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Abstract

In this paper we consider hemivariational inequalities of hyperbolic
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1 Introduction

Hemivariational inequalities were introduced in the 80’s by P.D. Panagio-
topoulos as a natural description of physical problems governed by non-
monotone and possibly multivalued laws (see Panagiotopoulos [14, 15],
Moreau, Panagiotopoulos and Strang [11]). The mathematical models for
such problems deal with potentials given by nonconvex, possibly nondif-
ferentiable functions. In [16], Panagiotopoulos introduced the notion of
a nonconvex superpotential, being a generalization of the convex super-
potential introduced by Moreau [10]. This generalization led to a new
type of variational inequalities, called hemivariational inequalities, which
cover boundary value problems for PDEs with nonmonotone, nonconvex and
possibly multivalued laws.

The aim of this paper is to present an existence result for an optimal
shape design problem for a system described by a hemivariational inequality
of hyperbolic type. Such a problem may be formulated as a control problem,
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in which a hyperbolic hemivariational inequality appears as a state equation
and the role of controls is played by sets from a family of admissible shapes.
The cost functional to be minimized is of general (not necessary integral)
form.

The proof of the existence of an optimal shape is based on the direct
method of the calculus of variations. We use the mapping method intro-
duced by Micheletti [9] (see also Murat and Simon [12] or SokoÃlowski and
Zolesio [18]), which provides both a class of admissible shapes and a topology
in this class of domains. The admissible shapes are obtained as the images
of a fixed open bounded subset of IRN through regular bijections in IRN .
The boundary of these open sets should be regular (as the used method is
valid in such case), but it does not have to be connected (see Section 2 for
details).

The plan of the paper is as follows. In Section 2, we recall the notation
and properties of the Clarke subdifferential and the mapping method. In
Section 3, we formulate a hyperbolic hemivariational inequality as well as
an optimal shape design problem described by this inequality. In Section 4,
we proof an existence result for an optimal shape design problem.

2 Preliminaries

First of all we recall the notion of the Clarke subdifferential as well as some
its properties.

Let Y be a Banach space and Y ′ its topological dual. By 〈·, ·〉Y ′×Y we
denote the duality brackets between Y ′ and Y . For a locally Lipschitz fun-
ction f : Y 7−→ IR, every x ∈ Y and h ∈ Y , we define the Clarke directional
derivative of f at x in the direction h by

f0(x; h)
df
= lim sup

y → x in Y
t ↘ 0 in IR

f(y + th)− f(y)
t

.

It is easy to check that the function Y 3 h 7−→ f0(x; h) ∈ IR is sublinear and
continuous (in fact |f0(x; h)| ≤ kx||h||Y and hence f0(x; ·) is Lipschitz). So
by the Hahn-Banach theorem f0(x; ·) is the support function of a nonempty,
convex and w∗-compact set ∂f(x) defined by

∂f(x)
df
= {x∗ ∈ Y ′ : f0(x; h) ≥ 〈x∗, h〉Y ′×Y for all h ∈ Y },
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(see Clarke [4], Proposition 2.1.2, p. 27). The set ∂f(x) is called the Clarke
subdifferential of f at x. For every x ∈ Y there exists kx > 0 such that for
every x∗ ∈ ∂f(x) we have ||x∗||Y ′ ≤ kx. Also, if f, g : Y 7−→ IR are locally
Lipschitz functions, then ∂(f + g)(x) ⊆ ∂f(x) + ∂g(x) and ∂(αf)(x) =
α∂f(x) for all α ∈ IR. Moreover, if f : Y 7−→ IR is convex (so locally
Lipschitz as well), then the Clarke subdifferential defined above and sub-
differential in the sense of convex analysis coincide and if f is strictly
differentiable at x, then ∂f(x) = {f ′(x)}.

For a given β ∈ L∞loc(IR) by β̂: IR 7−→ 2IR we denote a multifunction
obtained from β by ”filling in the gaps” at its discontinuity points, i.e.

β̂(ξ) = [β(ξ), β(ξ)],

where
β(ξ) = lim

δ→0+
ess inf
|ζ−ξ|≤δ

β(ζ), β(ξ) = lim
δ→0+

ess sup
|ζ−ξ|≤δ

β(ζ)

and [·, ·] denotes the interval. It is well known (cf. Chang [3]) that a locally
Lipschitz function j: IR 7−→ IR can be determined up to an additive constant
by the relation

j(ξ) =
∫ ξ

0
β(ζ) dζ

and that ∂j(ξ) ⊂ β̂(ξ). Moreover, if for every ξ ∈ IR the limits β(ξ ± 0)
exist, then ∂j(ξ) = β̂(ξ).

Next let us recall the notion and basic properties of the mapping method
(cf. Micheletti [9], Murat and Simon [12], SokoÃlowski and Zolesio [18]), which
will play the crucial role in the formulating of our optimal shape design
problem. Roughly speaking, this method consists in finding the optimal
shapes in a class of admissible domains obtained as images of a fixed set.
An appropriate topology in the class will allow us to obtain an existence
result for the optimal shape design problem.

Let C be a bounded open subset of IRN with a boundary ∂C of class
W i,∞, i ≥ 1 and such that intC = C. Then, following Murat and Simon [12],
we introduce, for k ≥ 1, the following spaces

W k,∞(IRN ; IRN )
df
=

{
ϕ |Dαϕ ∈ L∞(IRN ; IRN ) for all α, 0 ≤ |α| ≤ k

}
,

where derivatives Dαϕ are understood in the distributional sense. By Ok,∞

we will denote the space of bounded open subsets of IRN , which are isomor-
phic with C, i.e.

Ok,∞ df
= {Ω | Ω = T (C), T ∈ Fk,∞},
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where Fk,∞ is the space of regular bijections in IRN , defined by

Fk,∞ df
= {T : IRN 7−→ IRN | T is bijective and T, T−1 ∈ Vk,∞},

where
Vk,∞ df

= {T : IRN 7−→ IRN | T − I ∈ W k,∞(IRN ; IRN )}.
In other words Fk,∞ represents the set of essentially bounded perturbations
(with essentially bounded derivatives) of identity in IRN . It can be seen that
if C has a W i,∞ boundary, then every set Ω ∈ Ok,∞ also has the boundary
of class W i,∞. Endowing the space W k,∞(IRN ; IRN ) with the norm

||ϕ||k,∞
df
= ess sup

x∈IRN


 ∑

0≤|α|≤k

|Dαϕ|2IRN




1
2

,

we define on Ok,∞ ×Ok,∞ a function

δk,∞(Ω1,Ω2)
df
= inf

T ∈ Fk,∞,
T (Ω1) = Ω2

(
||T − I||k,∞ + ||T−1 − I||k,∞

)
.

Function δk,∞ is a pseudo-distance on Ok,∞ since it does not satisfy the tri-
angle inequality (see Murat and Simon [12], Section 2.4) but it can be easily
modified into a distance function. Namely, there exists a positive constant
µk such that function dk,∞ =

√
min (δk,∞, µk) is a metric onOk,∞. Moreover

the space
(
Ok,∞, dk,∞

)
is a complete metric space. If k ≥ 2, then the injec-

tion from Ok,∞ into Ok−1,∞ is compact. More precisely, if B is a bounded
(in δk,∞) and closed subset of Ok,∞, then for any sequence {Ωn}n≥1 ⊂ B,
there exist a subsequence {Ωnν}ν≥1 of {Ωn}n≥1 and a set Ω ∈ B such
that Ωnν −→ Ω in Ok−1,∞ (see Murat and Simon [12], Proposition 2.3,
Theorem 2.2 and Theorem 2.4).

It is also known that Ωn −→ Ω in Ok,∞ iff there exist Tn and T in Fk,∞

such that Tn(C) = Ωn, T (C) = Ω and Tn − T −→ 0, T−1
n − T−1 −→ 0 in

W k,∞(IRN ; IRN ). Some other facts on the mapping method, are summarized
in the following lemmas.

Lemma 1. Let k ≥ 1. Then
(a) If T ∈ F1,∞, Ω = T (C), then u ∈ L2(Ω) iff u ◦ T ∈ L2(C); u ∈ H1(Ω)

iff u ◦ T ∈ H1(C). Moreover, if un −→ u in H1(Ω) (or in H1(C)) and
T ∈ Fk,∞, then un ◦ T −→ u ◦ T in H1(C) (or un ◦ T−1 −→ u ◦ T−1 in
H1(Ω)).
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(b) Let u ∈ H l(IRN ) with l = 0 or 1. Then the mapping T 7−→ u ◦ T is
continuous from Vk,∞ to H l(IRN ) at every point T ∈ Fk,∞.

(c) The following mappings are continuous

T 7−→ J−1
T from Vk,∞ to W k−1,∞(IRN ; IRN2

),

T 7−→ detJT from Vk,∞ to W k−1,∞(IRN ; IR)

at every point T ∈ Fk,∞ (JT denotes here the standard Jacobian matrix
of T ).

Lemma 2. Let {Ωn}n≥1 be a sequence of sets from Ok,∞, let Tn ∈ Fk,∞ be
such that Tn(C) = Ωn and un ∈ W (0, I;H1(Ωn)). If {||un||W (0,I;H1(Ωn))}n≥1

is a bounded bounded and sequences {JTn}n≥1, {J−1
Tn
}n≥1 are bounded in

W 1,∞(IRN ; IRN ), then sequence {||ûn||W (0,I;H1(C))}n≥1 is also bounded, where

ûn(t, X)
df
= un(t, T (X)) for a.e. (t,X) ∈ (0, I)× C.

Lemma 3. If f, fn ∈ L2(IRN+1) and fn(t, x) →f(t, x) strongly in L2(IRN+1),
and Tn − T → 0, T−1

n − T−1 → 0 in W 1,∞(IRN ; IRN ), then fn(t, Tn(X)) →
f(t, T (X)) strongly in L2(IRN+1).

For the proofs of the above lemmas we refer to Murat and Simon [12],
Lemmas 4.1, 4.4(i), 4.3 and 4.2 and to Liu and Rubio [8], Section 2.

It is interesting to observe some relationships between the convergence
in Ok,∞ and other types of convergence of sets.

Let D be an open subset of IRN . If Ωn −→ Ω0 inOk,∞, then 1Ωn −→ 1Ω0

in L2(IRN ), where by 1D we denote the characteristic function of an open
subset D ⊆ IRN .

Let us denote by Hc, the Hausdorff complementary topology (see e.g.
Pironnneau [17], Section 3.2.1). Then, if Ωn −→ Ω0 in Ok,∞ and intC = C,
then Ωn

Hc−→ Ω0. Hc-convergence has an important property of ”covering”
of the compacts, namely, if Ωn

Hc−→ Ω0, then ∀G ⊂⊂ Ω0 ∃nG ∈ IN ∀n ≥ nG :
G ⊆ Ωn.

In the sequel we will use the following spaces:

H = H(Ω) = L2(Ω),
V = V (Ω) = H1(Ω) = {v : v ∈ L2(Ω), Dαv ∈ L2(Ω) for 0 ≤ |α| ≤ 1},
H = H(Ω) = L2(0, I; H(Ω)),
V = V(Ω) = L2(0, I; V (Ω)),
W = W(Ω) = W(Ω) = {v : v ∈ V(Ω), v′ ∈ V ′(Ω))}.



46 L. Gasiński

3 Formulation of the problem

We consider the following hyperbolic hemivariational inequality

(HV I)





u ∈ C(0, I; V ), such that u′ ∈ W
〈u′′(t), v〉V ′×V + a(u′(t), v) + b(u(t), v) + (χ(t), v)H

= 〈f(t), v〉V ′×V , ∀v ∈ V, for a.e. t ∈ (0, I),
u(0) = ψ0, u′(0) = ψ1 in Ω,

χ(t, x) ∈ ∂j(u(t, x)) for a.e. (t, x) ∈ (0, I)× Ω
χ ∈ H,

where a, b : V × V 7−→ IR are two functionals, j : IR 7−→ IR is a function
and f ∈ H(IRN ). If by S(Ω) we denote the set of solutions for (HV I),
then optimal shape design probem consists in solving the following control
problem:

(OSDP )

{
Find Ω∗ ∈ B and u∗ ∈ S(Ω∗) such that

J(Ω∗, u∗) = minΩ∈B minu∈S(Ω) J(Ω, u)

in which controls are the sets Ω changing in the family B ⊆ Ok,∞ and J is a
cost functional depending on sets Ω and on solutions u of (HV I) on sets Ω.

First of all we need to guarantee the existence of solutions for (HV I).
In this purpose we state the following hypotheses on operators a, b, function
j, right hand side f and functions ψ0 and ψ1 from the initial conditions:

H(a) The form a : V × V 7−→ IR is defined by

a(u, v) =
∫

Ω
[(A∇u,∇v) + a0uv] dx,

where
(i) the matrix A ∈ [C(IRN )]N

2 ∩ [L∞(IRN )]N
2

is coercive,
(ii) a0 ∈ C(IRN ) ∩ L∞(IRN ) and there exists ã > 0, such that a0(x) ≥ ã

a.e. in IRN .

H(b) The form b : V × V 7−→ IR is defined by

b(u, v) =
∫

Ω
[(B∇u,∇v) + b0uv] dx,

where
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(i) the matrix B ∈ [C(IRN )]N
2 ∩ [L∞(IRN )]N

2
is symmetic and non-

negative,
(ii) b0 ∈ C(IRN ) ∩ L∞(IRN ) and there exists b̃ > 0, such that b0(x) ≥ b̃

a.e. in IRN .
H(j) j : IR 7−→ IR is a locally Lipschitz function such that

(i) j(ξ) =
∫ ξ
0 β(s) ds, where β ∈ L∞loc(IR);

(ii) limits β(ξ ± 0) exist for each ξ ∈ IR,
(iii) there exists c0 > 0 such that |β(ξ)| ≤ c0(1 + |ξ|) for all ξ ∈ IR.

H(f, ψ) f ∈ H(IRN ) , ψ0 ∈ V (IRN ), ψ1 ∈ H(IRN ).

Now we can formulate the existence theorem for (HV I):

Theorem 4. If hypotheses H(a), H(b), H(j) and H(f, ψ) hold, then (HV I)
admits a slution for any Ω ∈ Ok,∞, i.e. S(Ω) 6= ∅.
The proof of Theorem 4 can be obtained, using the methods of Bian [1] or
applying the existence theorem for more general formulation of (HV I) by
Gasiński [7]. The latter exploits the surjectivity result for pseudomonotone
operators.

In the next section we will need an apriori estimate on the solutions of
(HV I), which in fact is employed also in the proof of Theorem 4.

Lemma 5. Let assumptions H(a), H(b) H(j) and H(f, ψ) hold. If u ∈
S(Ω), then the following estimate holds:

||u||C(0,I;V ) + ||u′||W
≤ c (1 + |Ω|)

(
1 + ||ψ0||2V + ||ψ1||2H + ||f ||V ′

)

with constant c = c(I, ã, a0, A, b̃, b0, B, c0) > 0 not depending on Ω.

4 Existence result

In this section we will proof the existence theorem for (OSDP ). Our as-
sumptions on family B of admissible shapes and on functional J are the
following:

H(C,B) C is a bounded open set in IRN with boundary of class W i,∞, i ≥ 1
such that int C̄ = C and B is a bounded closed subset of Ok,∞,
with k ≥ 3 and 1 ≤ i ≤ k.
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H(J) J : D(J)
df
=

⋃

Ω∈B
({Ω} × S(Ω)) 7−→ IR is a functional which is lower

semicontinuous with respect to the following convergence in D(J):

(Ωn, un) −→ (Ω0, u0) in D(J) iff Ωn −→ Ω0 in Ok−1,∞ and un −→ u0

in H(IRN ), where by u we denote the extension by zero of the function
u ∈ V(Ω), namely

u(t, x)
df
=

{
u(t, x), if x ∈ Ω

0, if x ∈ IRN \ Ω.

The assumption of lower semicontinuity of functional J with respect to the
above defined convergence is slightly weaker than the lower semicontinuity
with respect to the local convergence (compare Gasiński [6], Definition 3,
p. 313). In our assumptions we do not need to specify the form of the cost
functional J . Nevertheless, in practice, it is usually of integral form, namely

J(Ω, u) =
∫ I

0

∫

Ω
l(t, x, u) dx dt.

In the proof of our existence theorem the crucial role will play the fact that
the map B 3 Ω 7−→ S(Ω) ⊆ W(Ω) has a graph closed in the sense of the
following lemma.

Lemma 6. Let hypotheses H(C,B), H(j), H(a), H(b), H(f, ψ) hold. Let
{Ωn}n≥1 ⊆ B, Ω0 ∈ B, {Tn}n≥1 ⊆ Fk,∞, T0 ∈ Fk,∞ be such that Ωn =

Tn(C) for n ≥ 1 and Ω0 = T0(C). Let un ∈ S(Ωn), ûn(t,X)
df
= un(t, Tn(X)),

for n ≥ 1 and u∗ ∈ W(C). If Ωn −→ Ω0 in Ok,∞, ûn −→ u∗ weakly in
W(C), then there exists u0 ∈ S(Ω0) such that u∗(t,X) = u0(t, T0(X)).

Now we can formulate and prove the existence theorem for (OSDP ):

Theorem 7. If hypotheses H(C,B), H(J), H(j), H(a), H(b), H(f, ψ)
hold, then problem (OSDP ) admits at least one solution.

Proof. We apply the direct method of the calculus of variations. Let
{(Ωn, un)}n≥1 ⊆ D(J) be a minimizing sequence for (OSDP ). As the in-
jection Ok,∞ into Ok−1,∞ is compact (see Section 2) so B is compact in
Ok−1,∞ and we can choose a subsequence of Ωn (still indexed by n) and a
set Ω0 ∈ B such that Ωn −→ Ω0 in Ok−1,∞. This means that there exist
{Tn}n≥1 ⊆ Fk−1,∞ and T0 ∈ Fk−1,∞ such that Ωn = Tn(C), Ω0 = T0(C)
and Tn − T0 −→ 0, T−1

n − T−1
0 −→ 0 in W k−1,∞(IRN ; IRN ).
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From the relationship between Ok,∞-convergence and the convergence of
characteristic functions of open sets (see Section 2), we obtain that 1Ωn −→
1Ω0 in H(IRN ) which gives, in particular, that the sequence {|Ωn|}n≥1 is
bounded, so also sequences {||ψ0||V (Ωn)}n≥1, {||ψ1||H(Ωn)}n≥1 and
{||f ||H(Ωn)}n≥1 are bounded. Since un ∈ S(Ωn), so from Lemma 5, we

obtain that the sequence {||un||W(Ωn)}n≥1 is bounded. Putting ûn(t,X)
df
=

un(t, Tn(X)) and using Lemma 2, we obtain that the sequence {||ûn||W(C)}n≥1

is bounded. Thus, taking a next subsequence if necessary, we have ûn −→ u∗

weakly in W(C), with some u∗ ∈ W(C). From the compactness of the em-
bedding W(C) ⊂ H(C), we get

ûn −→ u∗ in H(C).

From Lemma 6, we have that u∗(t,X) = u0(t, T0(X)) with some u0 ∈ S(Ω0).
So the pair (Ω0, u0) is admissible for (OSDP ).

Let ûn and u∗ denote the functions in H(IRN ) obtained from ûn and u∗,
respectively, by extending them by zero outside C. So, we have

ûn −→ u∗ in H(IRN ).

From Lemma 3, we also have

un −→ u0 in H(IRN ),

where

un(t, x) =

{
un(t, x), if x ∈ Ωn

0, if x ∈ IRN \ Ωn

and

u0(t, x) =

{
u0(t, x), if x ∈ Ω0

0, ifx ∈ IRN \ Ω0.

Hence, due to the hypothesis H(J), we conclude that (Ω0, u0) solves the
problem (OSDP ) and the proof of the theorem is complete.
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