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Abstract

We study a controllability problem for a system governed by a semi-
linear functional differential inclusion in a Banach space in the presence
of impulse effects and delay. Assuming a regularity of the multivalued
non-linearity in terms of the Hausdorff measure of noncompactness we
do not require the compactness of the evolution operator generated by
the linear part of inclusion. We find existence results for mild solutions
of this problem under various growth conditions on the nonlinear part
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and on the jump functions. As example, we consider the controllabil-
ity of an impulsive system governed by a wave equation with delayed
feedback.
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1. Introduction

Impulsive differential equations and inclusions form an appropriate model
for describing phenomena where systems instantaneously change their state.
For this reason they find wide applications in several fields of applied sci-
ences, such as Biology, Economics, and Physics. Concerning the theory of
impulsive differential equations and inclusions we refer, for instance, to the
monographs [16, 5, 20] and the references therein. Among recent works on
the study of impulsive differential equations and inclusions associated to
various boundary conditions such as Cauchy initial condition, periodicity
conditions and delay conditions, we may point out, e.g., [6, 7, 9, 10, 15],
and [23]. Solutions to this type of problems are functions that may be not
continuous at some fixed moments. To deal with such functions with val-
ues in a Banach space E, we denote by the symbol C([a1, a2];E) the space
of piecewise continuous functions c : [a1, a2] → E with a finite number of
discontinuity points {t∗} such that t∗ 6= a2 and all values

c(t+∗ ) = lim
h→0+

c(t∗ + h), c(t−∗ ) = lim
h→0−

c(t∗ + h)

are finite. We will consider the space C([a1, a2];E) as a normed space with
the norm:

‖c‖C =
1

a2 − a1

∫ a2

a1

‖c(t)‖E dt.

(Notice that the same construction can be applied also in [6, 7]).

In this paper we deal with a control system governed by a semilinear
functional differential inclusion with delay in a Banach space in the presence
of impulse effects. More precisely, for a fixed τ > 0 and a given initial
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function ψ ∈ C([−τ, 0];E), we consider the object which is described by the
following relations with delay in a separable Banach space E:

(1.1)





y′(t) ∈ A(t)y(t) + F (t, yt) +Bu(t) a.e. t ∈ [0, b], t 6= tk,

k = 1, . . . , N

y(t) = ψ(t) , t ∈ [−τ, 0]
y(t−k ) = y(tk), k = 1, . . . , N ;

y(t+k ) = y(tk) + Ik(ytk) , k = 1, . . . , N.

Here {A(t)}t∈[0,b] is a family of linear (not necessarily bounded) operators in
E generating an evolution operator; F is a Carathéodory type multifunction;
the function yt ∈ C([−τ, 0];E) is defined by the relation yt(θ) = y(t + θ),
θ ∈ [−τ, 0]; the points 0 = t0 < t1 < · · · < tN < tN+1 = b are given and
Ik : C([−τ, 0];E) → E, k = 1, . . . , N , are given impulse functions.

Further, we suppose that the control function u(·) is considered in the
space L2([0, b];U), where U is a Banach space of controls and B : U → E is
a bounded linear operator.

We will consider the controllability problem for this system, i.e., we
will study conditions under which there exists a trajectory y(·) of the above
system reaching a given state at the final time b.

Similar problems are studied in literature, see e.g. [1, 2, 4, 11, 17, 18]. It
should be mentioned that in some works a constant linear part is considered
and the compactness of the semigroup generated by it is required. Triggiani
in [21, 22] has proved that in an infinite-dimensional case this assumption
is in contrast to the hypothesis of the controllability of the corresponding
linear problem, hypothesis that is quite usual for this type of problems.
Using the concept of condensing operator, it is possible to avoid this diffi-
culty. For instance, Obukhovskii and Zecca in [18], assuming the regularity
of the nonlinear part of a differential inclusion of type (1.1) in terms of the
Hausdorff measure of non compactness, were able to consider the controlla-
bility of the considered problem without assuming the compactness of the
semigroup generated by the linear part. We prove that it is possible to do
the same for a linear part that generates an evolution operator and in the
presence of impulse effects and delay.

The paper is organized as follows. In Section 2 we recall some definitions
and results from multivalued analysis which will be used later. In Section 3
we present the framework in which the problem is considered. In Section 4
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we construct a solution operator, whose fixed points are solutions to problem
(1.1) and study some of its properties. In Section 5 we provide various
growth conditions on the multimap F and on the jump functions Ik which
guarantee the existence of a solution of the controllability problem. At last,
in Section 6 we consider, as an example, the problem of controllability of an
impulsive system with delayed feedback governed by a wave equation.

2. Preliminaries

Let X, Y be two Hausdorff topological vector spaces.

We denote by P(Y ) the family of all non-empty subsets of Y and put

K(Y ) = {C ∈ P(Y ) is compact} ;
Kv(Y ) = {D ∈ P(Y ) is compact and convex} .

A multivalued map (multimap) F : X → P(Y ) is said to be:

(i) upper semicontinuous (u.s.c.) if F−1(V ) = {x ∈ X : F (x) ⊂ V } is an
open subset of X for every open V ⊆ Y ;

(ii) closed if its graph GF = {(x, y) ∈ X × Y : y ∈ F (x)} is a closed subset
of X × Y .

Notice the following useful property (see, e.g., [13], Theorem 1.1.7).

Proposition 2.1. Let F : X → K(Y ) be a u.s.c. multimap. If K ⊂ X is a
compact set then its image F (K) =

⋃
x∈K F (x) is a compact subset of Y .

Sometimes we will denote a multimap with non-empty values by the symbol
F : X ⊸ Y .

Let (A,≥) be a partially ordered set and E be a real Banach space.
We recall that a map β : P(E) → A is called a measure of noncompactness
(MNC) in E if

β(coΩ) = β(Ω)

for every Ω ∈ P(E), where co denotes the convex closure of a set (see, e.g.
[13] for details). A measure of noncompactness β is called:

(i) monotone, if Ω0, Ω1 ∈ P(E), Ω0 ⊆ Ω1 imply β(Ω0) ≤ β(Ω1);

(ii) nonsingular, if β({c} ∪ Ω) = β(Ω) for every c ∈ E , Ω ∈ P(E);
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(iii) real, if A = [0,+∞] with the natural ordering and β(Ω) < +∞ for
every bounded Ω;

If A is a cone in a Banach space, a measure of noncompactness β is called:

(iv) regular, if β(Ω) = 0 is equivalent to the relative compactness of Ω;

(v) algebraically semiadditive, if β(Ω0 + Ω1) ≤ β(Ω0) + β(Ω1) for every
Ω0,Ω1 ∈ P(E).

A well known example of a measure of noncompactness satisfying all of the
above properties is the Hausdorff MNC

χE(Ω) = inf {ε > 0 : Ω has a finite ε-net} .

For a linear bounded operator L : E → E , it is possible to define its χ-norm
by

(2.1) ‖L‖(χ) = χ(LB),

where B ⊂ E is the unit ball. It is easy to see that

‖L‖(χ) ≤ ‖L‖.

A multifunction Φ : [a1, a2] → P(E) is said to be:

(i) integrable, if it admits a selection φ(t) ∈ Φ(t) for a.e. t ∈ [a1, a2],
φ ∈ L1([a1, a2]; E);

(ii) integrably bounded, if there exists a function κ ∈ L1([a1, a2];R+) such
that

‖Φ(t)‖ := sup{‖y‖ : y ∈ Φ(t)} ≤ κ(t) for a.e. t ∈ [a1, a2].

For an integrable multifunction Φ the multivalued integral of Φ is defined in
the following way:

∫ t

a1

Φ(s) ds =

{∫ t

a1

φ(s) ds : φ(s) ∈ Φ(s), φ ∈ L1([a1, a2]; E)
}
.

The following result on the estimate of the multivalued integral holds.
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Proposition 2.2 [cf. [13] Theorem 4.2.3]. Let Φ : [a1, a2] → P(E) be
an integrable, integrably bounded multifunction. If there exists a function
q ∈ L1([a1, a2];R+) such that

χE(Φ(t)) ≤ q(t) for a.e. t ∈ [a1, a2],

then

χE

(∫ t

a1

Φ(s) ds

)
≤
∫ t

a1

q(s) ds

for all t ∈ [a1, a2].

We will also use the following MNCs, defined on the Banach space of con-
tinuous functions C([a1, a2]; E):

(i) the modulus of fiber noncompactness

ϕ(Ω) = sup
t∈[a1,a2]

χE(Ω(t)),

where Ω(t) = {y(t) : y ∈ Ω};
(ii) the modulus of equicontinuity

modC(Ω) = lim
δ→0

sup
y∈Ω

max
|t1−t2|≤δ

‖y(t1)− y(t2)‖.

Notice that these MNCs satisfy all the above properties except regularity.
Let us also mention that the modulus of fiber noncompactness ϕ is well
defined on the space C([a1, a2]; E) too.

If X is a subset of E , a multimap F : X → K(E) is called condensing
with respect to a MNC β, or β-condensing, if for every Ω ⊆ X that is not
relatively compact we have

β(F (Ω)) � β(Ω).

Let K ⊂ E be a convex closed set, V ⊂ K a nonempty bounded relatively
open set, β a monotone nonsingular MNC in E and F : V → Kv(K) an
u.s.c. β-condensing multimap such that x /∈ F(x) for all x ∈ ∂V , where V
and ∂V denote the relative closure and the relative boundary of the set V
in K. In such a setting the relative topological degree

degK(i−F , V )
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of the corresponding multivalued vector field i − F is well defined and
satisfies the standard properties (see e.g. [13]). In particular the condition

degK(i−F , V ) 6= 0

implies that the fixed point set FixF = {x : x ∈ F(x)} is a nonempty
compact subset of V .

The application of the topological degree theory yields the following
fixed point principles which we will use in the sequel.

Theorem 2.1 ([13], Corollary 3.3.1). Let M be a bounded convex closed
subset of E and F : M → Kv(M) an u.s.c. β-condensing multimap. Then
FixF is nonempty and compact.

Theorem 2.2 (cf. [13], Theorem 3.3.4). Let a ∈ V be an interior point and
F : V → Kv(K) an u.s.c. β-condensing multimap satisfying the boundary
condition

x− a /∈ λ (F(x)− a)

for all x ∈ ∂V and 0 < λ ≤ 1. Then FixF is a nonempty compact set.

3. The setting of the problem

Let [0, b] be a fixed interval of the real line, E a separable Banach space.
Put ∆ = {(t, s) ∈ [0, b] × [0, b] : 0 ≤ s ≤ t ≤ b}, we recall (see, e.g.

[14, 19]) that a two parameter family of bounded linear operators
{T (t, s)}(t,s)∈∆, T (t, s) : E → E, is called an evolution system if the fol-
lowing conditions are satisfied:

1. T (s, s) = I, 0 ≤ s ≤ b; T (t, r)T (r, s) = T (t, s), 0 ≤ s ≤ r ≤ t ≤ b;

2. T (t, s) is strongly continuous on ∆, i.e., for each x ∈ E, the function
(t, s) ∈ ∆ → T (t, s)x is continuous.

To every evolution system we can assign the corresponding evolution opera-
tor T : ∆ → L(E), where L(E) is the space of all bounded linear operators
in E.

It is known (see, e.g., [14]) that there exists a constant M = M∆ > 0
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such that

‖T (t, s)‖L(E) ≤M, (t, s) ∈ ∆.(3.1)

We will study problem (1.1) under the following hypotheses:

(A) {A(t)}t∈[0,b] is a family of linear not necessarily bounded operators
(A(t) : D(A) ⊂ E → E, t ∈ [0, b], D(A) a dense subset of E not depending
on t), generating an evolution operator T : ∆ → L(E); i.e., there exists
an evolution system {T (t, s)}(t,s)∈∆ such that, on the region D(A), each
operator T (t, s) is strongly differentiable (see, e.g. [14]) relative to t and s,
while

∂T (t, s)

∂t
= A(t)T (t, s) and

∂T (t, s)

∂s
= −T (t, s)A(s) , (t, s) ∈ ∆.

For the multivalued nonlinearity F : [0, b] × C([−τ, 0];E) → Kv(E) we as-
sume:

(F1) the multifunction F (·, c) : [0, b] → Kv(E) has a measurable selection
for every c ∈ C([−τ, 0];E), i.e., there exists a measurable function
f : [0, b] → E such that f(t) ∈ F (t, c) for a.e. t ∈ [0, b];

(F2) the multimap F (t, ·) : C([−τ, 0];E) → Kv(E) is u.s.c. for a.e. t ∈ [0, b];

(F3) for every bounded set Ω ⊂ C([−τ, 0];E) there exists a function µΩ ∈
L1([0, b];R+) such that for each c ∈ Ω:

‖F (t, c)‖ = sup{‖y‖ : y ∈ F (t, c)} ≤ µΩ(t) for a.e. t ∈ [0, b];

(F4) there exists a function m ∈ L1([0, b];R+) such that for every bounded
Ω ⊂ C([−τ, 0];E)

χE(F (t,Ω)) ≤ m(t)ϕ(Ω) for a.e. t ∈ [0, b],

where χE is the Hausdorff MNC in E and ϕ is the modulus of fiber
noncompactness.

Concerning the jump function and the operator B we suppose the following:

(Ik) the jump functions Ik : C([−τ, 0];E) → E, k = 1, . . . , N are com-
pletely continuous, i.e., they are continuous and map bounded sets
into relatively compact ones;



Controllability for impulsive semilinear functional ... 47

(B) B : U → E is a linear bounded operator with

(3.2) ‖B‖ ≤M1,

where M1 is a positive constant.

Definition 3.1. A piecewise continuous function y : [−τ, b] → E is a mild
solution for the impulsive Cauchy problem (1.1) if

(i) y(t) = T (t, 0)ψ(0) +
∑

0<tk<t

T (t, tk)Ik(ytk) +

∫ t

0
T (t, s)f(s) ds

+

∫ t

0
T (t, s)Bu(s) ds, t ∈ [0, b], where f ∈ L1([0, b];E), f(s) ∈ F (s, ys)

a.e. s ∈ [0, b], and u ∈ L2([0, b];U);

(ii) y(t) = ψ(t), t ∈ [−τ, 0];
(iii) y(t−k ) = y(tk), k = 1, . . . , N ;

(iv) y(t+k ) = y(tk) + Ik(ytk), k = 1, . . . , N .

As mentioned in the introduction, we will consider the controllability prob-
lem for the above system, i.e., we will study conditions which guarantee the
existence of a mild solution to problem (1.1) satisfying

(3.3) y(b) = x1,

where x1 ∈ E is a given point. A pair (y, u) consisting of a mild solution y(·)
to (1.1) satisfying (3.3) and of the corresponding control u(·) ∈ L2([0, b];E)
is called a solution of the controllability problem.

We assume the standard assumption that the corresponding linear prob-
lem without impulses (F ≡ 0, Ik ≡ 0, k = 1, . . . , N) has a solution. More
precisely, we suppose that

(W) the controllability operator W : L2([0, b];U) → E given by

Wu =

∫ b

0
T (t, s)Bu(s) ds

has a bounded inverse W−1 : E → L2([0, b];U)/Ker(W ).
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It should be mentioned that we may assume, w.l.o.g., that W−1 acts into
L2([0, b];U) (see, e.g., [3]). Let M2 be a positive constant such that

(3.4) ‖W−1‖ ≤M2.

In the sequel, by the symbol PC([0, b];E) we denote the space of functions
z : [0, b] → E which are continuous on [0, b] \ {t1, . . . , tN} and such that the
left and right limits z(t−k ) and z(t

+
k ), k = 1, . . . , N exist and z(t−k ) = z(tk). It

is easy to see that this space endowed with the norm of uniform convergence
is a Banach space and that the space of continuous functions C([0, b];E) is a
closed subspace of it. For z ∈ PC([0, b];E) we denote by z̃i for i = 0, 1, . . . , N
the function z̃i ∈ C([ti, ti+1];E) given by z̃i(t) = zi(t) for t ∈ (ti, ti+1]
and z̃i(ti) = z(t+i ). Moreover, for a set D ⊂ PC([0, b];E), we denote by
D̃i, i = 0, 1, . . . , N the set D̃i = {z̃i : z ∈ D}. It is easy to verify the
following assertion.

Proposition 3.1. A set D ∈ PC([0, b]; E) is relatively compact in
PC([0, b];E) if and only if each set D̃i, i = 0, 1, . . . , N is relatively com-
pact in C([ti, ti+1];E).

Now, consider the convex closed subset D ∈ PC([0, b];E) defined by

(3.5) D = {z ∈ PC([0, b];E), z(0) = ψ(0)},

where ψ : [−τ, 0] → E is the function from the initial condition of (1.1).

For any z ∈ D we define the function z[ψ] : [−τ, b] → E as

z[ψ] =

{
ψ(t) t ∈ [−τ, 0];
z(t) t ∈ [0, b].

Moreover, for each Ω ⊂ D we denote Ω[ψ] = {z[ψ] : z ∈ Ω}.
For a given multimap F : [0, b] × C([−τ, 0];E) → Kv(E) satisfying con-

ditions (F1)-(F4), we may consider the multivalued superposition operator
PF : D ⊸ L1([0, b];E) defined as

(3.6) PF (z) =
{
f ∈ L1([0, b];E) : f(s) ∈ F (s, z[ψ]s) a.e. s ∈ [0, b]

}
.

It is known (see e.g. [13]) that PF is well defined. (Notice that the function
s ∈ [0, b] → z[ψ]s ∈ C([−τ, 0];E) is continuous).
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For an abstract operator S : L1([0, b];E) → PC([0, b], E) we consider the
following conditions

(S1) ‖Sf − Sg‖C ≤M‖f − g‖L1([0,b];E) for every f, g ∈ L1([0, b];E), where
‖ · ‖C denotes the sup-norm;

(S2) for any compact K ⊂ E and sequence {fn}∞n=1, fn ∈ L1([0, b];E) such
that {fn(t)}∞n=1 ⊂ K for a.e. t ∈ [0, b], the weak convergence fn ⇀ f0
implies the convergence Sfn → Sf0.

Applying Proposition 2.1 and Corollary 5.1.2 of [13], we can get the following
result.

Proposition 3.2. Let F : [0, b] × C([−τ, 0];E) → Kv(E) satisfy (F1)–(F4)
and S : L1([0, b];E) → PC([0, b], E) obey (S1), (S2). Then the composition
S ◦ PF : D ⊸ PC([0, b];E) is an u.s.c. multimap with compact values.

Now, we consider the generalized Cauchy operator G : L1([0, b];E) →
C([0, b];E) defined by

(3.7) Gf(t) =

∫ t

0
T (t, s)f(s) ds , t ∈ [0, b]

(see [8], Definition 1).

We recall that G has the following property.

Proposition 3.3 (cf. [8], Theorem 2; [13], Lemma 4.2.1). The generalized
Cauchy operator G satisfies properties (S1) and (S2).

Finally, let us mention the following result which may be deduced from
Theorem 5.1.1 of [13].

Proposition 3.4. Let S : L1([0, b];E) → PC([0, b], E) be an operator sat-
isfying properties (S1) and (S2). Then for an integrably bounded sequence
{fn} ⊂ L1([0, b];E) such that {fn(t)} is relatively compact for a.e. t ∈ [0, b],
the sequence {Sfn} is relatively compact in PC([0, b], E).
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4. The solution multioperator

In order to solve controllability problem (1.1, 3.3), we consider the integral
multioperator Γ : D ⊸ D defined as:

(4.1)

Γ(z) =

{
y ∈ D : y(t) = T (t, 0)ψ(0) +

∑

0<tk<t

T (t, tk)Ik(z[ψ]tk )

+

∫ t

0
T (t, s)(f(s) +Buz(s)) ds, f ∈ PF (z)

}
,

where uz(·) ∈ L2([0, b];U),

uz(t) =

=W−1

(
x1 − T (b, 0)ψ(0) −

N∑

k=1

T (b, tk)Ik(z[ψ]tk )−
∫ b

0
T (b, η)f(η) dη

)
(t).

It is easy to see that if y ∈ Fix Γ, then (y[ψ], uy) is a solution to controllability
problem (1.1, 3.3).

So our aim is to find a fixed point y ∈ Fix Γ. To do this we will study
some properties of the multioperator Γ. First of all, we obtain the following
estimate.

Lemma 4.1. Let z ∈ D and y ∈ λΓ(z) for some 0 < λ ≤ 1, then for each
t ∈ [0, b] we have

‖y(t)‖ ≤M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds

+MM1M2

√
b

(
‖x1‖+M‖ψ(0)‖ +M

N∑

k=1

‖Ik(z[ψ]tk )‖+M

∫ b

0
‖f(η)‖ dη

)

with f ∈ PF (z) and M,M1,M2 being constants from estimates (3.1), (3.2),
(3.4).

Proof. Let y ∈ λΓ(z), 0 < λ ≤ 1, then we have:

‖y(t)‖ ≤

≤
∥∥∥∥T (t, 0)ψ(0) +

∑

0<tk<t

T (t, tk)Ik(z[ψ]tk ) +

∫ t

0
T (t, s)(f(s) +Buz(s)) ds

∥∥∥∥
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≤M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds+MM1

∫ t

0
‖uz(s)‖ ds

=M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds

+MM1

∫ t

0

∥∥∥∥W
−1

(
x1 − T (b, 0)ψ(0) −

N∑

k=1

T (b, tk)Ik(z[ψ]tk )

−
∫ b

0
T (b, η)f(η) dη

)
(s)

∥∥∥∥ ds

≤M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds

+MM1

∥∥∥∥W−1

(
x1 − T (b, 0)ψ(0) −

N∑

k=1

T (b, tk)Ik(z[ψ]tk )

−
∫ b

0
T (b, η)f(η) dη

)∥∥∥∥
L1([0,b],U)

≤M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds

+MM1

√
b

∥∥∥∥W−1

(
x1 − T (b, 0)ψ(0) −

N∑

k=1

T (b, tk)Ik(z[ψ]tk )

−
∫ b

0
T (b, η)f(η) dη

)∥∥∥∥
L2([0,b],U)

≤M‖ψ(0)‖ +M
∑

0<tk<t

‖Ik(z[ψ]tk )‖+M

∫ t

0
‖f(s)‖ ds

+MM1M2

√
b

(
‖x1‖+M‖ψ(0)‖ +M

N∑

k=1

‖Ik(z[ψ]tk )‖+M

∫ b

0
‖f(η)‖ dη

)
.

Proposition 4.1. The multioperator Γ, defined in (4.1), is a u.s.c. operator
with convex and compact values.

Proof. We decompose Γ into the sum of a multioperator Γ1 : D ⊸ D and
two single valued operators Γ2, Γ3 : PC([0, b];E) → PC([0, b];E) defined in
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the following way:

Γ1(z) =





y1 ∈ D : y1(t) =

T (t, 0)ψ(0) +

∫ t

0
T (t, s)f(s) ds

+

∫ t

0
T (t, s)BW−1

(
x1 − T (b, 0)ψ(0)

−
∫ b

0
T (t, η)f(η) dη

)
(s) ds, f ∈ PF (z)





Γ2(z)(t) = −
∫ t

0
T (t, s)BW−1

(
N∑

k=1

T (b, tk)Ik(z[ψ]tk )

)
(s) ds

Γ3(z)(t) =
∑

0<tk<t

T (t, tk)Ik(z[ψ]tk ).

First of all, let us observe that from the continuity of the operators B,W−1,
and the jump functions Ik : C([−τ, 0];E) → E, k = 1, . . . , N we conclude
that Γ2 and Γ3 are continuous operators.

Further, we can consider the multioperator Γ1 as a composition of the su-
perposition multioperator PF with the operator S = S1+S2 : L

1([0, b];E) →
C([0, b];E), where:

S1f(t) = T (t, 0)ψ(0) +

∫ t

0
T (t, s)f(s) ds

and

S2f(t) =

∫ t

0
T (t, s)BW−1

(
x1 − T (b, 0)ψ(0) −

∫ b

0
T (t, r)f(η) dη

)
(s) ds.

In order to apply Proposition 3.2 we prove that the operator S satisfies
properties (S1) and (S2). It is so, provided that each of the items S1 and S2
satisfies the mentioned properties. From [[8], Theorem 2] it is true for the
operator S1, we prove the same for the operator S2.

Let f, g ∈ L1([0, b];E), then we have the following estimate for each
t ∈ [0, b]:

‖S2f(t)− S2g(t)‖E

=

∥∥∥∥
∫ t

0
T (t, s)BW−1

[∫ b

0
T (b, η)(f(η) − g(η)) dη

]
(s) ds

∥∥∥∥

≤MM1

∫ t

0

∥∥∥∥W
−1

[∫ b

0
T (b, η)(f(η) − g(η)) dη

]
(s)

∥∥∥∥ ds
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≤MM1

∥∥∥∥W−1

[∫ b

0
T (b, η)(f(η) − g(η)) dη

]∥∥∥∥
L1([0,b];U)

≤MM1

√
b

∥∥∥∥W−1

[∫ b

0
T (b, η)(f(η) − g(η)) dη

]∥∥∥∥
L2([0,b];U)

≤MM1M2

√
b

∥∥∥∥
∫ b

0
T (b, η)(f(η) − g(η)) dη

∥∥∥∥
E

≤M2M1M2

√
b ‖f − g‖L1 .

In order to prove (S2) we present operator S2 in the following way:

S2f = G
(
BW−1 (x1 − T (b, 0)ψ(0) − ζGf)

)
,

where G is defined in (3.7) and ζ : C([0, b];E) → E, ζ(y) = y(b) is a linear
continuous operator. Then the assertion follows from Proposition 3.3 and
the boundedness of the linear operators W−1, B, and ζ.

The conclusion now comes from the fact that the sum of an u.s.c. com-
pact valued multimap Γ1 with two continuous single-valued maps Γ2 and
Γ3 is an u.s.c. multimap with compact values (see, e.g., [13]). The con-
vexity of values of Γ follows directly from the convexity of values of the
multimap F .

Now we want to prove that the multioperator Γ : D → Kv(D) is condensing.
To this aim we need some extra hypotheses.

First of all we observe that from the uniform boundedness of the oper-
ators T (t, s), 0 ≤ s < t ≤ b and the operator B it follows that there exist
constants R,N1 > 0 such that

(4.2)
‖T (t, s)‖(χ) ≤ R ≤M, for any 0 ≤ s ≤ t ≤ b

and ‖B‖(χ) ≤ N1 ≤M1.

Further, denoting by χU the Hausdorff MNC in the space U , we suppose
that there exists a function δ ∈ L1([0, b];R+) such that for each bounded set
Ξ ⊂ E we have

(4.3) χU (W
−1(Ξ)(t)) ≤ δ(t)χE(Ξ) a.e. t ∈ [0; b].
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Finally, let us assume that the following condition holds:

(4.4)

(
R+R2N1

∫ b

0
δ(s) ds

)∫ b

0
m(η) dη < 1,

where m(·) is the function of condition (F4).

Now consider the MNC ν defined on bounded sets Ω ⊂ PC([0, b];E)
with values in (R2

+,≥) as:

ν(Ω) =

(
ϕ(Ω), max

0≤i≤N
modC(Ω̃i)

)
,

where ϕ and modC are the modulus of fiber noncompactness and the mod-
ulus of equicontinuity, respectively, defined in Section 2. We observe that the
modulus of fiber noncompactness is well defined also on the space
PC([0, b];E). It is easy to see that ν is a monotone, non singular, alge-
braically semi-additive, and regular MNC.

Proposition 4.2. Under conditions (4.3) and (4.4) the multioperator Γ :
D → Kv(D), defined in (4.1), is ν-condensing.

Proof. We decompose the multioperator Γ in the same way as in Proposi-
tion 4.1, i.e., we consider Γ as the sum of the multioperator Γ1 : D → Kv(D)
and the two single valued operators Γ2, Γ3 : PC([0, b];E) → PC([0, b];E).
At first, we prove that the operator Γ1 is ν-condensing. In fact let Ω ⊂ D
be a bounded subset such that

(4.5) ν(Γ1(Ω)) ≥ ν(Ω)

in the sense of semi-order generated by the cone R2
+. We will show that Ω

is relatively compact.

Let us estimate the value ϕ(Ω). For any t ∈ [0, b] we have

Γ1(Ω)(t) ⊂ T (t, 0)ψ(0) +G ◦ PF (Ω)(t) + S2 ◦ PF (Ω)(t).

Then applying (F4) and (4.2) we have

χE ({T (t, s)f(s) : f ∈ PF (Ω)}) ≤ Rm(s)ϕ(Ω[ψ]s) ≤ Rm(s)ϕ(Ω),

where Ω[ψ]s = {z[ψ]s : z ∈ Ω}.
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By Proposition 2.2 we have

χE(G ◦ PF (Ω)(t)) ≤ Rϕ(Ω)

∫ t

0
m(s) ds ≤ Rϕ(Ω)

∫ b

0
m(s) ds.

From the last inequality and estimates (4.2) and (4.3) we obtain

χE

({
T (t, s)BW−1

(
x1 − T (b, 0)ψ(0) −

∫ b

0
T (t, η)f(η) dη

)
(s),

f ∈ PF (Ω)

})

≤ RN1δ(s)χE

({∫ b

0
T (t, η)f(η) dη : f ∈ PF (Ω)

})

≤ R2N1ϕ(Ω)

(∫ b

0
m(s) ds

)
δ(s).

So, again by Proposition 2.2, we have

χE(S2 ◦ PF (Ω)(t)) ≤ R2N1ϕ(Ω)

(∫ b

0
m(s) ds

)(∫ t

0
δ(s) ds

)

≤ R2N1ϕ(Ω)

(∫ b

0
m(s) ds

)(∫ b

0
δ(s) ds

)
.

Therefore, for each t ∈ [0, b] we have

χE(Γ1(Ω)(t)) ≤ χE(G ◦ PF (Ω)(t)) + χE(S2 ◦ PF (Ω)(t))

≤
(
R+R2N1

∫ b

0
δ(s) ds

)(∫ b

0
m(s) ds

)
ϕ(Ω).

Hence,

(4.6) ϕ(Γ1(Ω)) ≤ q ϕ(Ω),

where by (4.4)

q =

(
R+R2N1

∫ b

0
δ(s) ds

)∫ b

0
m(s) ds < 1.
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Finally, inequalities (4.5) and (4.6) yield

(4.7) ϕ(Ω) = 0.

Now we show that modC(Ω̃i) = 0 for all 0 ≤ i ≤ N , i.e., each set Ω̃i is
equicontinuous. We observe that from (4.5) it follows

max
0≤j≤N

modC(Γ1(Ω̃j)) ≥ modC(Ω̃i),

for each 0 ≤ i ≤ N , so it is sufficient to prove that every set Γ1(Ω̃j), 0 ≤
j ≤ N is equicontinuous. This is equivalent to proving it for any sequence
{yn} ⊂ Γ1(Ω̃j). So, given such a sequence there exists a sequence {zn} ⊂ Ω
and a sequence of selections {fn}, fn ∈ PF (zn) such that

yn = T (t, 0)ψ(0) + (Gfn)(t) + (S2fn)(t), t ∈ [tj, tj+1].

By condition (F3) we have that the sequence {fn} is integrably bounded,
moreover from (4.7) and condition (F4) it follows that

χE ({fn(t)}) = 0 for a.e. t ∈ [0, b],

i.e., the sequence {fn(t)} is relatively compact for a.e. t ∈ [0, b]. Hence by
Propositions 3.3, 3.4, and the fact that the operator S2 satisfies properties
(S1) and (S2), we obtain that the sequence {yn} is relatively compact, im-
plying that modC({yn}) = modC(Γ1(Ω̃j)) = 0. Hence modC(Ω̃i) = 0, for
each 0 ≤ i ≤ N , implying, together with (4.7), by the Arzelà-Ascoli Theo-
rem that every Ω̃i is relatively compact. By using Proposition 3.1 we come
to the conclusion that Ω is a relatively compact set.

Now, by the assumptions on Ik, (k = 1, . . . N), B,W−1, and T , we
deduce Γ2 and Γ3 are compact operators. In fact let Ω ⊂ D be a bounded set,
from the compactness of the functions Ik, (k = 1, . . . N) and the continuity
of the operators T (b, tk) : E → E (k = 1, . . . N) we get that the image set

C =

N∑

k=1

T (b, tk)Ik(Ω[ψ]tk )

is a compact set, where Ω[ψ]tk = {z[ψ]tk : z ∈ Ω}. Further, from the
continuity of the operator W−1 : E → L2([0, b];U) we obtain the compact-
ness of the set K = W−1(C) in the space L2([0, b];U). Now, consider-
ing the linear continuous operator B : L2([0, b];U) → L2([0, b];E) defined
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as (Bu)(t) = Bu(t), t ∈ [0, b], it follows that the set Q = B(K) is com-
pact in L2([0, b];E). Finally, introducing the operator T : L2([0, b];E) →
C([0, b];E) defined as

(T q)(t) = −
∫ t

0
T (t, s)q(s) ds,

we have that Γ2(Ω) = T (Q). Clearly the operator T is a continuous opera-
tor, then we deduce that the set Γ2(Ω) is a compact set, hence the operator
Γ2 is a compact operator.

Applying Arzelà-Ascoli Theorem, it is easy to see that for each k the
family of functions

{T (t, tk)Ik(z[ψ]tk ) : z ∈ Ω},

is relatively compact, implying that Γ3 is a compact operator.
Finally, the operator Γ is a ν-condensing multioperator as a sum of

a ν-condensing multioperator Γ1 and two compact operators Γ2 and Γ3.
Indeed, applying the properties of monotonicity, algebraic semiadditivity,
and regularity of the MNC ν, we have for a given bounded subset Ω ⊂ D:

ν(Γ(Ω)) ≤ ν (Γ1(Ω) + Γ2(Ω) + Γ3(Ω))

≤ ν(Γ1(Ω)) + ν(Γ2(Ω)) + ν(Γ3(Ω)) = ν(Γ1(Ω))

and hence the relation
ν(Γ(Ω)) ≥ ν(Ω)

implies
ν(Γ1(Ω)) ≥ ν(Ω)

yielding the relative compactness of Ω.

5. Existence results

The results of the previous section show that the relative topological degree
described in Section 2 can be applied to the multioperator Γ defined in (4.1).
We can formulate the following general assertion.

Theorem 5.1. Let V ⊂ D be a bounded (relatively) open set such that
z /∈ Γ(z) for all z ∈ ∂V . If degD(i − Γ, V ) 6= 0 then controllability problem
(1.1) has a solution (y[ψ], u) such that y ∈ V.
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Now we will present various conditions under which the fixed point set of Γ
is not empty, obtaining in each of these cases an existence result for problem
(1.1). In order to do so, we assume hereafter conditions (A), (F1), (F2), (F4),
(Ik), (B), (W), (4.3), and (4.4). At the same time, we need to strengthen
condition (F3) and to assume some extra hypotheses on the jump functions
Ik, k = 1, . . . , N .

Theorem 5.2. Suppose that

(F3′) there exists a sequence of functions {ωn} ⊂ L1([0, b];R+), n = 1, 2 . . .
such that

sup
‖c‖C≤n

‖F (t, c)‖ ≤ ωn(t) for a.e. t ∈ [0, b], n = 1, 2, . . .

and assume that there exists a sequence {Hn}, n = 1, 2 . . . of non negative
numbers such that:

(5.1) max
1≤k≤N

(
sup

‖c‖C≤n
‖Ik(c)‖

)
< Hn.

If

(5.2) lim inf
n→∞

1

n

∫ b

0
ωn(s) ds = 0

and

(5.3) lim inf
n→∞

1

n
Hn = 0,

then controllability problem (1.1) has a solution.

Proof. We will prove that there exists a number R ≥ ‖ψ(0)‖C such that
for a nonempty closed convex set BR = {z ∈ D : ‖z‖ ≤ R} we will have
Γ(BR) ⊆ BR. By contradiction, there will exist sequences {yn}, {zn} ⊂ D
such that yn ∈ Γ(zn), ‖zn‖ ≤ n

2 , ‖yn‖ > n
2 for all n ≥ 2‖ψ‖C . Then there

exists a sequence {fn} ∈ PF (zn), n ≥ 2‖ψ‖C such that

yn(t) = T (t, 0)ψ(0) +
∑

0<tk<t

T (t, tk)Ik(zn[ψ]tk )

+

∫ t

0
T (t, s)(fn(s) +Buzn(s)) ds
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with

uzn(t) =

=W−1

(
x1− T (b, 0)ψ(0) −

N∑

k=1

T (b, tk)Ik(zn[ψ]tk )−
∫ b

0
T (b, η)fn(η) dη

)
(t).

Notice now that for each t ∈ [0, b] and n ≥ 2‖ψ‖C we have the estimate

‖zn[ψ]t‖C ≤ ‖ψ‖C + sup
0≤σ≤t

‖zn(σ)‖ ≤ ‖ψ‖C + ‖zn‖ ≤ n

implying

‖Ik(zn[ψ]tk )‖ ≤ Hn for all n ≥ 2‖ψ‖C and k = 1, . . . , N

and

‖fn(t)‖ ≤ ωn(t) a.e. t ∈ [0, b], n ≥ 2‖ψ‖C .

Applying Lemma 4.1, we have

‖yn‖ ≤ C1 + C2

(
NHn +

∫ b

0
‖fn(η)‖ dη

)
≤ C1 + C2

(
NHn +

∫ b

0
ωn(η) dη

)
,

where

(5.4) C1 =M‖ψ(0)‖ +MM1M2

√
b (‖x1‖+M‖ψ(0)‖)

(5.5) C2 =M
(
1 +MM1M2

√
b
)
.

But then

1

2
<

‖yn‖
n

≤ C1

n
+
C2NHn

n
+
C2

n

∫ b

0
ωn(η) dη, n ≥ 2‖ψ‖C

giving the contradiction to (5.2) and (5.3).

So, if we apply Theorem 2.1 to the restriction Γ : BR ⊸ BR, we obtain
a fixed point y ∈ FixΓ and so a solution to problem (1.1).



60 I. Benedetti, V. Obukhovskii and P. Zecca

Theorem 5.3. Suppose that:

(F3′′) there exists a function p(·) ∈ L1([0, b];R+) and a nondecreasing func-
tion ξ : R+ → R+ such that for each c ∈ C([−τ, 0];E) we have

‖F (t, c)‖ ≤ p(t)ξ(‖c‖C) a.e. t ∈ [0, b]

and

‖Ik(c)‖ ≤ ξ(‖c‖C) ∀k = 1, . . . , N.

Moreover, assume the existence of a constant L > 0 such that

(5.6)
L

C1 + C2ξ(L+ ‖ψ‖C)
(
N +

∫ b
0 p(η) dη

)
+ ‖ψ(0)‖

> 1,

where the constants C1 and C2 are those given by (5.4), (5.5).

Then controllability problem (1.1) has a solution.

Proof. Denote by a ∈ D the function identically equal to ψ(0). Let us
demonstrate that there exists an open bounded neighborhood V of a in D
with the property

(5.7) z − a /∈ λ(Γ(z)− a)

for all z ∈ ∂V and 0 < λ ≤ 1.

Suppose that z − a ∈ λ(Γ(z) − a) for some z ∈ D and 0 < λ ≤ 1, then
z ∈ λΓ(z) + (1 − λ)a. Applying the same reasonings as in Lemma 4.1 and
in the previous Theorem, we obtain the following estimate

‖z(t)‖ ≤ C1 + C2

(
N∑

k=1

‖Ik(z[ψ]tk )‖+
∫ b

0
‖f(η)‖ dη

)
+ ‖ψ(0)‖,

where f ∈ PF (z). Applying condition (F3′′) and using the fact that the
function ξ is nondecreasing, we have the estimate

‖z‖ ≤ C1 + C2

(
Nξ (‖z‖+ ‖ψ‖C) +

∫ b

0
p(η)ξ (‖z[ψ]η‖C) dη

)
+ ‖ψ(0)‖

≤ C1 + C2ξ (‖z‖+ ‖ψ‖C)
(
N +

∫ b

0
p(η)dη

)
+ ‖ψ(0)‖
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or
‖z‖

C1 + C2ξ (‖z‖+ ‖ψ‖C)
(
N +

∫ b

0
p(η)dη

)
+ ‖ψ(0)‖

≤ 1.

So, ‖z‖ does not equal the constant L appearing in condition (5.6). Now,
let us take the relatively open set

V = {z ∈ D : ‖z‖ < L}.

Notice that condition (5.6) implies a ∈ V . We see that condition (5.7) is
fulfilled and it remains only to apply Theorem 2.2.

Theorem 5.4. Suppose that

(F3′′′) there exists a function α ∈ L1([0, b];R+) such that

‖F (t, c)‖ ≤ α(t)(1 + ‖c‖C) for a.e. t ∈ [0, b]

for all c ∈ C([−τ, 0];E)

and assume the existence of a constant H > 0 such that:

max
1≤k≤N

‖Ik(c)‖ < H

for all c ∈ C([−τ, 0];E). Moreover, suppose that

(5.8) M2M1M2

√
b · eM

∫
b

0
α(s) ds

∫ b

0
α(t)e−M

∫
t

0
α(s) ds dt < 1.

Then controllability problem (1.1) has a solution.

Proof. We will show that the set of all z ∈ D satisfying z−a ∈ λ(Γ(z)−a),
0 < λ ≤ 1, where a ∈ D, a(t) ≡ ψ(0) is a priori bounded.

Indeed, let z−a ∈ λ(Γ(z)−a) for some λ ∈ (0, 1], then z ∈ Γ(z)+(1−λ)a.
Applying Lemma 4.1 and condition (F3′′′), we have for each t ∈ [0, b] the
estimate

‖z(t)‖ ≤ C1 + C2NH +M2M1M2

√
b

∫ b

0
α(s)(1 + ‖z[ψ]s‖C) ds

+M

∫ t

0
α(s)(1 + ‖z[ψ]s‖C) ds+ ‖ψ(0)‖,
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where C1 and C2 are given by (5.4), (5.5). Further,

‖z(t)‖ ≤

≤ C1 +C2NH +M2M1M2

√
b‖α‖L1

+M2M1M2

√
b

∫ b

0
α(s)

(
‖ψ‖C + sup

0≤σ≤s
‖z(σ)‖

)
ds

+M‖α‖L1 +M

∫ t

0
α(s)

(
‖ψ‖C + sup

0≤σ≤s
‖z(σ)‖

)
ds+ ‖ψ(0)‖

≤ C1 +C2NH +M2M1M2

√
b‖α‖L1 +M2M1M2

√
b‖α‖L1‖ψ‖C

+M2M1M2

√
b

∫ b

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds +M‖α‖L1 +M‖α‖L1‖ψ‖C

+M

∫ t

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds + ‖ψ(0)‖

≤ C1 +C2NH+ C2‖α‖L1(1 + ‖ψ‖C) +M2M1M2

√
b

∫ b

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds

+M

∫ t

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds + ‖ψ(0)‖.

The last expression is a nondecreasing function in t, so we have the following
estimate:

(5.9)

sup
0≤η≤t

‖z(η)‖ ≤ K +M2M1M2

√
b

∫ b

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds

+M

∫ t

0
α(s) sup

0≤σ≤s
‖z(σ)‖ ds,

where K = C1 + C2NH + C2‖α‖L1(1 + ‖ψ‖C) + ‖ψ(0)‖.
Notice that the function ω(t) = sup

0≤η≤t
‖z(η)‖ is piecewise continuous, so

the function

v(t) =

∫ t

0
α(s)ω(s) ds
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is well defined and nondecreasing, v(0) = 0 and we have

v′(t) = α(t)ω(t) for a.e. t ∈ [0, b].

Further, applying (5.9) we obtain

v′(t) ≤ α(t)(K +M2M1M2

√
b · v(b) +Mv(t)).

Multiplying both sides of the above inequality by e−M
∫
t

0
α(s) ds, we have

v′(t)e−M
∫
t

0
α(s) ds ≤ α(t)e−M

∫
t

0
α(s) ds(K +M2M1M2

√
b · v(b) +Mv(t))

implying

(
v(t)e−M

∫
t

0
α(s) ds

)′
≤ α(t)e−M

∫
t

0
α(s) ds(K +M2M1M2

√
b · v(b)).

The integration of both sides of this inequality from 0 to b yields

v(b)e−M
∫
b

0
α(s) ds ≤ (K +M2M1M2

√
b · v(b))

∫ b

0
α(t)e−M

∫
t

0
α(s) ds dt

or

lv(b) ≤ K

∫ b

0
α(t)e−M

∫
t

0
α(s) ds dt,

where

l = e−M
∫
b

0
α(s) ds −M2M1M2

√
b

∫ b

0
α(t)e−M

∫
t

0
α(s) ds dt.

From condition (5.8) it follows that l > 0 and hence

v(b) ≤
K

∫ b

0
α(t)e−M

∫
t

0
α(s) ds dt

l
= K1 = const.

Since the function v is nondecreasing, we have

v(t) ≤ K1 for all t ∈ [0, b].
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We obtain

‖z(t)‖ ≤ K +M2M1M2

√
b · v(b) +Mv(t) ≤ K + C2K1,

giving the desired a priori boundedness.
Now take an arbitraryR > K+C2K1 and a relatively open set V = {z ∈

D : ‖z‖ < R}. Notice that ‖ψ(0)‖ ≤ K implying a ∈ V. The application of
Theorem 2.2 concludes the proof.

6. Example

We consider the motion of a vibrating string fixed at the endpoints s = 0, 1
in the presence of a control and impulse effects. We denote by z(t, s) the
vertical displacement from the zero position at point s ∈ [0, 1] and time
t ∈ [0, b] and we assume that the initial displacement and velocity profiles
are given as some functions z0(t, s) and z1(t, s) on the interval [−τ, 0]. For
convenience, let us denote the displacement at fixed time t by x(t), i.e.,
x(t) = z(t, ·) and x will be treated as the function x : [−τ, b] → H1

0 [0, 1] =
{ς ∈ H1[0, 1] : ς(0) = ς(1) = 0}.

We assume that the control influence upon the motion can be divided
into two types of actions: feedback and ”absolute”. The feedback control
is charaterized by an integrable function f : [0, b] → L2[0, 1] obeying the
feedback relation

f(t) ∈ F (t, xt) a.e. t ∈ [0, b],

where the feedback multifunction F : [0, b]×C([−τ, 0]; L2[0, 1])→Kv(L2 [0, 1])
satisfies conditions (F1)–(F4).

The ”absolute” control is induced by a bounded linear operator B :
U → L2[0, 1] from the Hilbert space of controls U.

Further, we allow that at given moments of time t = t1, . . . tN the dis-
placement x(t) = z(t, ·) and the velocity x′(t) = ∂z(t,·)

∂t change abruptly.
These changes are defined by the given impulse functions

Ik : C([−τ, 0];H1
0 [0, 1]) × C([−τ, 0];L2[0, 1]) → H1

0 [0, 1], k = 1, . . . , N

and

Ĩk : C([−τ, 0];H1
0 [0, 1]) × C([−τ, 0];L2[0, 1]) → L2[0, 1], k = 1, . . . , N

respectively.
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Under agreement that we rescal all physical constants to one, this model
may be described by the following relations:

(6.1)





∂2z(t, s)

∂t2
=
∂2z(t, s)

∂s2
+ f(t) +Bu(t), t ∈ [0, b], s ∈ [0, 1],

t 6= tk, k = 1, . . . , N ;
f(t) ∈ F (t, xt), a.e. t ∈ [0, b]

x(t+k ) = x(tk) + Ik(xtk , x
′
tk
), k = 1, . . . , N ;

x(t−k ) = x(tk), k = 1, . . . , N ;

x′(t+k ) = x′(tk) + Ĩk(xtk , x
′
tk
), k = 1, . . . , N ;

x′(t−k ) = x′(tk), k = 1, . . . , N ;

z(t, s) = z0(t, s), t ∈ [−τ, 0], s ∈ [0, 1];

∂z(t, s)

∂t
= z1(t, s), t ∈ [−τ, 0], s ∈ [0, 1];

z(t, 0) = z(t, 1) = 0, t ∈ [−τ, b],

where u(·) ∈ L2([0, b];U).
We are interested in the controllability of the above system, i.e., we want

to steer an arbitrary initial displacement and velocity profiles by suitable
controls f(·) and u(·) to given profiles, e.g., to the rest position.

We can rewrite our system as a controlled second-order functional dif-
ferential inclusion with impulses and delay:

(6.2)





x′′(t) ∈ Ax(t) + F (t, xt) +Bu(t), t ∈ [0, b]

x(t) = x0(t), t ∈ [−τ, 0]
x(t−k ) = x(tk)

x′(t) = x1(t), t ∈ [−τ, 0]
x(t+k ) = x(tk) + Ik(xtk , x

′
tk
), k = 1, ..., N ;

x′(t−k ) = x′(tk)

x′(t+k ) = x′(tk) + Ĩk(xtk , x
′
tk
), k = 1, ..., N.

Here A denotes the Laplace operator

A =
∂2

∂s2
, D(A) = H2

0 [0, 1] = {ς ∈ H2[0, 1] : ς(0) = ς(1) = 0}
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on the space E = L2[0, 1].

From the fact that −A is a self-adjoint and positive definite operator
on E we see that there exists a unique positive definite square root (−A)1/2
with domain D((−A)1/2) = H1

0 [0, 1]. So it is possible to transform the above
inclusion to a first order semilinear functional differential inclusion in the
following way.

Introduce the Hilbert space E = H1
0 [0, 1] × E with the inner product

〈(
p0
p1

)
·
(
q0
q1

)〉
=
〈
(−A)1/2p0 | (−A)1/2q0

〉
+ 〈p1 | q1〉 ,

where 〈 | 〉 denotes the inner product in E. Then, we can treat (6.2) as an
impulsive control system governed by the following semilinear functional
differential inclusion in E :

(6.3)





y′(t) ∈ Ay(t) + F(t, yt) + Bu(t), t ∈ [0, b];

y(t) =

(
x0(t)
x1(t)

)
, t ∈ [−τ, 0];

y(t−k ) = y(tk), k = 1, . . . , N ;

y(t+k ) = y(tk) + Ik(ytk), k = 1, . . . , N,

where

A =

(
0 I
A 0

)
, D(A) = H2

0 [0, 1] ×H1
0 [0, 1];

F : [0, b] × C([−τ, 0]; E) → Kv(E), F
(
t,

(
c0

c1

))
=

(
0

F (t, c0)

)

B =

(
0
B

)
∈ L(U, E);

Ik : C([−τ, 0]; E) → E , Ik
(
c0

c1

)
=

(
Ik(c

0)

Ĩk(c
1)

)
, k = 1, . . . , N.

It is known (see [12]) that A generates a group of contractions eAt on E .
Now assume that

(B1) the control operator B ∈ L(U,E) is surjective.
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Then, the corresponding linear system

y′(t) = Ay(t) + Bu(t)

is controllable (see [12], Example VI.8.10) and hence there exists the inverse
W−1 for the controllability operator W : L2([0, b];U) → E :

W =

∫ b

0
eA(b−s)Bu(s) ds.

Notice that since eAt are contractions we may take R = 1 in estimate (4.2).
Then, condition (4.4) takes the form

(6.4) lb

(
1 +N1

∫ b

0
δ(s)ds

)
< 1.

Theorem 6.1. Under conditions (F3′), (5.2), (B), (B1), (4.3) and (6.4), if
the jump functions Ik and Ĩk, k = 1, . . . , N satisfy conditions (Ik), (5.1) and
(5.3), then system (6.1) is controllable.

Proof. It is sufficient to observe that conditions of Theorem 5.2 are fulfilled
for system (6.1).
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