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Abstract

For a multidimensional control problem (P)K involving controls u ∈
L∞, we construct a dual problem (D)K in which the variables ν to be
paired with u are taken from the measure space rca (Ω, B) instead
of (L∞)∗. For this purpose, we add to (P)K a Baire class restriction
for the representatives of the controls u. As main results, we prove a
strong duality theorem and saddle-point conditions.
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1 Introduction

a) The primal problem. We consider the following multidimensional
control problem (P)K (1.1) – (1.4) (“classical deposit problem”) introduced
by Klötzler [8]:

J(x, u) = −
n∑

k=1

∫

Ω
xk(t) dαk(t) −→ Min !(1.1)

subject to (x, u) ∈ W 1,n
p (Ω)× Lnm

p (Ω), satisfying

xi; tj (t) = uij(t) a.e. on Ω, i=1,..., n; j=1,..., m;(1.2)

u(t) ∈ U(t) =
{
z ∈ IRnm

∣∣∣ zT v 6 r(t, v) ∀ v ∈ IRnm
}
∀ t ∈ Ω(1.3)

x(t) = ϕ(t) ∀ t ∈ Γ where Γ ∈ Comp(Ω), Γ 6= Ø.(1.4)
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For m = 2 we may interpret (P)K as deposit problem [8, p. 394]: On a region
Ω in the plane, n infinitely divisible commodities have to be stored. xk(t)
describes the deposit height of the kth commodity at the position t (fixed
in the case of t ∈ Γ), (−αk) the related cost rate, J(x, u) the total deposit
cost which is to minimize. The control restrictions may be understood as
generalized slope conditions for the resulting deposit hill. From [8] we take
the following

Basic assumptions about the data of (P)K:

(V1)K: We have m> 2 and p = ∞. Ω ⊂ IRm is a compact Lipschitz domain
in strong sense, see [11, Definition 3.4.1, p. 72]. (In view of Lemma 2.1, we
may assume m < p < ∞ instead of p = ∞.) Then functions x ∈ W 1,n

p (Ω),
m < p < ∞, have continuous representatives, and functions x ∈ W 1,n

∞ (Ω)
are Lipschitz representable [1, Theorem 5.5, p. 185].
(V2)K: r(·, v) is summable on Ω for all v ∈ IRnm; r(t, ·) is positively homo-
geneous of degree one in v (i.e. r(t, λ v) = λ r(t, v) for all λ > 0) and convex;
there exist constants 0 < γ1 6 γ2 with γ1|v | 6 r(t, v) 6 γ2| v | for all t ∈ Ω
and for all v ∈ IRnm.
(V3)K: αk are signed regular measures on the σ-algebra B′ of the Lebesgue
sets of Ω satisfying the balance condition αk(Ω) = 0. (In the following, we
only consider the uniquely determined restrictions of αk on the σ-subalgebra
B⊂ B′ of the Borel sets of Ω.)
(V4)K: There is Γ = {t0} ⊂ ∂Ω and x(t0) = on.

b) Outline and main results of the paper. In [8] and [9], a transporta-
tion flow problem (T)K in which the variables (“flows”) come from the space
(L∞)∗ is opposited to (P)K. Both problems are in strong duality. The aim
of the present paper is the construction of a strong dual problem for (P)K
with more regular variables, namely Radon measures, in place of (L∞)∗-
functionals (which are representable only by finitely additive set functions,
cf. [4, Theorem 16, p. 296]). For this purpose, we restrict the feasible domain
of (P)K under conservation of the minimal value inf(P)K:

Definition 1.1. For (P)K and k ∈ IN0, we consider the class-qualified
problem (P)K,Bk (1.1) – (1.5) with

(1.5) xi; tj admits (at least) one representative from Bk(Ω) ∀ i, j.

Here Bk(Ω) denotes the kth Baire function class on Ω (see below), thus we
have to distinguish in (P)K,Bk feasible controls u′, u′′ taking different values
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even on a λm-null set. The following theorem gives sufficient conditions
under which the minimal value of (P)K is not influenced by addition of the
class qualification (1.5) to (1.1) – (1.4).

Theorem 1.2 (Sufficient conditions for inf (P)K = inf (P)K,Bk). Let (P)K
satisfy assumptions (V1)K – (V4)K. Assume further that the function r(t, v)
satisfies the condition |r(t′, v) − r(t′′, v)|6 L · |t′ − t′′| · r̃(v) ∀ v ∈ IRnm

∀ t′, t′′ ∈ Ω with L > 0 and r̃ ∈ C0(IRnm).

Then (P)K admits a minimizing sequence {(xN , uN )} with representatives
of 0th Baire class for xN

i; tj
, and the minimal values of (P)K and (P)K,Bk ,

k = 0, 1, ... , coincide. Furthermore, each (xN , uN ) can be determined in
such a way that the state equations (1.2) are satisfied everywhere on Ω.

If the assumptions of Theorem 1.2 are satisfied then the problem (D)K
(2.1) – (2.2)

(2.1)
G(ν) = inf

u∈B1,nm(Ω)
u(t)∈U(t) ∀ t∈Ω

[
−

∑

i,j

∫

Ω
uij(t) dνij(t)

]
−→ Max !

subject to ν ∈ (rca (Ω, B))nm, satisfying the continuity equation

(2.2)

∑

i,j

∫

Ω
ζi ;tj (t) dνij(t)−

∑

k

∫

Ω
ζk(t) dαk(t) = 0

∀ ζ ∈ C1,n(Ω) : ζ(t0) = on,

is strongly dual to (P)K (Theorem 3.4). In analogy to [8, p. 391 ff.], the
feasible elements of (D)K may be understood as time-independent vectorial
transportation flows: Assuming that we have to organize the shipment of n
infinitely divisible commodities within Ω where αk(A) is the rate of supply
resp. demand of the kth commodity in A ∈ B, the average flow of the kth

commodity in A can be described by the vector (νk,1(A), ..., νk,m(A)).

Theorem 1.3 (Sufficient saddle-point conditions for the problems
(P)K,B1 − (D)K). Let (P)K satisfy all assumptions of Theorem 1.2. Given
some feasible element (x∗, u∗) of (P)K,B1 (thus the weak derivatives x∗i; tj ad-
mit representatives of first Baire class) and a measure ν∗ ∈ (rca (Ω, B))nm.
If the following conditions (M)∗0, (K)∗0 and (D)∗0 are satisfied then (x∗, u∗)
is a global minimizer of (P)K,B1 and ν∗ is a global maximizer of (D)K:
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(M)∗0 :
∑

i,j

∫

Ω
( u∗ij(t)− uij(t) ) dν∗ij(t) > 0

∀u ∈ B1,nm(Ω) : u(t) ∈ U(t) ∀ t ∈ Ω;

(K)∗0 :
∑

i,j

∫

Ω
ζi; tj (t) dν∗ij(t)−

∑

k

∫

Ω
ζk(t) dαk(t) = 0

∀ζ ∈ C1,n(Ω) : ζ(t0) = on;

(D)∗0 :
∑

k

∫

Ω
x∗k(t) dαk(t) =

∑

i,j

∫

Ω
u∗ij(t) dν∗ij(t).

The paper is organized as follows: In the rest of this section, we compile some
basic notations and definitions. In Section 2, we investigate the relations
between the original deposit problem (1.1) – (1.4), its relaxed problem and
the class-qualified problem (1.1) – (1.5) and prove Theorem 1.2. Then, in
Section 3, we construct the announced dual problem (D)K and give the proof
of Theorem 1.3. Finally, we prove that a partial converse of Theorem 1.3 is
true (Theorem 3.5).

c) Notations. Ck,n(Ω), Ln
p (Ω) and W k,n

p (Ω) (1 6 p 6 ∞) denote the
spaces of n-dimensional vector functions on Ω whose components are k-times
continuously differentiable, resp. belong to Lp(Ω) or to the Sobolev space of
Lp(Ω)-functions having weak derivatives up to kth order in Lp(Ω). Instead
of C0,1(Ω), we write shortly C0(Ω). For the classical as well as for the weak
partial derivatives of xi by tj we use the notation xi; tj . The Banach space
of Radon measures (signed regular measures) acting on the σ-algebra B of
the Borel sets of Ω (equipped with the total variation norm) is denoted by
rca (Ω, B). Due to the compactness of Ω, there is an isometric isomorphism
between the dual space (C0(Ω))∗ and rca (Ω, B) [4, Theorem 3, p. 265] so
that each linear, continuous functional on C0(Ω) can be represented by an
integral w. r. to a Radon measure ν ∈ rca (Ω, B). δv denotes the Dirac
measure concentrated in v, λm the m-dimensional Lebesgue measure and o

the zero element of the actual space (in particular, on is the n-dimensional
zero vector).

d) Generalized controls. Let U =
⋃

t∈Ω U(t) (U is compact, see
Lemma 2.1 below). A family µ = {µt | t ∈ Ω} of probability measures
µt ∈ rca (Ω, BU) acting on the σ-algebra BU of the Borel sets of U is called
a generalized control if 1) supp µt ⊆ U(t) for all t ∈ Ω and 2) for any
continuous function f ∈ C0(Ω × U) the function hf : Ω × U → IR with
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hf (t) =
∫
U f(t, v) dµt(v) is measurable [5, p. 23]. Two families µ′, µ′′ can

be identified if µ′t ≡ µ′′t for a.e. t ∈ Ω. The set of all generalized controls is
denoted by MU. Let us equip MU with the following topology:

(3) {µN} → µ∗ ⇐⇒ lim
N→∞

∫

Ω

∫

U
f(t, v) µN

t (v) dt =
∫

Ω

∫

U
f(t, v) dµ∗t (v) dt

for all f ∈ C0(Ω × U). Due to the compactness of Ω and U, each family
{µt} is finite in the sense of [5, p. 21 f.], and each function hf generated by
some µ ∈ MU is bounded and, consequently, integrable on Ω. The set MU

is convex [5, p. 25] and, by [10, Theorem 20, p. 78], sequentially compact
in the above introduced topology while the sets U(t) are nonempty, closed
and uniformly bounded (Lemma 2.1) and the set-valued map U(t) : Ω →
P(IRnm) is upper semicontinuous (see Lemma 2.2).

e) Baire classification. We say that any continuous function ψ defined on
the compact set Ω ⊂ IRm is of 0th Baire class and write ψ ∈ B0(Ω). The limit
functions of everywhere pointwise convergent sequences {ψK}, ψK ∈ B0(Ω),
form the first Baire class B1(Ω); the limit functions of everywhere pointwise
convergent sequences {ψK}, ψK ∈ B1(Ω), form the second Baire class B2(Ω)
and so on. Obviously, we have B0(Ω) ⊂ B1(Ω) ⊂ B2(Ω) ⊂ ... If a finite
function is contained in any Baire class then it is measurable [3, Theorem
4, p. 404]; conversely, any measurable, essentially bounded function on Ω
agrees a.e. with some function of second Baire class [3, Theorem 5, p. 406].
(Consequently, for k > 2 the minimal values of the problems (P)K and
(P)K,Bk coincide.) Each Baire class is closed under (pointwise) addition und
multiplication of finite functions [3, Theorems 6 and 7, p. 397]. For more
details, see [3, p. 393 ff.].

f) Theorem 1.5 (Filippov’s lemma). Consider a measure space (Ω, A, λ)
with a σ-finite measure λ and a σ-algebra A which is complete w. r. to
subsets of λ-null sets. Further, let Y′ and Y′′ be separable, complete metric
spaces, h(t, v) : Ω×Y′ → Y′′ a Carathéodory function and S(t) : Ω → P(Y′)
a measurable set-valued map [2, Definition 8.1.1, p. 307] with nonempty,
closed images. Then for every measurable function z : Ω → Y′′ satisfying
z(t) ∈ {h(t, v) | v ∈ S(t)} for all t ∈ Ω there exists a A-BY′-measurable
selection s : Ω → Y′ with

(4) s(t) ∈ S(t) ∀ t ∈ Ω and z(t) = h(t, s(t)) for all t ∈ Ω.

[2, Theorem 8.2.10, p. 316, together with Theorem 8.2.9, p. 315].
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2 Relations between (P)K and (P)K,Bk

a) Two auxiliary results.

Lemma 2.1. Under assumptions (V1)K and (V2)K, the sets U(t) are
nonempty, convex and compact, satisfying K(onm, γ1) ⊆ U(t) ⊆ K(onm, γ2).
Consequently, the assumption“ p = ∞” in (V1)K can be replaced by “m <
p < ∞”.

Proof. By [8, Proof of Theorem 1, p. 394], all U(t) are nonempty, convex
and compact. By (V2)K, it holds for arbitrary z ∈ K(onm, γ1) and v ∈
IRnm: zT v = | z | · | v | · cos^(z, v) 6 γ1 | v | 6 r(t, v), and we see that
K(onm, γ1) ⊆ U(t). Conversely, if z ∈ U(t) then, choosing v = z /| z |, we
compute zT v = | z | 6 r(t, z /| z |) 6 γ2

∣∣∣ z /| z |
∣∣∣ = γ2 what proves the

inclusion U(t) ⊆ K(onm, γ2). If, consequently, a function u ∈ Lnm
p (Ω) with

m < p < ∞ satisfies the control restrictions (1.3) then u is automatically
element of Lnm∞ (Ω), and (V1)K may be formulated with m < p < ∞ instead
of p = ∞.

Lemma 2.2. If the function r(t, v) is continuous in t then the set-valued
map U(t) : Ω → P(IRnm) is upper semicontinuous in the sense of [2,
Definition 1.4.1, p. 38].

Proof. We apply [2, Proposition 1.4.8, p. 42], taking the ball K(onm, γ2)
endowed with the Euclidean metric as compact image space. Obviuosly,

(5) Graph (U) = {(t, z) ∈ IRm × IRnm | t ∈ Ω, zT v 6 r(t, v) ∀ v ∈ IRnm}.

Consider a sequence {(tN, zN )} → (t∗, z∗) with (tN, zN ) ∈ Graph (U).
Then t∗ ∈ Ω since Ω is closed. From (tN, zN ) ∈ Graph (U) it follows
(zN )T v 6 r(tN , v) for all v ∈ IRnm, and, by continuity of r(·, v), (z∗)T v =
limN→∞(zN )T v 6 limN→∞ r(tN , v) = r(t∗, v). Thus (t∗, z∗) ∈ Graph (U);
Graph (U) is a closed subset of Ω × IRnm, and the set-valued map U(t) is
upper semicontinuous.

b) An approximation theorem. The following theorem generalizes a
result of Hüseinov [6] about C∞-approximations of Lipschitz functions. For
its proof, we refer on the author’s paper [15] to be published simultaneously.

Theorem 2.3 (Generalized Hüseinov’s theorem). Consider a set-valued
map S(t) : Ω → P(IRnm) with convex, compact, uniformly bounded im-
ages containing the ball K(o, ω) as subset. Assume that S(t) is Lipschitz
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[2, Definition 1.4.5, p. 41]. Given further a Lipschitz function x∗ ∈ W 1,n
∞ (Ω)

with (x∗i; tj (t))ij ∈ S(t) for a.e. t ∈ Ω. Then x∗ can be approximated by a
sequence of functions xN ∈ C∞,n(Ω) with

1) lim
N→∞

‖xN − x∗‖C0,n(Ω) = 0, xN (t0) = x∗(t0),

2) lim
N→∞

‖xN
i; tj

− x∗i; tj‖L1(Ω) = 0 ∀ i, j,

3) (xN
i; tj

(t))ij ∈ S(t) for all t ∈ Ω. [15, Theorem 1.5, p. 2].

c) Relations between (P)K and its relaxed problem. The standard
relaxation of (P)K by use of generalized controls (Young measures) leads to
the problem (P)K (6.1) – (6.4)

(6.1) J̄(x, µ) = −
n∑

k=1

∫

Ω
xk(t) dαk(t) −→ Min!

subject to (x, µ) ∈ W 1,n
p (Ω)×MU, satisfying

(6.2) xi; tj (t) =
∫

U
vij dµt(v) a.e. on Ω, ∀ i, j,

(6.3) supp µt ⊆ U(t) = { z ∈ IRnm | zT v 6 r(t, v) ∀ v ∈ IRnm} ∀ t ∈ Ω

(6.4) x(t) = ϕ(t) ∀ t ∈ Γ where Γ ∈ Comp(Ω), Γ 6= Ø.

Since (P)K itself has a linear-convex structure, the problems (P)K and (P)K
are equivalent in a sense specified in the following Theorem 2.4. In particu-
lar, their minimal values coincide, and there is a one-to-one correspondence
between their minimal solutions. Thus in the frame of the present investiga-
tion the relaxed problem is of merely technical interest: it allows to evaluate
the conditions of the maximum principle from [12] which is designed for
relaxed problems. Moreover, the equivalence between (P)K and (P)K leads
to a simple existence proof for global minimizers of (P)K.

Theorem 2.4 (Equivalence of the problems (P)K and (P)K). Let (P)K sat-
isfy assumptions (V1)K – (V4)K, and let the function r(t, v) be continuous in
t for all v ∈ IRnm. Then for each feasible element (x, µ) of (P)K there exists
a generalized control of the form {∑nm+1

s=1 λs(t) δus(t) } with the following
properties:

1) us ∈ Lnm∞ (Ω), us(t) ∈ U(t) for all t ∈ Ω;

2) λs(t) ∈ L∞(Ω), 0 6 λs(t) 6 1 and
∑

s λs(t) = 1 for all t ∈ Ω;

3)
∫
U vij dµt(v) =

∑
s λs(t) us,ij(t) for all t ∈ Ω ∀ i, j;
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4) J̄(x, µ) = J(x,
∑

s λs us),

so that the element (x,
∑

s λs us) is feasible in (P)K. Consequently, the prob-
lems (P)K and (P)K have the same minimal value.

Proof. At first, let us define for fixed t ∈ Ω the set-valued maps MU(t):
Ω → P(rca (U, BU)) and Z(t) : Ω → P(IRnm) by

(7) MU(t) = {µt ∈ rca (U, BU)|µt > 0, supp µt ⊆ U(t), µt(U(t)) = 1};

(8) Z(t) = { z ∈ IRnm | zij =
∫

U
vij dµt(v), µt ∈ MU(t)}.

Choosing z′, z′′ ∈ Z(t) and λ ∈ [0, 1], it follows

(9) λ z′ij + (1− λ) z′′ij =
∫

U
vij [λ dµ′t(v) + (1− λ) dµ′′t (v) ]

with supp [λµ′t + (1 − λ) µ′′t ] ⊆ supp µ′t ∪ supp µ′′t ⊆ U(t) and, con-
sequently, λµ′t + (1 − λ) µ′′t ∈ MU(t). This proves the convexity of Z(t).
Given a sequence {zN} → z∗ with zN ∈ Z(t) then there are representations
zN
ij =

∫
U vij dµN

t (v) with µN
t ∈ MU(t), and the norm-bounded sequence

{µN
t } admits some subsequence {µN ′

t } converging to µ∗t in the sense of (3).
It holds

(10) z∗ij = lim
N ′→∞

zN ′
ij = lim

N ′→∞

∫

U
vij dµN ′

t (v) =
∫

U
vij dµ∗t (v),

and from [14, Proposition 1.5.1. (iii), p. 47 f.] it follows that µ∗t is also a
probability measure. Thus Z(t) is closed, and from the continuity of the
integrand and the uniform boundedness of the sets U(t) (Lemma 2.1) it
follows also compactness. Since the cost functional does not depend on
the control variables, the proof can be completed now as in [5, Assertion
8.3, p. 157 ff.], using the version of Filippov’s lemma given in Theorem 1.5
above.

Theorem 2.5. ((P)K admits a global minimizer with inf (P)K = inf (P)K).
Let (P)K satisfy assumptions (V1)K – (V4)K, and let r(t, v) be continuous
in t for all v ∈ IRnm. Then there exists a global minimizer (x∗, u∗) for (P)K,
and the problems (P)K and (P)K have the same minimal value. Furthermore,
(x∗, u∗) can be determined in such a way that the state equations (1.2) are
satisfied everywhere on Ω.
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Proof. In view to Theorem 2.4, it suffices to prove that the relaxed problem
(P)K admits a global minimizer. Then by [12, Remark after Theorem 2.2,
p. 224 f.] we have to check that 1) the basic assumptions (V1) – (V4)
from [12] are satisfied (together with the feasibility of the zero solution
(on, onm), this follows from our assumptions (V1)K – (V4)K and Lemma
2.1) and 2) U(t): Ω → P(IRnm) is upper semicontinuous in the sense of [2,
p. 38, Definition 1.4.1] with nonempty, closed and uniformly bounded images
(this is true by Lemmata 2.1 and 2.2). Finally, the assertion about the state
equation (1.2) is proved by Theorem 2.4, 3).

d) Comparison of the minimal values of (P)K and (P)K,Bk . In The-
orem 1.2, sufficient conditions for the coincidence of the minimal values of
(P)K and (P)K,Bk were formulated. We continue with its proof.

Proof of Theorem 1.2.

Step 1. We prove first that the set-valued map U(t) is Lipschitz [2, Defini-
tion 1.4.5, p. 41]. Choosing t′, t′′ ∈ Ω and z ∈ U(t′), we have for arbitrary
v ∈ IRnm:

(11) zT v 6 r(t′, v) = r(t′′, v) +
(
r(t′, v)− r(t′′, v)

)
.

If v = onm then from (V2)K it follows r(t, onm) = 0 for all t ∈ Ω, and (11)
gives zTonm 6 r(t′′, onm). Let v 6= onm, then it holds in consequence of the
homogeneity of r(t, ·) and of the assumption of the theorem:

(12)
r(t′, v) = r(t′′, v) + |v|

(
r(t′, v/|v|)− (t′′, v/|v|)

)

6 r(t′′, v) + |v| · L · |t′ − t′′ | · r̃(v/|v|).

Since z ∈ K(onm, ω) ⇐⇒ zTv 6ω | v | for all v ∈ IRnm, it follows

(13) z ∈ U(t′′) + K(onm, ω) ⇐⇒ zTv 6 r(t′′, v) + ω | v | ∀ v ∈ IRnm.

The nonnegative continuous function r̃(v) takes on its maximum c on the
unit sphere of IRnm, thus, by (12), z is element of U(t′′) + K(o, c L|t′ − t′′|)
what proves the Lipschitz continuity of U(t).

Step 2. Application of the generalized Hüseinov’s theorem. In consequence
of the assumptions, r(t, v) is continuous in t, and we know then from The-
orem 2.5 that (P)K possesses a global minimizer (x∗, u∗). By Lemma 2.1
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and Step 1, we can apply Theorem 2.3 to x∗i; tj and the set-valued map
U(t). So there exists a sequence of functions xN ∈ C∞,n(Ω) with the follow-
ing properties: They converge to x∗ uniformly on Ω and share the bound-
ary value with x∗ (so that the boundary condition (1.4) is satisfied), their
weak derivatives come from the space C∞,nm(Ω) and satisfy the inclusions
(xN

i; tj
(t))ij ∈ U(t) for all t ∈ Ω. Thus all pairs (xN , uN ) with uN

ij (t) = xN
i; tj

(t)
are feasible in (P)K, and these elements satisfy the state equations (1.2)
everywhere on Ω. From the uniform convergence of {xN} it follows that
J(xN , uN ) → J(x∗, u∗), and we find some subsequence of {(xN , uN )} being
a minimizing sequence for (P)K. Since all functions xN

i; tj
are contained in

C∞,nm(Ω) ⊂ B0,nm(Ω) ⊂ B1,nm(Ω) ⊂ ... , the proof is complete.

Remark. For more general boundary conditions with Γ ⊆ ∂Ω and ϕ|Γ =
c ∈ IRn, Theorems 1.2 and 2.5 remain true if there exists a feasible solution
at all.

e) The maximum principle for (P)K. By use of Theorem 2.4, the state-
ments [12, Theorem 3.1, p. 225, and Theorem 3.4, p. 231] can be carried
over to the unrelaxed deposit problem (P)K.

Theorem 2.6 (ε-maximum principle for (P)K). Let (x∗, u∗) be a global
minimizer of the problem (P)K under all assumptions of Theorem 2.4. Then
for arbitrary ε > 0 there exist multipliers yε ∈ Lnm

q (Ω) (p−1 + q−1 = 1)
satisfying the ε-maximum condition (in integrated form), (M)ε, and the
canonical equation (K)ε:

(M)ε: ε +
∑

i,j

∫

Ω
( u∗ij(t)− uij(t))yε

ij(t) dt > 0

∀u ∈ Lnm
∞ (Ω) : u(t) ∈ U(t) ∀ t ∈ Ω

(K)ε:
∑

i,j

∫

Ω
yε

ij(t) ζi; tj (t) dt−
∑

k

∫

Ω
ζkt) dαk(t) = 0

ζ ∈ W 1,n
p (Ω) : ζ(t0) = on.

Proof. As mentioned above, the relaxed problem (P)K satisfies assump-
tions (V1) – (V4) from [12], and thus we can apply [12, Theorem 3.1, p. 225].
Its proof in [12] is not influenced by the use of the generalized control re-
strictions supp µt ⊆ U(t) in the definition of MU. If (x∗, u∗) is a global
minimizer of (P)K then (x∗, µ∗) with µ∗t = δu∗(t) forms a global minimizer of
(P)K since both problems have the same minimal value (Theorem 2.4) and
J(x∗, u∗) = J̄(x∗, µ∗). By the above cited theorem, we find for arbitrary
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ε > 0 multipliers yε
ij ∈ Lnm

q (Ω) which fulfill its ε-maximum condition and
the canonical equation together with (x∗, µ∗). In the ε-maximum condition
from [12],

(14) ε +
∑

i,j

∫

Ω

∫

U
vij

[
dδu∗(t)(v)− dµt(v)

]
yε

ij(t) dt > 0 ∀µ ∈ MU,

we can substitute each generalized control µ ∈ MU by ordinary controls in
the sense of Theorem 2.4 and vice versa, so that we arrive at (M)ε while
(K)ε carries over formally unchanged.

Remark. Theorem 2.6 differs from [8, Theorem 2, p. 395] in the choose
of the spaces of the multipliers yε as well as of the test functions in the
canonical equation.

Theorem 2.7 (Maximum principle for (P)K,B1 with ε = 0). Let (x∗, u∗) be
a global minimizer of the problem (P)K,B1 (the weak derivatives x∗i; tj have
representatives from first Baire class) under all assumptions of Theorem
2.4. Then there exist multipliers ν ∈ (rca (Ω, B))nm satisfying the maxi-
mum condition with ε = 0 (in integrated form), (M)0, and the canonical
equation (K)0:

(M)0 :
∑

i,j

∫

Ω
(u∗ij(t)− uij(t))dνij(t) > 0

∀u ∈ B1,nm(Ω): u(t) ∈ U(t) ∀ t ∈ Ω

(K)0 :
∑

i,j

∫

Ω
ζi; tj (t) dνij(t)−

∑

k

∫

Ω
ζk(t) dαk(t) = 0

ζ ∈ C1,n(Ω): ζ(t0) = on.

Proof. By Lemma 2.1, the relaxed problem (P)K satisfies all assumptions
of [12, Theorem 3.4, p. 231]. Its proof in [12] is also not influenced by the
formal difference in the definition of MU. If (x∗, u∗) is a global minimizer
of (P)K having weak derivatives x∗i; tj with representatives from the first
Baire class then, as in the proof of Theorem 2.6, (x∗, µ∗) with µ∗t = δu∗(t)
is a global minimizer of (P)K. After correcting the error in the choose
of the test function space in (K)′0 (ζ ∈ C1,n(Ω) instead of ζ ∈ W 1,n

∞ (Ω)
with ζi; tj ∈ B1(Ω), see [13, Erratum]) and replacing in (M)′0 the genera-
lized controls µ ∈ M′

U by ordinary controls in the sense of Theorem 2.4.
(even generating functions xi; tj from the first Baire class on the whole



104 M. Wagner

domain Ω), one has derived from the conditions (K)′0 and (M)′0 of the above
cited theorem the demanded conditions (K)0 and (M)0.

3 Duality theorems

a) Construction of the dual problem. Two optimization problems, a
minimizing problem (P) and a maximizing problem (D), are said to be weakly
dual in the case that inf (P) > sup(D), and strongly dual if equality holds:
inf (P) = sup(D) (cf. Klötzler [7]). Under the assumptions of Theorem 1.2,
the minimal values of the problems (P)K, (P)K,B0 and (P)K,B1 coincide, and
the dual problem can be formulated in relation to (P)K,B0 . Thus it is possible
to use Radon measures as dual variables.

Definition 3.1. We define the sets X0, X1 and Y0 and a functional Φ : X0×
Y0 → IR by

(15.1)
X0 = {(x, u) ∈ W 1,n

∞ (Ω)× Lnm∞ (Ω)|xi; tj ∈ B0(Ω), uij ∈ B1(Ω),

u(t) ∈ U(t) ∀ t ∈ Ω, x(t0) = on};

(15.2) X1 = {(x, u) ∈ W 1,n
∞ (Ω)× Lnm∞ (Ω)|xi; tj (t) = uij(t) a.e. on Ω};

(15.3) Y0 = (rca (Ω, B))nm;

(16) Φ(x, u, ν) = J(x, u) +
∑

i,j

∫

Ω

[
xi; tj (t)− uij(t)

]
dνij(t).

Lemma 3.2. Let (P)K satisfy all assumptions of Theorem 1.2. Then the
functional Φ(x, µ, ν) satisfies the equivalence condition

inf
(x,u)∈X0∩X1

J(x, u) = inf
(x,u)∈X0

sup
ν∈Y0

Φ(x, µ, ν).

Proof. Given a pair (x, u) ∈ X0 where xi0; tj0
(t′) − ui0,j0(t

′) > 0 (without
loss of generality) for certain indices i0, j0 at a point t′ ∈ Ω. Then we have
along the sequence of the measures νN ∈ (rca (Ω, B))nm with νN

i0,j0
= N · δt′

and νN
ij = o for i 6= i0 or j 6= j0

lim
N→∞

Φ(x, u, νN ) = J(x, u) + lim
N→∞

N ·
[
xi0; tj0

(t′)− ui0,j0(t
′)

]
= +∞.
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It follows that supν∈Y0
Φ(x, u, ν) = J(x, u) if (x, u) ∈ X0 satisfies (1.2)

for all t ∈ Ω (consequently, (x, u) ∈ X1), and supν∈Y0
Φ(x, u, ν) = +∞

else. By Theorem 1.2, (P)K,B0 admits a minimizing sequence {(xN , uN )}
of feasible processes which fulfill the state equations (1.2) everywhere on Ω.
Along this sequence, we have inf(x,u)∈X0∩X1

J(x, u) = limN→∞ J(xN , uN ) =
limN→∞ supν∈Y0

Φ(xN , uN , ν) = inf(x,u)∈X0
supν∈Y0

Φ(x, u, ν), and the
proof is complete.

Theorem 3.3 (Weak duality theorem for (P)K). Let (P)K satisfy all as-
sumptions of Theorem 1.2. Then there is weak duality between each of the
problems (P)K, (P)K,B0 and (P)K,B1 and the following problem (D)′K (17.1)
– (17.2):

(17.1) G′(ν) = inf
(x,u)∈X0

Φ(x, u, ν) −→ Max !

(17.2) ν ∈ Y0 = ( rca (Ω, B) )nm.

Proof. It holds inf (P)K = inf (P)K,B0 = inf (P)K,B1 (by Theorem 1.2);
inf (P)K,B0 = inf(x,u)∈X0∩X1

J(x, u) (by construction); inf(x,u)∈X0∩X1
J(x, u)

= inf(x,u)∈X0
supν∈Y0

Φ(x, u, ν) (by Lemma 3.2) and, finally,
inf(x,u)∈X0

supν∈Y0
Φ(x, u, ν) > supν∈Y0

inf(x,u)∈X0
Φ(x, u, ν) = sup(D)′K.

b) Strong duality. Note that G′(ν) can be expressed as follows:

(18)

G′(ν) = inf
x∈C1,n(Ω), x(t0)=on

u∈B1,nm(Ω), u(t)∈U(t) ∀ t∈Ω

[
−

∑

k

∫

Ω
xk(t) dαk(t)

+
∑

i,j

∫

Ω
xi; tj (t) dνij(t)−

∑

i,j

∫

Ω
uij(t) dνij(t)

]
.

Then, by restriction of the feasible domain, we receive from (D)′K the prob-
lem (D)K (2.1) – (2.2) mentioned in the introduction. Obviuosly, it holds

(19) sup(D)′K > sup(D)K; G′(ν) = G(ν) for all ν feasible in (D)K.

The feasible set of (D)K is weak∗-closed and convex, the cost functional G(·)
is concave in ν, and thus the set of the global maximizers of (D)K is convex.

Theorem 3.4 (Strong duality theorem for (P)K). Let (P)K satisfy all as-
sumptions of Theorem 1.2. Then the problems (D)′K and (D)K have the same
maximal value, and each of the problems (D)′K and (D)K is strongly dual to
each of the problems (P)K, (P)K,B0, (P)K,B1 and (P)K.
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Proof. By Theorem 2.5, (P)K admits a global minimizer (x∗, u∗) (which
is eventually not feasible in (P)K,B0 or (P)K,B1). Then, by Theorem 2.6, for
each εN = 1/N , N ∈ IN1, there exists a multiplier yεN = yN satisfying the
conditions (M)ε and (K)ε together with (x∗, u∗), and yN can be interpreted
as the density of a λm-absolutely continuous measure νN . By (K)ε, each
of the measures νN is feasible in (D)′K as well as in (D)K (since C1,n(Ω) ⊂
W 1,n

p (Ω) ). Then it follows from (18):

(20) G′(νN ) = inf
x∈C1,n(Ω), x(t0)=on

u∈B1,nm(Ω),u(t)∈U(t) ∀ t∈Ω

[
J(x∗, u∗)

−
∑

k

∫

Ω
(xk(t)− x∗k(t)) dαk(t) +

∑

i,j

∫

Ω

(
(xi; tj (t))− x∗i; tj (t)

)
dyN

ij (t) dt

−
∑

i,j

∫

Ω

(
uij(t)− u∗ij(t)

)
dyN

ij (t) dt +
∑

i,j

∫

Ω

(
x∗i; tj (t)− u∗ij(t)

)
dyN

ij (t) dt
]
.

Together with the conditions (M)εN , (K)εN and the feasibility of (x∗, u∗)
for (P)K we conclude that G′(νN ) > J(x∗, u∗) − 1/N . Using Theorem 3.3
and (19), we arrive at the inequalities J(x∗, u∗) = inf (P)K > sup(D)′K >
sup (D)K > G(νN ) = G′(νN ) > J(x∗, u∗) − 1/N for all N ∈ IN1, and the
relation inf (P)K = sup(D)K is proved.

c) Saddle-point conditions. Proof of Theorem 1.3. Assume that
ν∗ ∈ (rca (Ω, B))nm and a feasible pair (x∗, u∗) of (P)K,B1 satisfy the condi-
tions (M)∗0, (K)∗0 and (D)∗0. By (K)∗0, ν∗ is a feasible element of (D)K. From
(M)∗0 we deduce

G(ν∗) = inf
u∈B1,nm(Ω)

u(t)∈U(t) ∀ t∈Ω

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
= −

∑

i,j

∫

Ω
u∗ij(t) dν∗ij(t),

from which, together with (D)∗0, it follows that J(x∗, u∗) = G(ν∗), and
(x∗, u∗) and ν∗ form a saddle point for the problems (P)K,B1 – (D)K.

Remark. Since the value of the cost functional does not depend on u
one can construct from a given global minimizer (x∗, u∗) of (P)K,B1 non-
denumerably many different global minimizers (x∗, u∗∗) of (P)K,B1 by the
setting u∗∗ij (t) = χ(Ω\Nij)(t) ·u∗ij(t)+χNij (t) ·uij(t). Here Nij are λm-null sets
with characteristic functions from the first Baire class while u ∈ B1,nm(Ω)
with u(t) ∈ U(t) for all t ∈ Ω can be chosen arbitrarily. On this fact, it can
be founded a partial converse of Theorem 1.3.
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Theorem 3.5 (Partial converse of Theorem 1.3). Let (P)K satisfy all as-
sumptions of Theorem 1.2. Assume that (x∗, u∗) and ν∗ are feasible elements
of (P)K,B1 resp. (D)K with J(x∗, u∗) = G(ν∗). Let ν ′ij and ν ′′ij denote the
absolutely continuous resp. singular parts of the components of ν∗ in the
Lebesgue decomposition with respect to λm. Further assume that

λm(supp ν ′′,+ij ) = 0, λm(supp ν ′′,−ij ) = 0 and supp ν ′′,+ij ∩supp ν ′′,−ij = Ø∀ i, j.

Then there exists a function u∗∗ ∈ B1,nm(Ω) with the following properties:

1) u∗(t) = u∗∗(t) for a.e. t ∈ Ω (u∗ and u∗∗ belong to the same Lnm∞ -
equivalence class).

2) u∗∗(t) ∈ U(t) ∀ t ∈ Ω (the pair (x∗, u∗∗) is feasible in (P)K,B1).
3) J(x∗, u∗) = J(x∗, u∗∗) (the triple (x∗, u∗∗, ν∗) forms also a saddle point

for the problems (P)K,B1 – (D)K).
4) The triple (x∗, u∗∗, ν∗) satisfies the saddle-point conditions (M)∗0, (K)∗0

and (D)∗0 of Theorem 1.3.

Proof. From the feasibility of ν∗ in (D)K it follows that (K)∗0 is valid. Now
we distinguish two cases:

Case 1. u∗ and ν∗ satisfy (M)∗0, i.e.

(21) −
∑

i,j

∫

Ω
u∗ij(t) dν∗ij = inf

u∈B1,nm(Ω)
u(t)∈U(t) ∀ t∈Ω

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
= G(ν∗).

Then from J(x∗, u∗) = G(ν∗) it results (D)∗0, and the theorem is valid with
u∗(t) = u∗∗(t) for all t ∈ Ω.

Case 2. u∗ and ν∗ violate (M)∗0 what means

(22) −
∑

i,j

∫

Ω
u∗ij(t) dν∗ij > inf

u∈...

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
= G(ν∗).

Here and below, the infimum is taken over the same function set as in (21).
Using the members (xN , uN ) ∈ C∞,n(Ω) × C∞,nm(Ω) of the minimizing
sequence {(xN , uN )} from Theorem 1.2 as test functions in (K)∗0, it follows:

(23) J(xN , uN ) = −
∑

k

∫

Ω
xN

k (t) dαk(t) = −
∑

i,j

∫

Ω
uN

ij (t) dν∗ij(t) =⇒
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J(x∗, u∗) = lim
N→∞

J(xN , uN ) = lim
N→∞

[
−

∑

i,j

∫

Ω
uN

ij (t) dν∗ij(t)
]

= G(ν∗).

We subject each of the measures ν∗ij to the Lebesgue decomposition w. r. to
the measure λm into the absolutely continuous part ν ′ij and the singular part
ν ′′ij [4, Theorem 14, p. 132]. The densities of the absolutely continuous parts
are denoted by y′ij ∈ L1(Ω). Since the functions uN

ij are bounded on Ω, from
uN

ij →L1(Ω) u∗ij it follows the convergence uN
ij y′ij →L1(Ω) u∗ij y′ij , and we have

(24)

inf
u∈...

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
= lim

N→∞

[
−

∑

i,j

∫

Ω
uN

ij (t) dν∗ij(t)
]

= −
∑

i,j

∫

Ω
u∗ij(t) y′ij(t) dt− lim

N→∞
∑

i,j

∫

Ω
uN

ij (t) dν ′′ij(t).

Further, the singular parts are subjected to the Jordan decomposition ν ′′ij =
ν ′′,+ij − ν ′′,−ij [4, p. 98, Theorem 8]; both parts are still Radon measures [4,
Lemma 12, p. 137] whose supports, by assumption, are compact λm-null
sets. We abbreviate: supp ν ′′,+ij = N+

ij , supp ν ′′,+ij = N−ij , Nij = N+
ij ∪N−ij and

define the functions

(25) u∗∗ij (t) = χ(Ω\Nij)(t)u∗ij(t) + χN+
ij
(t) inf

N
uN

ij (t) + χN−ij
(t) sup

N
uN

ij (t).

All u∗∗ij are contained in the first Baire class since the characteristic functions
χ(Ω\Nij), χN+

ij
and χN−ij

(cf. [12, Lemma 1.4, p. 220]) as well as the pointwise

infimum resp. supremum of the sequence {uN
ij } of continuous functions have

the same property [3, Theorem 10, p. 398]. The values of the functions
u∗ij and u∗∗ij differ at most on the null sets Nij . By Theorem 1.2, we have
uN (t) ∈ U(t) for all N ∈ IN1 and for all t ∈ Ω; then it follows from the
closedness of the sets U(t) (Lemma 2.1) that infN uN

ij (t) ∈ U(t) as well
as supN uN

ij (t) ∈ U(t) for all t ∈ Ω. Together with N+
ij ∩ N−ij = Ø (by

assumption) it results that u∗∗(t) ∈ U(t) for all t ∈ Ω. Thus u∗∗ fulfills the
assertions 1) – 3) of our theorem.

We have still to prove that (x∗, u∗∗, ν∗) satisfies the saddle-point condi-
tions. For this purpose, let us introduce the following abbreviations:

L = lim
N→∞

−
∑

i,j

∫

Ω
uN

ij (t) dν∗ij(t); L′ = lim
N→∞

−
∑

i,j

∫

Ω
uN

ij (t) y′ij(t) dt;

L′′ = lim
N→∞

−
∑

i,j

∫

Nij

uN
ij (t) dν ′′ij(t);
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J = inf
u∈...

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
; J ′ = inf

u∈...

[
−

∑

i,j

∫

Ω
uij(t) y′ij(t) dt

]
;

J ′′ = inf
u∈...

[
−

∑

i,j

∫

Ω
uij(t) dν ′′ij(t)

]
.

In these notations, it holds obviously

(26) L′ + L′′ = L = J > J ′ + J ′′.

Here J > J ′ + J ′′ leads to a contradiction since one could choose then
functions u′, u′′ ∈ B1,nm(Ω) with u′(t) ∈ U(t) and u′′(t) ∈ U(t) for all t ∈ Ω
in such a way that

(27) J > −
∑

i,j

∫

Ω
u′ij(t)y

′
ij(t) dt−

∑

i,j

∫

Nij

u′′ij(t) dν ′′ij(t)

but uij(t) = χ(Ω\Nij)(t) · u′(t) + χNij (t) · u′′(t) would be feasible for the
construction of J as a function of first Baire class. So we have

(28) L′ + L′′ = J ′ + J ′′.

As immediate consequence of (28), the single equations L′ = J ′ and L′′ = J ′′

result since L′ < J ′ as well as L′′ < J ′′ are impossible. L′ = J ′ means

(29)

−
∑

i,j

∫

Ω
u∗ij(t) y′ij(t) dt = −

∑

i,j

∫

Ω
u∗∗ij (t) y′ij(t) dt

= inf
u∈...

[
−

∑

i,j

∫

Ω
uij(t) y′ij(t) dt

]
.

Further, it holds for all N ∈ IN1:
(30)

−
∑

i,j

∫

Ω
uN

ij (t) dν ′′ij(t) = −
∑

i,j

∫

N+
ij

uN
ij (t) dν ′′,+ij (t) +

∑

i,j

∫

N−ij
uN

ij (t) dν ′′,−ij (t)

> −
∑

i,j

∫

N+
ij

inf
N

(uN
ij (t))dν ′′,+ij (t) +

∑

i,j

∫

N−ij
sup
N

(uN
ij (t) ) dν ′′,−ij (t)

= −
∑

i,j

∫

Ω
u∗∗ij (t) dν ′′ij(t) > J ′′.

The last inequality results from the fact that u∗∗ is feasible for the construc-
tion of J ′′. After the limit passage N →∞ in (30) we arrive at

(31) J ′′ = L′′ > −
∑

i,j

∫

Ω
u∗∗ij (t) dν ′′ij(t) > J ′′.
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Together with (28), it results from equations (29) and (31):

(32) −
∑

i,j

∫

Ω
u∗∗ij (t) dν∗ij(t) = J ′ + J ′′ = J = inf

u∈...

[
−

∑

i,j

∫

Ω
uij(t) dν∗ij(t)

]
,

so that u∗∗ and ν∗ satisfy condition (M)∗0. As in the former case, (D)∗0 is
then satisfied also, and the proof is complete.
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Basel-Berlin 1990.
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[9] R. Klötzler, Strong duality for transportation flow problems, Journal for Anal-
ysis and its Applications 17 (1998), 225–228.

[10] H. Kraut, Optimale Korridore in Steuerungsproblemen, Dissertation, Karl-
Marx-Universität Leipzig 1990.

[11] C.B. Morrey, Multiple Integrals in the Calculus of Variations, Springer,
Berlin-Heidelberg-New York 1966 (Grundlehren 130).

[12] S. Pickenhain and M. Wagner, Critical points in relaxed deposit problems, in:
A. Ioffe, S. Reich, I. Shafrir, eds., Calculus of variations and optimal control,
Technion 98, Vol. II (Research Notes in Mathematics, Vol. 411), Chapman &
Hall/CRC Press; Boca Raton, 1999, 217–236.



Transportation flow problems with ... 111

[13] S. Pickenhain and M. Wagner, Pontryagin’s principle for state-constrained
control problems governed by a first-order PDE system, BTU Cottbus,
Preprint-Reihe Mathematik M-03/1999. To appear in: JOTA.
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