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Abstract

The problem of asymptotic stabilization for a class of differential
inclusions is considered. The problem of choosing the Lyapunov func-
tions from the parametric class of polynomials for differential inclusions
is reduced to that of searching saddle points of a suitable function.
A numerical algorithm is used for this purpose. All the results thus
obtained can be extended to cover the discrete systems described by
difference inclusions.
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1 Introduction

The conditions under which control systems are stable are in essence the
real conditions of normal operation of systems. For this reason, in designing
control systems it is important to know how to solve the problem of stabi-
lization constructively. It is well known [1, 2], that the method of Lyapunov
functions is one of the most efficient methods for analyzing the stability of
nonlinear dynamic systems.

We consider dynamic systems described by the differential inclusion [3]

ẋ ∈ Fq(x),(1)
x(t0) = x0,

Fq(x) = {y : y = Ax, A ∈ Bq},
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where x ∈ Rn and Bq is the convex hule of real (n× n)-matrices A1, ..., Aq,
i.e.

Bq = co(A1, ..., Aq) ≡
{
A : A =

q∑

ν=1

λνAν , λν ≥ 0,
q∑
ν

λν = 1
}

In parallel with (1) we examine a more general type of differential inclusion

ẋ ∈ F (x),(2)
x(t0) = x0,

F (x) = {y : y = Ax, A ∈ B},
where B is a compactum (in general, nonconvex) in the n2-dimensional space
of real (n × n)-matrices A. The stabilization problem for differential in-
clusions of type (1) and (2), to which many practically important control
systems can be reduced, consists of choosing a Lyapunov function V (x).

For example, we consider the controlled object with varying control
region [4]

ẋ = f(x, u), x ∈ Rn, u ∈ U(x),
x(t0) = x0.

This gives us a differential inclusion of type

ẋ ∈ Q(x),
x(t0) = x0,

Q(x) = {f(x, u), u ∈ U(x)} :

denoting by Q(x) the set of all vektors f(x, u) obtained as u runs over the
control region U(x). The Lyapunov functions V (x) used below are chosen
from the class of convex Rn-valued functions.

Definition 1. An absolutely continuous vector function x(t) satisfying the
condition ẋ(t) ∈ Fq(x(t)) (ẋ(t) ∈ F (x(t))) almost everywhere on a consid-
ered interval of time [t0, t] is called a solution of the inclusion (1) (2).

Note that any solution x(t) of inclusion (1) ((2)) can be continued on the
whole semi-infinite axis [t0,∞).

Definition 2. The zero solution x = 0 of the differential inclusion (1) ((2))
is called asymptotically stable if:



A constructive method for solving ... 53

a) for any ε > 0 there exists δ(ε) > 0 such that for each solution x(t) of
the inclusion (1) ((2)) the inequality ||x(t)|| < ε holds for all t ≥ t0, if
only ||x(t0)|| < δ(ε)

b) there exists ∆ > 0 such that for any solution of the inclusion (1) ((2))
with ||x0|| < ∆, the limiting relation limt→∞ x(t) = 0 holds.

The rest of the paper is organized as follows. In Section 2, we consider
some basic results about the asymptotic stability of differential inclusions.
In Section 3, we discuss a constructive algorithm for solving stabilization
problem. In Section 4, we give a constructive solution of a stabilization
problem.

2 Mathematical preliminaries

First let us discuss some basic results about the asymptotic stability of
systems (1) and (2) (Theorems 1, 2 and 3).

Theorem 1. For the zero solution x = 0 of the differential inclusion (2)
to be asymptotically stable it is necessary and sufficient that there exists a
strictly convex, homogeneous (of second order) Lyapunov function V (x) of
a quasiquadratic form, namely

V (x) = xTLx, L(x) = (li,j(x))n
i,j=1,

LT (x) = L(x) = L(τx), x 6= 0, τ 6= 0,

V (0) = 0,

whose derivative along solutions of the inclusion (2) satisfies the inequality

W (x) = max
y∈F (x)

∂V (x)
∂y

≤ −γ||x||2, γ > 0.(3)

Note that for inclusion (2) the role of the usual derivative is played by the
function W (x) = maxy∈F (x)

∂V (x)
∂y , where

∂V (x)
∂y

= lim
h→+0

h−1(V (x + hy)− V (x))

is a derivative of the convex function V (x) in the point x ∈ Rn in the
direction y ∈ F (x) [5, 6].
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Theorem 2. The zero solution x = 0 of the differential inclusion (2) is
asymptotically stable if and only if there exists a Lyapunov function in the
class of homogeneous forms of order 2p:

Vm,p(l, x) =
m∑

i=1

(li, x)2p,

where li ∈ Rn, i = 1, ...,m are constant vectors

rank L = n ≤ m, L = (l1, ..., lm)(4)

such that for its derivative

Wm,p(l, x) = 2p max
y∈F (x)

{(li, x)2p−1(li, y)}

along solutions of inclusion (2) for some integer p ≥ 1 the inequality

Wm,p(l, x) ≤ −ν||x||2p, ν > 0

is satisfied.

Here the bracket (·, ·) denotes the Euclidean scalar product.

Theorem 3. The zero solution x = 0 of the differential inclusion (2)
is asymptotically stable if and only if there exists a piecewise-quadratic
Lyapunov function

Vm(l, x) = max
1≤i≤m

(li, x)2, li ∈ Rn, i = 1, ...,m,

whose derivative

Wm(l, x) = max
y∈F (x)

∂Vm(x)
∂y

along solutions of inclusion (2) satisfies inequality (3), and the vectors li
satisfy condition (4).

The class of convex functions Vm(l, x) is obtained by approximating the
level surfaces of the strictly convex function V (x) by centrally symmetrical
convex polyhedrons. The vectors li for i = 1, ...,m, in Theorem 3 determine
the normals to the faces of polyhedrons and the surfaces of polyhedrons are
the level surfaces of the function Vm(l, x).
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Remark 1. The vectors assigning the Lyapunov function Vm(l, x) in The-
orem 3 can be used as vectors li, i = 1, ..., m for the Lyapunov function
Vm,p(l, x) in Theorem 2.

The parameters determining the class of Lyapunov functions Vm(l, x), and
Vm,p(l, x) are the components of the vectors li, i = 1, ..., m and the numbers
m and p.

The following proposition reduces the problem of asymptotic stability
in the general case of inclusion (2) to the case of a convex compactum co(B).

Proposition 1. The zero solution x = 0 of the differential inclusion (2)
is asymptotically stable if and only if the zero solution of the differential
inclusion

ẋ ∈ Fc(x),(5)
x(t0) = x0,

Fc(x) = {y : y = Ax, A ∈ co(B)}

is asymptotically stable.

Proof. Sufficiency of the proposition follows from the inclusion

F (x) ⊂ Fc(x).

Necessity follows from the equivalence of the closure of the solutions set
of differential inclusion (2) and the solutions set of differential inclusion
(5) [5, 6].

A convex compactum co(B) can be approximated by convex polyhedrons
Bq. We obtain the following assertion.

Proposition 2. For the zero solution x = 0 of the differential inclusion (2)
to be asymptotically stable it is necessary and sufficient that there exists a
number q ≥ 1 and a differential inclusion (1) whose zero solution x = 0 is
asymptotically stable and

Fc(x) ⊂ Fq(x).(6)

Proof. Let q ≥ 1 be a number such that Fc(x) ⊂ Fq(x). Let the zero
solution x = 0 of (1) be an asymptotically stable solution. The asymtotic
stability of the zero solution of the differential inclusion (5) follows from
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condition (6). By Proposition 1 the zero solution of inclusion (2) is asymp-
totically stable, too.

Let the zero solution x = 0 of the inclusion ẋ ∈ F (x) be asymptotically
stable. It follows from the results of [2, 6] that there exists some ε > 0 such
that the zero solution of the differential inclusion

ẋ ∈ Fε(x),
x(t0) = x0,

Fε(x) = {y : y = Ax, A ∈ Bε},

where Bε is a compactum and B ⊂ Bε, is asymptotically stable. This implies
that the zero solution of the inclusion

ẋ ∈ Fc,ε(x),
x(t0) = x0,

Fc,ε(x) = {y : y = Ax, A ∈ co(Bε)}

is asymptotically stable (by Proposition 1). Then there must be some q ≥ 1
such that

co(B) ⊂ co(A1, ..., Aq), As ∈ co(Bε), s = 1, ..., q.

By definition

co(A1, ..., Aq) ⊂ co(Bε), As ∈ co(Bε), s = 1, ..., q.

This means that there is some q ≥ 1 such that the solution x = 0 of (1) is
asymptotically stable and condition (6) holds.

Remark 2. The sets of linear nonstationary systems

ẋ = A(t)x, A(t) = (aij(t))n
i,j=1,

αij ≤ aij(t) ≤ βij , i, j = 1, ..., n,

can be reduced to (1), where αij , βij are constans.

It is important to solve constructively the problem of stabilization of the
zero solution for differential inclusion (1).
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3 A constructive algorithm for solving
stabilization problems

Now we consider the problem of constructive derivation of Lyapunov func-
tion for system (1) in a bounded region G, x ∈ G ⊂ Rn, 0 ∈ G. The
Lyapunov function in Theorem 2 has the form

Vm,p(l, x) =
m∑

i=1

( n∑

j=1

lji xj

)2p
, p ≥ 1

or equivalently

Vp(z, x) =
N(p)∑

r=1

zrψr(x) = (z, ψ(x)),

where the ψr(x), r = 1, ..., N(p) are standard monomials of degree 2p

ψ(x) = xk1r
1 · ... · xknr

n ,

z ∈ Gz ⊂ RN(p) are coefficients of monomials and N(p) = C2p
n+2p−1 is the

number of monomials. The derivative Wp(z, x) of the function Vp(z, x) along
solutions of the differential inclusion (1) has the form

Wp(z, x) = max
y∈Fq(x)

(
z,

∂ψ(x)
∂x

y

)
= max

λ∈Θ

q∑

ν=1

λν

(
z,

∂ψ(x)
∂x

Aνx

)
,

where λ = (λ1, . . . , λq)T , Θ = {λ :
∑q

j=1 λj = 1, λj ≥ 0} and ∂ψ(x)
∂x =

(∂ψr(x)
∂xi

) is a (N(p)× n)-matrix for r = 1, ..., N(p) and i = 1, ..., n.
Let

gν(x) :=
∂ψ(x)

∂x
Aνx, ν = 1, ..., q

be a vector function. Let

X := ((x1)T , ..., (xq)T )T ,

where xν = (xν
1 , ..., x

ν
n)T , ν = 1, ..., q and let

Tp(z,X) :=
q∑

ν=1

(z, gν), x̃ := 0.
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Then we have

Proposition 3. The inequality

Wp(z, x) ≤ −γ||x||2p, γ > 0, z ∈ Gz

has a solution z̃ ∈ Gz if and only if

Wp(z̃, x) < Wp(z̃, x̃) ≤ Wp(z, x̃)(7)

holds for all z ∈ Gz, x ∈ G, x 6= 0.

Proof. Necessity: Wp(z̃, x) ≤ −γ||x||2p and

Wp(z̃, x) < 0 = Wp(z̃, x̃) = Wp(z, x̃).

Sufficiency: Wp(z̃, x) < 0 = Wp(z̃, x̃). Let

Wp(z̃, x) =
q∑

ν=1

λ̂ν

(
z,

∂ψ(x)
∂x

Aνx
)
.

We get

Wp(z̃, x) =
q∑

ν=1

λ̂ν

n∑

µ=1

n∑

τ=1

z̃τ

n∑

i=1

kiτa
ν
iµ

n∏

j=1

x
kjτ
j < 0,

where Aν = (aν
iµ), µ, i = 1, ..., n. Hence there exists γ > 0 such that

W (z̃, x) + γ(x2
1 + ... + x2

n)p < 0, x 6= 0.

The proof is complete.

In other words the pair (z̃, x̃) is a saddle point of the function Wp(z, x).
Thus constructing the Lyapunov function Vp(z, x) reduces to a problem of
mathematical programming.

For finding the saddle points (z̃, x̃) of function Wp(z, x) (i.e. for finding
vector z̃) we use the following algorithm:

a) find saddle points (z̃T , X̃) of the function Tp(z,X),
b) put z̃ = z̃T .
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For solving (a) we use a gradient method:

ẋν =
∂Tp(z,X)

∂xν
= ΛT

ν (xν)z,(8)

ż = −∂Tp(z, X)
∂z

= −
q∑

ν=1

gν(xν),(9)

where ν = 1, ..., q. The

Λν(xν) =
∂gν(xν)

∂xν
=

(
∂gνr(xν)

∂xν
i

)N(p),n

r=1,i=1

ν = 1, ..., q

are (N(p)× n)-matrices.
Difference approximation for (8) and (9) gives a numerical procedure of

finding a vector z

xν(τ + 1) = xν(τ) + hΛT z(τ),

z(τ + 1) = z(τ)− h
q∑

ν=1

gν(xν(τ)),

x(0) ∈ G, z(0) ∈ Gz,

ν = 1, ..., q,

i.e., a procedure of finding the Lyapunov function of Theorem 2.
All the above results can be simply extended to the difference inclusions

x(k + 1) ∈ Fq(x(k)),(10)
k = 0, 1, ...,

where Fq(0) = {0}. The function Fq(x) is defined as in (1).
We introduce the Lyapunov function V (z, x) from the class of homoge-

neous forms of order 2p and formulate the stabilization criterion of system
(10) in a constructive form as follows.

Let x̃ := 0. The function

W (z, x) = max
y∈Fq(x)

V (z, y)− V (z, x)

is a difference derivative of the Lyapunov function along solutions of the
difference inclusion (10).
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Proposition 4. The inequality

W (z, x) ≤ 0, x ∈ G, z ∈ Gz

has a solution z̃ ∈ Gz if and only if the inequalities

W (z̃, x) < W (z̃, x̃) ≤ W (z, x̃)

are fulfilled for all z ∈ Gz and x ∈ G, x 6= 0.

4 Implementation of the constructive algorithm

We consider nonlinear nonstationary systems of the type

ẋ = Ax +
M∑

r=1

brφr(σr, t),(11)

σr = (cr, x), φr(0, t) ≡ 0, r = 1, ..., M,

where br ∈ Rn, cr ∈ Rn are constant vectors. The nonlinear functions
φ(σ, t) = (φr(σr, t))M

r=1 satisfy the conditions

0 ≤ φr(σr)σr ≤ krσ
2
r ,

0 < kr < ∞, r = 1, ..., M.

It is well known [7] that the system (11) is equivalent to the differential
inclusion

ẋ ∈ Fφ(x),(12)

Fφ(x) = {y : y = Ax +
ν∑

r=1

brλr(cr, x), 0 ≤ λr ≤ kr, r = 1, ..., M}.

Evidently (12) is a special case of (1) if

Aν = A +
M∑

r=1

hνrb
r(cr)T ,

q = 2M , ν = 1, ..., q, r = 1, ..., M,

where hνr = 0 or hνr = kr, ν = 1, ..., q and r = 1, ..., M .
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Example 1. Consider a second order system

ẋ1 = x2(13)

ẋ2 = −2x1 − x2 − φ(x1, t)(14)

where the matrix A =
(

0 1
−2 −1

)
of the linear portion of the system is of

Hurwitz type and φ(x1, t) is a nonlinear function belonging to the class of
functions that satisfy the inequalities

0 ≤ φ(x1, t) ≤ kx2
1,

where 0 < k < ∞. We derive the Lyapunov function complying with the
inequalities (x 6= 0)

V (x) > 0,(15)
(

∂V

∂x
, (Ax)

)
< 0,(16)

(
∂V

∂x
, (Ax + (0, 1)T kx1)

)
< 0,(17)

at k = 3.73. We construct the Lyapunov function from the class of the
quadratic forms:

V2(x) = x2
1 + 0.303x1x2 + 0.251x2

2.

In the class of fourth order forms, we construct the Lyapunov function
satisfying the inequalities (15) – (17) for k = 6.40, namely

V4(x) = x4
1 + 0.267x3

1x2 + 0.559x2
1x

2
2 + 0.159x1x

3
2 + 0.046x4

2.

We use the conditions of absolute stability (15) – (17) for the system (13)
– (14), which follow from Theorems 2 and 3 (see [7]). The functions V2(x)
and V4(x) were construct on a grid.
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