. Example (P4).

Finally, we return to Problem (P3) and solve it on a grid where the distance
|x̄ − x̄h| of the active points decreases by half on each refinement level.
Hence the distance of the active points should not have an impact on the
convergence behavior. Indeed, Table 1 indicates that the experimental order
of convergence is two, without influence of different constants.

Table 1. Quadratic rate of convergence.

h 0.543 0.284 0.145 0.073 0.036 0.018 0.009
|ū − ūh| 0.09604 0.02668 0.00672 0.00175 0.00044 0.00011 0.00003
EOC 1.98 2.05 1.96 2.01 1.98 2.00 1.99
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