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Abstract

In this paper we prove existence theorems for integro – differential
equations

x∆(t) = f(t, x(t),
∫

t

0
k(t, s, x(s))∆s),

x(0) = x0

t ∈ Ia = [0, a] ∩ T, a ∈ R+,

where T denotes a time scale (nonempty closed subset of real num-
bers R), Ia is a time scale interval. Functions f, k are Carathéodory
functions with values in a Banach space E and the integral is taken
in the sense of Henstock-Kurzweil delta integral, which generalizes the
Henstock-Kurzweil integral.

Additionally, functions f and k satisfy some boundary conditions
and conditions expressed in terms of measures of noncompactness.

Moreover, we prove an Ambrosetti type lemma on a time scale.
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1. Introduction

A time scale T is a nonempty closed subset of real numbers R, with the
subspace topology inherited from the standard topology of R. Thus, R;Z;N
and the Cantor set are the examples of time scales, while Q and (0; 1) are
not time scales.

Time scales (or a measure chain) was introduced by Hilger in his Ph.D.
thesis in 1988, [22]. It was created in order to unify the study of differen-
tial and difference equations. Many results concerning differential equations
carry over quite easily to corresponding results for difference equations, while
other results seem to be completely different from their continuous counter-
parts. The study of dynamic equations on time scales reveals such discrep-
ancies and helps avoid proving results twice – once for differential equations
and once again for difference equations. The general idea is to prove a re-
sult for a dynamic equation, where the domain of the unknown function is a
so-called time scale T , which may be an arbitrary closed subset of the reals.
This way results not only related to the set of real numbers or set of integers
but those pertaining to more general time scales are obtained.

Since the time Hilger formed the definitions of a derivative and integral
on a time scale, several authors have extended on various aspects of the
theory [1, 2, 4, 8, 9, 14, 17, 20, 23, 24]. Time scales have been shown to
be applicable to any field that can be described by means of discrete or
continuous models. In recent years there have been many research activities
on dynamic equations, in order to unify the results concerning difference
equations and differential equations [3, 6, 15, 26].

The three most popular examples of calculus on time scales are differen-
tial calculus, difference calculus, and quantum calculus (see Kac and Cheung
[25]), i.e., when T = R; T = N, T = qN0 = {qt : t ∈ N0}, where q > 1.
Dynamic equations on a time scale have an enormous potential for appli-
cations such as in population dynamics. For example, it can model insect
populations that are continuous while in season, die out in, say, winter, while
their eggs are incubating or dormant, and then hatch in a new season, giv-
ing rise to a nonoverlapping population (see [8]). There are applications of
dynamic equations on time scales to quantum mechanics, electrical engineer-
ing, neural networks, heat transfer, and combinatorics. A recent cover story
article in New Scientist [40] discusses several possible applications. Since
then several authors have expounded on various aspects of this new theory
[9]. The book on the subject of time scale, i.e., measure chain, by Bohner
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and Peterson [8] summarizes and organizes much of time scale calculus.
In this paper we consider an integro-differential equation. As it is

know, ordinary integro-differential equations, an extreme case of integro-
differential equations on time scales, find many applications in various math-
ematical problems: see Corduneanu’s book [14] and references therein for
details. In addition, the existence of extremal solutions of ordinary integro-
differential equations and impulsive integro-differential equations have been
studied extensively in [15, 16, 17, 18, 19, 31, 32, 33, 39, 46].

In [43] the authors extended such results to the integro-differential equa-
tions on time scales and therefore obtained corresponding criteria which can
be employed to study the difference equation of Volterra type [26, 46], q-
difference equations of Volterra type, etc.

In [44] the authors proved a new comparison result and developed the
monotone iterative technique to show the existence of extremal solutions
of the periodic boundary value problems of nonlinear integro-differential
equation on time scales.

We extend the results by proving the existence of the Carathéodory type
solution of the problem

(1)
x∆(t) = f(t, x(t),

∫ t

0 k(t, s, x(s))∆s),

x(0) = x0
t ∈ Ia = [0, a] ∩ T, a ∈ R+,

where f : Ia × E × E → E, k : Ia × Ia × E → E, T denotes a time scale,
0 ∈ T , Ia denotes a time scale interval, (E, ‖ · ‖) is a Banach space.

We use a new type of integrals on time scales (the Henstock-Kurzweil
delta integral, HL delta integral), which lets us consider the wider class of
the function than so far.

The Henstock-Kurzweil delta integral contains the Riemann delta,
the Lebesgue delta and the Bochner delta integrals as special cases. These
integrals will enable time scale researchers to study more general dynamic
equations. A. Petterson and B. Thomson in [35] show that there are highly
oscillatory functions that are not delta integrable on a time scale, but are
the Henstock-Kurzweil delta integrable.

Let us remark that the existence of the Henstock-Kurzweil integral over
[a, b] implies the existence of such integrals over all subintervals of [a, b] but
not for all measurable subsets of this interval, so the theory of such integrals
on T does not follow from general theory on R.

In [12] M. Cichoń introduced a definition of the Henstock-Kurzweil delta
integral (∆-HK integral) and HL delta integral (∆-HL integral) on Banach
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spaces for checking the existence of solutions of differential (or: dynamic)
equations in Banach spaces.

Dynamic equations in Banach spaces constitute quite a new research
area.

In [13] the authors initiated the study of dynamic equations on Banach
spaces and considered the Cauchy dynamic problem

x∆(t) = f(t, x(t))

x(0) = x0
, t ∈ T.

They offer the existence of the weak solution of this dynamic Cauchy prob-
lem on an infinite time scale.

The existence theorems for the Carathéodory type solution, presented
in this paper, are new not only for Banach valued functions, but also for
real valued functions.

Adopting the Mönch fixed point theorem [34] and the techniques of
the theory of the measure of noncompactness [7], we are able to study the
existence results for problem (1).

Moreover, we prove an Ambrosetti type lemma on a time scale.

2. Preliminaries

Let (E, ‖ · ‖) be a Banach space. Denote, by C(Ia, E), the set of all contin-
uous bounded functions from Ia to E endowed with the topology of almost
uniform convergence (i.e., uniform convergence on each closed bounded sub-
sets of Ia) and by Crd(Ia, E) denote the set of all rd-continuous bounded
functions from Ia to E endowed with the same topology.

By µ∆ we denote the Lebesgue measure on T . For a precise definition
and basic properties of this measure we refer the reader to [10].

This part is divided into three sections.

I. To let the reader understand the so-called dynamic equations and follow
this paper easily, we present some preliminary definitions and notations of
time scales which are very common in the literature (see [1, 8, 9, 22, 23, 24]
and references therein).

A time scale T is a nonempty closed subset of real numbers R, with the
subspace topology inherited from the standard topology of R.
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If a, b are points in T , we denote by I = [a, b] = {t ∈ T : a ≤ t ≤ b} and
Ia = {t ∈ T : 0 ≤ t ≤ a}. Other types of intervals are approached similarly.
By a subinterval Ib of Ia we mean the time scale subinterval.

Definition 2.1. The forward jump operator σ : T → T and the backward
jump operator ρ : T → T are defined by σ(t) = inf{s ∈ T : s > t} and
ρ(t) = sup {s ∈ T : s < t}, respectively.

We put inf ∅ = supT (i.e., σ(M) = M if T has a maximum M) and
sup ∅ = inf T (i.e., ρ(m) = m if T has a minimum m).

The jump operators σ and ρ allow the classification of points in time
scale in the following way: t is called right-dense, right scattered, left-dense,
left scattered, dense and isolated if σ(t) = t, σ(t) > t, ρ(t) = t, ρ(t) < t,
ρ(t) = t = σ(t) and ρ(t) < t < σ(t), respectively.

Definition 2.2. We say that k : T → E is right-dense continuous (rd-
continuous) if k is continuous at every right-dense point t ∈ T and
lims→t− k(s) exists and is finite at every left-dense point t ∈ T .

Definition 2.3. Fix t ∈ T . Let f : J → E. Then, we define ∆-derivative
f∆(t) by

f∆(t) = lim
s→t

f(σ(t))− f(s)

σ(t)− s
.

Remark 2.4. The ∆-derivative turns out that

(i) f∆ = f ′ is the usual derivative if T = R and

(ii) f∆ = ∆f is the usual forward difference operator if T = Z and

(iii) f∆ = Dqf is the q-derivative if T = qN0 = {qt : t ∈ N0}, q > 1.

Hence, the time scale allows us to consider the unification of differential,
difference and q-difference equations as particular cases (but our results
hold also for more exotic time scales which appear in mathematical biology
or economics cf. [8, 9, 42], for instance).

II. As in classical case ([11], cf. [35] for real valued functions), we need
to introduce of vector valued Henstock-Kurzweil ∆-integrals and HL ∆-
integrals. Definitions and basic properties of non absolute integrals (HK
∆-integral and HL ∆-integral) were presented in [12].

We will use the notation η(t) := σ(t)− t, where η is called the graininess
function and ϑ(t) := t− ρ(t), where ϑ is called the left-graininess function.
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We say that δ = (δL, δR) is a ∆-gauge for time scale interval [a, b] provided
δL(t) > 0 on (a, b], δR(t) > 0 on [a, b), δL ≥ 0, δR ≥ 0 and δR ≥ η(t) for all
t ∈ [a, b).

We say that a partition D for a time scale interval [a, b] given by

D = {a = t0 ≤ ξ1 ≤ t1 ≤ ... ≤ tn−1 ≤ ξn ≤ tn = b} with ti > ti−1 for
1 ≤ i ≤ n and ti, ξi ∈ T is δ-fine if ξi − δL(ξi) ≤ ti−1 < ti ≤ ξi + δR(ξi) for
1 ≤ i ≤ n.

Definition 2.5. A function f : [a, b] → E is the Henstock-Kurzweil-∆-
integrable on [a, b](∆-HK integrable in short) if there exists a function F :
[a, b] → E, defined on the subintervals of [a, b], satisfying the following
property: given ε > 0 there exists a positive function δ on [a, b] such that
D = {[u, v], ξ} is δ-fine division of a [a, b], we have

∥

∥

∥

∥

∥

∑

D

f(ξ)(v − u)− (F (v) − F (u))

∥

∥

∥

∥

∥

< ε.

Definition 2.6. A function f : [a, b] → E is the Henstock-Lebesgue-∆-
integrable on [a, b](∆-HL integrable in short) if there exists a function F :
[a, b] → E, defined on the subintervals of [a, b], satisfying the following
property: given ε > 0 there exists a positive function δ on [a, b] such that
D = {[u, v], ξ} is δ-fine division of a [a, b], we have

∑

D

‖f(ξ)(v − u)− (F (v) − F (u))‖ < ε.

Remark 2.7. We note that, by triangle inequality, if f is ∆-HL integrable it
is also ∆-HK integrable. In general, the converse is not true. For real-valued
functions the two integrals are equivalent.

It is well known that Henstock’s Lemma plays an important role in the
theory of the Henstock-Kurzweil integral in the real-valued case. On the
other hand, in connection with the Henstock-Kurzweil integral for Banach
space valued functions, S.S. Cao pointed out in [11] that Henstock’s Lemma
holds for the case of finite dimension, but it does not always hold for the
case of infinite dimension.

In this paper we will use the definition of HL integral which satisfies
Henstock’s Lemma.
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Theorem 2.8 [35] (Henstock’s Lemma). If f is the Henstock-Kurzweil ∆-

integrable on [a, b] with primitive F , then for every ε > 0 there exists δ > 0
such that for any δ-fine division of [a, b] we have

∑

D

|f(ξ)(v − u)− (F (v)− F (u)| < ε.

Theorem 2.8 says that in the definition of the Henstock-Kurzweil delta in-
tegral for real valued functions [35], we may put the absolute value sign | · |
inside the summation sign

∑

. We know from [11] that this is no longer
true if we replace |·| with ‖ · ‖, i.e., Henstock’s Lemma is not satisfied by
Henstock-Kurzweil integrable Banach valued functions. By the definition of
HL integral, an HL integrable function with primitive F satisfies Henstock’s
Lemma with | · | replaced with ‖ · ‖.

Theorem 2.9 [12]. If f : [a, b] → E is ∆-HL integrable, then function

F (t) = (∆ − HL)
∫ t

0 f(s)∆s is continuous at each point t ∈ T . Moreover,

for every point t of the continuity of f we have F∆(t) = f(t).

Theorem 2.10. Suppose that fn : [a, b] → E,n = 1, 2, . . . is a sequence of

∆-HL integrable functions satisfying the following conditions:

1. fn(x) → f(x) µ∆ almost everywhere in [a, b], as n → ∞;

2. the set of primitives of fn, {Fn(t)}, where Fn(t) =
∫ t

a
fn(s)∆s, is uni-

formly ACG∗ in n;

3. the primitives Fn are equicontinuous on [a, b];

then, f is ∆-HL integrable on [a, b] and
∫ t

a
fn →

∫ t

a
fµ∆ uniformly on [a, b],

as n → ∞.

The proof is similar to that of Theorem 7.6 in [30], see also ([38], Theorem 4).

Theorem 2.11 [12] Mean Value Theorem. For each ∆-subinterval [c, d] ⊂

[a, b], if the integral (∆ −HK)
∫ d

c
y(s)∆s exists, then we have

(∆−HK)

∫ d

c

y(s)∆s ∈ µ∆([c, d]) · conv y([c, d]),

where conv y([c, d]) denotes the close convex hull of the set y([c, d]).
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Theorem 2.12 [4] (Gronwall’s inequality). Suppose that u, g, h ∈ Crd(Ia, E)
and h ≥ 0. Then,

u(t) ≤ g(t) +

∫ t

0
h(τ)u(τ)∆τ , for each t ∈ Ia

implies

u(t) ≤

(

g(t) +

∫ t

0
g(τ)h(τ)∆τ

)

exp

(
∫ t

0
h(τ)∆τ

)

, for each t ∈ Ia.

III. The Kuratowski measures of noncompactness is our fundamental tool
in this paper.

For any bounded subset A of E we denote by α(A) the Kuratowski
measure of noncompactness of A, i.e., the infimum of all ε > 0 such that
there exists a finite covering of A by sets of diameter smaller than ε.

The properties of the measure of noncompactness α are:

(i) if A ⊂ B then α(A) ≤ α(B);

(ii) α(A) = α(Ā), where Ā denotes the closure of A;

(iii) α(A) = 0 if and only if A is relatively compact;

(iv) α(A ∪B) = max {α(A), α(B)};

(v) α(λA) = |λ|α(A) (λ ∈ R);

(vi) α(A+B) ≤ α(A) + α(B);

(vii) α(convA) = α(A), where conv(A) denotes the convex hull of A;

(viii) α(A) < δ(A), where δ(A) = sup
x,y∈A

{‖x− y‖}.

The lemma below is an adaptation of the corresponding result of Ambrosetti
(see [5]).

Lemma 2.13 [28]. Let H ⊂ C(Ia, E) be a family of strongly equicontin-

uous functions. Let H(t) = {h(t) ∈ E, h ∈ H}, for t ∈ Ia and H(Ia) =
⋃

t∈Ia
H(t). Then,

αC(H) = sup
t∈Ia

α(H(t)) = α(H(Ia)),

where αC(H) denotes the measure of noncompactness in C(Ia, E), and the

function t 7→ α(H(t)) is continuous.
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We now gather some well-known definitions and results from the literature,
which we will use through this paper.

Definition 2.14. A function Ia × E × E → E is L1-Carathéodory if the
following conditions hold:

1. the map t → f(t, x, y) is µ∆-measurable on Ia for all (x, y) ∈ E2;

2. the map (x, y) → f(t, x, y) is continuous for almost all t ∈ Ia.

Definition 2.15. A function k : Ia× Ia×E → E is L1-Carathéodory if the
following conditions hold:

1. the map (t, s) → k(t, s, y) is µ∆-measurable on Ia × Ia for all y ∈ E;

2. the map y → k(t, s, y) is continuous for almost all (t, s) ∈ I2a .

Definition 2.16 [21]. A family F of functions F is said to be uniformly
absolutely continuous in the restricted sense on A ⊆ [a, b] or in short uni-
formly AC∗(A) if for every ε > 0 there exists η > 0 such that for ev-
ery F in F and for every finite or infinite sequence of non-overlapping
intervals {[ai, bi]} with ai, bi ∈ A and satisfying

∑

i µ∆([ai, bi]) < η, we
have

∑

i ω(F, [ai, bi]) < ε, where ω denotes the oscillation of F over [ai, bi]
(ω(F, [ai, bi]) = sup {|F (r)− F (s)| : r, s ∈ [ai, bi]}).

A family F of functions F is said to be uniformly generalized absolutely
continuous in the restricted sense on [a, b] or uniformly ACG∗ if [a, b] is the
union of a sequence of closed sets Ai such that on each Ai the function F is
uniformly AC∗(Ai).

3. Main results

The proofs of the main theorems are based on the Mönch fixed point theo-
rem.

Theorem 3.1 [34]. Let D be a closed convex subset of E, and let F be a

continuous map from D into itself. If for some x ∈ D the implication

(2) V̄ = conv({x} ∪ F (V )) ⇒ V is relatively compact,

holds for every countable subset V of D, then F has a fixed point.
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Now, we will consider the equivalently integral problem

(3) x(t) = x0 +

∫ t

0
f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

∆z,

where f : Ia × E × E → E, k : Ia × Ia × E → E, T denotes a time scale
(nonempty closed subset of real numbers R), 0 ∈ T , Ia denotes a time scale
interval, (E, ‖·‖) is a Banach space and integrals are taken in the sense of
HL ∆-integrals.

To obtain the existence result it is necessary to define a notion of a
solution.

An ACG∗ function x : Ia → E is said to be a Carathéodory solution to
problem (1) if it satisfies the following conditions:

(i) x(0) = x0

(ii) x∆(t) = f
(

t, x(t),
∫ t

0 k(t, s, x(s))∆s
)

for µ∆ a.e. t ∈ Ia.

A continuous function x : Ia → E is said to be a solution to problem (3) if
it satisfies x(t) = x0 +

∫ t

0 f
(

z, x(z),
∫ z

0 k(z, s, x(s))∆s
)

∆z, for every t ∈ Ia.

Because we consider a new type of integrals and a new type of solutions
is necessary to prove that each solution x to problem (1) is equaivalent to
the solutions to problem (3).

Let x be a continuous solution to (1). By definition, x is an ACG∗

function and x(0) = x0. Since, for µ∆ a.e t ∈ Ia, x∆(t) = f(t, x(t),
∫ t

0 k(t, s, x(s))∆s) and the last is ∆-HL integrable, so it is differentiable µ∆

a.e. Moreover,
∫ t

0 f(z, x(z),
∫ z

0 k(z, s, x(s)∆s)∆z =
∫ t

0 x
∆(s)∆s = x(t)− x0.

Thus (3) is satisfied.

Now assume that y is an ACG∗ function and it is clear that y(0) = x0.
By the definition of HL ∆-integrals, there exists an ACG∗ function G such
that G(0) = x0 and G∆(t) = f(t, y(t),

∫ t

0 k(t, s, y(s))∆s) µ∆ a.e.

Hence,

y(t) = x0 +

∫ t

0
f(z, y(z),

∫ z

0
k(z, s, y(s))∆s)∆z

= x0 +

∫ t

0
G∆(s)∆s = x0 +G(t)−G(0) = G(t).

We obtain y = G and then y∆(t) = f(t, y(t),
∫ t

0 k(t, s, y(s))∆s).
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Let

B = {x ∈ E : ‖x‖ ≤ ‖x0‖+ p, p > 0},

B̃ = {x ∈ C(Ia, E) : x(0) = x0, ‖x‖ ≤ ‖x0‖+ p, p > 0}.

Moreover, let F (x)(t) = x0 +
∫ t

0 f(z, x(z),
∫ z

0 k(z, s, x(s))∆s)∆z, t ∈ Ia,

K = {F (x) : x ∈ B̃}, K1 = {
∫ z

0 k(z, s, x(s))∆s : z ∈ [0, t], t ∈ [0, a], x ∈ B̃}.

Theorem 3.2. Assume that for each uniformly ACG∗ function x : Ia → E

the functions: k(·, s, x(s)), f
(

·, x(·),
∫ (·)
0 k(·, s, x(s))∆s

)

are ∆-HL integrable,

f and k are L1-Carathéodory functions. Suppose that there exist constants

d1, d2, d3 > 0 such that

(4) α(f(I,A,C)) ≤ d1 · α(A) + d2 · α(C),

for each time scale interval I ⊂ Ia and for each subset A,C of B,

(5) α(k(I, I,X)) ≤ d3 · α(X)

for each subset X of B and I ⊂ Ia, where f(I,A,C) = {f(t, x1, x2) :
(t, x1, x2) ∈ I ×A×A}, k(I, I,X) = {k(t, s, x) : (t, s, x) ∈ I × I ×A}. More-

over, let K and K1 be equicontinuous, equibounded and uniformly ACG∗ on

Ia. Then, there exists a Carathéodory type solution to problem (1) on Ic,

for some 0 < c ≤ a and 0 < c · d1 + c2 · d2 · d3 < 1.

Proof. Fix an arbitrary p ≥ 0. Put B = {x ∈ E : ‖x‖ ≤ ‖x0‖+ p, p > 0},
B̃ = {x ∈ C(Ic, E) : x(0) = x0, ‖x‖ ≤ ‖x0‖ + p, p > 0}, where c will be
given below.

Recall that a set K of continuous functions F (x) ∈ K defined on a
time scale interval Ia is equicontinuous on Ia if for each ε > 0 there exists
δ > 0 such that

∥

∥F (x)(t) − F (x)(τ)
∥

∥ < ε for all x ∈ B̃ whenever |t− τ | < δ,
t, τ ∈ Ia, for each F (x) ∈ K. Thus, for each ε > 0 there exists δ > 0
such that

∥

∥

∫ t

τ
f(z, x(z),

∫ z

0 k(z, s, x(s))∆s)∆z
∥

∥ < ε for all x ∈ B̃ whenever
|t− τ | < δ and t, τ ∈ [0, a]. As a result, there exists a number c, 0 < c ≤ a

such that
∥

∥

∥

∥

∫ t

0
f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

∆z

∥

∥

∥

∥

≤ p, t ∈ Ic and x ∈ B̃.

We now show that the operator F is well defined and maps B̃ into B̃.
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‖F (x)(t)‖ =

∥

∥

∥

∥

x0 +

∫ t

0
f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

∆z

∥

∥

∥

∥

≤ ‖x0‖+

∥

∥

∥

∥

∫ t

0
f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

∆z

∥

∥

∥

∥

≤ ‖x0‖+ p.

We will show that the operator F is continuous. Let xn → x in B̃. Then,

‖F (xn)− F (x)‖

= sup
t∈Ia

∥

∥

∥

∥

∫ t

0
f

(

z, xn(z),

∫ z

0
k(z, s, xn(s))∆s

)

∆z

−

∫ t

0
f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

∆z

∥

∥

∥

∥

= sup
t∈Ia

∥

∥

∥

∥

∫ t

0

[

f

(

z, xn(z),

∫ z

0
k(z, s, xn(s))∆s

)

−f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)]

∆z

∥

∥

∥

∥

.

Since k is the Carathéodory’s function and xn → x in B̃, k(z, s, xn(s)) →
k(z, s, x(s))µ∆ a.e. on Ia and using Theorem 2.10 (see our assumption on
K1) we obtain

∫ z

0 k(z, s, xn(s))∆s →
∫ z

0 k(z, s, x(s))∆s µ∆ a.e. on Ia.
Moreover, because f is the Carathéodory’s function, we have

f

(

z, xn(z),

∫ z

0
k(z, s, xn(s))∆s

)

→ f

(

z, x(z),

∫ z

0
k(z, s, x(s))∆s

)

µ∆

a.e. on Ia.
Thus, Theorem 2.10 implies ‖F (xn)− F (x)‖ → 0.

Suppose that V ⊂ B̃ satisfies the condition V̄ = conv({x} ∪ F (V )). We
will prove that V is relatively compact and so (3.1) is satisfied. Since V ⊂
B̃, F (V ) ⊂ K. Then, V ⊂ V = conv({x} ∪ F (V )) is equicontinuous. By
Lemma 2.14, t 7→ v(t) = α(V (t)) is continuous on Ic.

For fixed t ∈ Ic we divide the interval [0, t] into m parts in the following
way t0 = 0,

t1 = sup
s∈Ia

{s : s ≥ t0, s− t0 < δ} , t2 = sup
s∈Ia

{s : s > t1, s − t1 < δ} , . . . ,

tn = sup
s∈Ia

{s : s > tn−1, s− tn−1 < δ} .



Integro-differential equations on time scales with ... 83

Since T is closed, ti ∈ Ia. If some ti+1 = ti, then ti+2 = inf {t ∈ T : t > ti+1}.
For fixed z ∈ [0, t] we divide the interval [0, z] into m parts: z0 = 0,

z1 = sup
s∈[0,t]

{s : s ≥ z0, s − z0 < δ} , z2 = sup
s∈[0,t]

{s : s > z1, s− z1 < δ} , . . . ,

zn = sup
s∈[0,t]

{s : s > zn−1, s− zn−1 < δ}

such that µ∆(Ij) =
jz
m
, j = 0, 1, . . . ,m, Ij = [zj , zj+1].

Let V ([zj , zj+1]) = {u(s) : u ∈ V, zj ≤ s ≤ zj+1, j = 0, 1, . . . ,m − 1}.
By Lemma 2.14 and the continuity of v there exists sj ∈ Ij = [zj , zj+1] such
that

α(V ([zj , zj+1])) = sup{α(V (s)) : zj ≤ s ≤ zj+1} := v(sj).

By Theorem 2.11 and the properties of the ∆-HL integral we have for x ∈ V

F (x)(t) = x0 +

m−1
∑

i=0

∫ ti+1

ti

f

(

z, x(z),

m−1
∑

j=0

∫ zj+1

zj

k(z, s, x(s))∆s

)

∆z

∈ x0 +
m−1
∑

i=0

µ∆(Ji) conv f

(

Ji, V (Ji),
m−1
∑

j=0

(zj+1 − zj) conv k(Ij , Ij , V (Ij)

)

,

where Ji = [ti, ti+1], i = 0, 1, . . . ,m− 1.
Using (4), (5) and properties of the measure of noncompactness we

obtain

α(F (V )(t)) ≤

≤
m−1
∑

i=0

µ∆(Ji)α

(

f

(

Ji, V (Ji),

m−1
∑

j=0

µ∆(Ij) conv k(Ij , Ij , V (Ij)

))

≤
m−1
∑

i=0

µ∆(Ji)α

(

f

(

Ji, V (Ji),
m−1
∑

j=0

µ∆(Ij) conv k(Ij , Ij , V (Ij)

))

≤
m−1
∑

i=1

µ∆(Ji) · d1 · α(V (Ji))

+
m−1
∑

i=1

µ∆(Ji) · d2 · α

(

m−1
∑

j=0

µ∆(Ij) · conv k(Ij , Ij , V (Ij)

)
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≤
m−1
∑

i=1

µ∆(Ji) · d1 · α(V (Ic)) +

m−1
∑

i=1

µ∆(Ji) · d2 ·
m−1
∑

j=0

µ∆(Ij) · α(k(Ij , Ij , V (Ij))

≤ α(V (Ic)) · d1 · c+
m−1
∑

i=1

µ∆(Ji) · d2 ·
m−1
∑

j=0

µ∆(Ij) · d3 · α(V (Ij))

≤ α(V (Ic)) · d1 · c+ α(V (Ic)) · d2 · d3 · c
2 = α(V (Ic))

(

d1 · c+ d2 · d3 · c
2
)

.

Since V̄ = conv({x}∪F (V )), we obtain α (V (t)) = α (conv ({x} ∪ F (V (t))))
so α(V (t)) ≤ α(V (Ic))

(

d1 · c+ d2 · d3 · c
2
)

, for t ∈ Ic.

Using Lemma 2.14 we have

α(V (Ic)) ≤ α(V (Ic))(d1 · c+ d2 · d3 · c
2).

Since 0 < c · d1 + c2 · d2 · d3 < 1 we obtain v(t) = α(V (t)) = 0 for t ∈ Ic.

Using the Arzelá-Ascoli‘s theorem [44] we deduce that V is relatively
compact.

By Theorem 3.1 the operator F has a fixed point. This means that
there exists a Carathéodory’s solution to problem (1).

Theorem 3.3. Assume that for each uniformly ACG∗ function x : Ia → E,

the functions k(·, s, x(s)), f
(

·, x(·),
∫ (·)
0 k(·, s, x(s))ds

)

are ∆-HL-integrable

and k, f are Carathéodory’s functions. Suppose that there exists a constant

d > 0 and a continuous function c1 : Ia → R+ such that

(6) α(f(I,A,C)) ≤ d · α(C), for each A,C ⊂ B, I ⊂ Ia,

(7) α(k(I, I,X)) ≤ sup
s∈I

c1(s)α(X), for each X ⊂ B, I ⊂ Ia,

where

f(I,A,C) = {f(t, x1, x2) : (t, x1, x2) ∈ I ×A× C} ,

k(I, I,X) = {k(t, s, x) : (t, s, x) ∈ I × I ×X} .

Moreover, let K and K1 be equicontinuous and uniformly ACG∗ on Ia.

Then, there exists Carathéodory’s solution to the problem (1) on Ic, for

some 0 < c ≤ a.
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Proof. The first part of the proof is the same as in the proof of the previous
theorem. It remains to show the relative compactness of V , where V is
defined in Theorem 3.2. In this case notice that for t ∈ Ic and zj as in
Theorem 3.2 we have

α(V (t)) ≤

≤
m−1
∑

i=0

µ∆(Ji) · d · α

(

m−1
∑

j=0

µ∆(Ij) · convk(Ij , Ij , V (Ij))

)

≤
m−1
∑

i=0

µ∆(Ji) · d ·
m−1
∑

j=0

µ∆(Ij) · α(k(Ij , Ij , V (Ij)))

≤
m−1
∑

i=0

µ∆(Ji) · d ·
m−1
∑

j=0

µ∆(Ij) · sup
s∈Ij

c1(s)α(V (Ij))

≤ c · d ·
m−1
∑

j=0

µ∆(Ij) · c1(pj)v(sj)

= c · d

(

m−1
∑

j=0

µ∆(Ij) · c1(pj)v(pj) +
m−1
∑

j=0

µ∆(Ij) (c1(pj)(v(sj)− v(pj))

)

,

for some pj ∈ Ij . Fix ε > 0. From the continuity of v we may choose m

large enough so that v(sj)− v(pj) < ε and so

α(V (t)) ≤ c · d

(

m−1
∑

j=0
µ∆(Ij) · c1(pj)v(pj) +

m−1
∑

j=0

z
m
c1(pj) · ε

)

≤ c · d

(

m−1
∑

j−0

µ∆(Ij)c1(pj)v(pj) + z · ε · max
0≤k≤m−1

c1(pk)

)

.

Since ε → 0 and z· max
0≤k≤m−1

c1(pk) is bounded, we have z·ε· max
0≤k≤m−1

c1(pk) → 0.

Therefore,

v(t) = α(V (t)) ≤ c · d ·

∫ t

0
c1(s)v(s)∆s, t ∈ [0, c].

Using the Gronwall’s inequality, we have

v(t) = α(V (t)) = 0, for t ∈ [0, c].
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By the Arzelá-Ascoli‘s theorem [44] we deduce that V is relatively compact.

By Theorem 3.1 the operator F has a fixed point. This means that
there exists a Carathéodory solution to problem (1).

Remark 3.4. By a classical solution to (1) we understand a function x in
Crd(Ia, E), such that x(0) = x0, and x(·) satisfies (1) for all t ∈ Ia. If we
assume a kind of continuity for f and k instead of Carathéodory conditions,
we obtain the existence of at least one solution. For such solutions problem
(1) is equivalent to problem (3) for each t ∈ Ia.

Similarly to Theorem 3.2 and Theorem 3.3, we can prove the following the-
orems.

Theorem 3.5. Assume that for each uniformly ACG∗ function x : Ia → E,

the functions: k(·, s, x(s)), f
(

·, x(·),
∫ (·)
0 k(·, s, x(s))∆s

)

are ∆-HL integrable,

f and k are rd-continuous functions. Suppose that there exist constants

d1, d2, d3 > 0 such that

(8) α(f(I,A,C)) ≤ d1 · α(A) + d2 · α(C),

for each subset A,C of B, I ⊂ Ia

(9) α(k(I, I,X)) ≤ d3 · α(X),

for each subset X of B, I ⊂ Ia, where

f(I,A,C) = {f(t, x1, x2) : (t, x1, x2) ∈ I ×A×A},

k(I, I,X) = {k(t, s, x) : (t, s, x) ∈ I × I ×A}.

Moreover, let K and K1 be equicontinuous, equibounded and uniformly ACG∗

on Ia. Then, there exists a solution to problem (1) on Ic, for some 0 < c ≤ a

and 0 < c · d1 + c2 · d2 · d3 < 1.

Theorem 3.6. Assume that for each uniformly ACG∗ function x : Ia → E,

the functions k(·, s, x(s)), f
(

·, x(·),
∫ (·)
0 k(·, s, x(s))ds

)

are ∆-HL integrable

and k, f are rd-continuous functions. Suppose that there exists a constant

d > 0 and a continuous function c1 : Ia → R+ such that

(10) α(f(I,A,C)) ≤ d · α(C), for each A,C ⊂ B, I ⊂ Ia,
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(11) α(k(I, I,X)) ≤ sup
s∈I

c1(s)α(X), for each X ⊂ B, I ⊂ Ia,

where

f(I,A,C) = {f(t, x1, x2) : (t, x1, x2) ∈ I ×A× C} , k(I, I,X)

= {k(t, s, x) : (t, s, x) ∈ I × I ×X} .

Moreover, let K and K1 be equicontinuous and uniformly ACG∗ on Ia.

Then, there exists a solution to problem (1) on Ic, for some 0 < c ≤ a.

Remark 3.7. For discrete time scales the existence of solutions is trivially
given without imposing further compactness assumptions on the right-hand
side of the equation. If a time scale admits at least one right-dense point,
then the continuity assumption is not sufficient for the existence of (rd-
continuous) solutions to problem (1).

Nevertheless, we will not distinguish such a discrete case, because some
continuity and compactness conditions are necessary to unify the continuous
problems and their discretization.

Remark 3.8. The conditions in Theorems: 3.2, 3.3, 3.4, 3.5 can be also
generalized to the Sadovskii condition [36], the Szufla condition [41] and
others and α can be replaced by some axiomatic measure of noncompactness.
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