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Abstract
We present the numerical behavior of a projection method for con-

vex minimization problems which was studied by Cegielski [1]. The
method is a modification of the Polyak subgradient projection method
[6] and of variable target value subgradient method of Kim, Ahn and
Cho [2]. In each iteration of the method an obtuse cone is constructed.
The obtuse cone is generated by a linearly independent system of sub-
gradients. The next approximation of a solution is the projection onto
a translated acute cone which is dual to the constructed obtuse cone.
The target value which estimates the minimal objective value is up-
dated in each iteration. The numerical tests for some tests problems
are presented in which the method of Cegielski [1] is compared with
the method of Kim, Ahn and Cho [2].
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1 Introduction

1.1 The convex minimization problem

In this paper we consider the convex minimization problem

minimize f(x)
subjectto x ∈ D,

(1.1)

where f : Rn → R is a convex function (not necessarily differentiable),
D ⊂ Rn is a convex, compact subset.
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We suppose that:
• for any x ∈ D we can evaluate f(x) and a subgradient gf (x),
• for any x ∈ Rn we can evaluate PD(x) – the metric projection of x

onto D.

1.2 Notation

We use the following notation:
xj − j-th coordinate of an element x = (x1, ..., xn)> ∈ Rn,
xk − k-th element of a sequence {xk},
〈x, y〉 = x>y − usual scalar product of x and y in Rn,
‖x‖ =

√〈x, x〉 − Euclidean norm of x,
PD(x) = arg minz∈D ‖z − x‖ − the metric projection of x onto D,
S(f, α) = {x ∈ Rn : f(x) ≤ α} − the sublevel set of f for a level α,
f∗ = minx∈D f(x) − the minimal value of f on D,
M = Arg minx∈D f(x) − the solution set,
∂f(x) = {g ∈ Rn : f(y)− f(x) ≥ 〈g, y − x〉 , y ∈ Rn} − the subdifferen-
tial of f at x,
gf (x) − a subgradient of f at x (any element of ∂f(x)),
gk = gf (xk),
fk(·) = 〈gk, · − xk〉+ f(xk) − a linearization of f at xk,
L − a Lipschitz constant of f on D,
diam(D) = supx,y∈D ‖x− y‖ − the diameter of D,
R − an upper approximation of diam(D),
fLk

= maxi∈Lk
fi for Lk ⊂ {1, 2, ..., k} − a lower approximation of f ,

C∗ = {s ∈ Rn : 〈s, x〉 ≤ 0, x ∈ C} − a cone dual to a given cone C,

coneS − the cone generated by a subset S ⊂ Rn,

LinS − the linear subspace generated by a subset S ⊂ Rn.

Furthermore, we identify a matrix A with the system of vectors determined
by the columns of A and denote by coneA the cone generated by the columns
of A. A cone C is said to be acute if 〈x, y〉 ≥ 0 for all x, y ∈ C. A cone C is
said to be obtuse (in LinC) if C∗∩ LinC is an acute cone.

2 The method of projection onto an acute cone
with level control

In this section, we recall a projection method of Cegielski [1], so called the
method of projection onto an acute cone with level control. The method
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has the form

x1 ∈ D − arbitrary
xk+1 = PD(xk + λktk),

(2.1)

where λk ∈ (0, 2),
tk = P⋂

i∈Lk
S(fi,f̃k)

(xk)− xk,(2.2)

Lk ⊂ {1, 2, ..., k} is such that k ∈ Lk and

f̃k = (1− ν)fk + νf
k

denotes the current level (an approximation of f∗), where ν ∈ (0, 1], f
k

de-
notes a lower bound of f∗ and fk = min1≤i≤k f(xi) is an upper bound of f∗.

In the method

• f
1

and R are supposed to be known and f
k

is updated in each iteration,
• Lk is selected by an obtuse cone model and is such that Lk ⊂ {1, 2, ..., k} ,

k ∈ Lk.

More precisely, the sequence xk is generated by the following iterative scheme
which is a special case of [1, Iterative scheme 2.6].

Iterative scheme 2.1. (The method of projection onto an acute cone with
level control)

Step 0. (Initialization)

0.1. Choose: x1 ∈ D (starting point), ε ≥ 0 (optimality tolerance), λ ∈
(0, 2), (relaxation parameter), ν ∈ (0, 1) (level parameter), R ≥ d(x1,M)
(upper bound of the distance of the starting point x1 to the solution set),
f

1
∈ (−∞, f∗] (initial lower bound of f∗), m-number of saved linearizations.

0.2. Set: k = 1 (iterations counter), l = 0 (lower bound updates counter),
f0 = +∞(initial upper bound of f∗), r1 = 0 (initial distance parameter),
x1 = x1.

Step 1. (Objective evaluations)
Evaluate f(xk) and gk.

Step 2. (Upper bound update)
If f(xk) < fk−1 set fk = f(xk) and xk = xk. Otherwise, set fk = fk−1 and
xk = xk−1.
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Step 3. (Stopping criterion)
3.1. If fk− f

k
≤ ε then terminate (xk is an ε-optimal solution).

3.2. If ‖gk‖R ≤ ε then terminate (xk is an ε-optimal solution).

Step 4. (Level update)
Set f̃k = (1− ν)fk + νf

k
.

Step 5. (Update of saved linearizations of f)
Set Jk ⊂ {k −m + 1, ..., k} such that k ∈ Jk.

Step 6. (Obtuse cone model selection)
6.1. Choose an appropriate subset Lk ⊂ J ′k = {j ∈ Jk : fj(xk) ≥ f̃k} such

that k ∈ Lk and such that the system Gk = [gj : j ∈ Lk] is linearly
independent and generates an obtuse cone.

6.2. If the equality Sk :=
⋂

i∈Lk
S(fi, f̃k) = ∅ is detected then go to Step 10

(f
k

is too low).

Step 7. (Projection onto an acute cone)
7.1. Construct tk = PSk

(xk)− xk.
7.2. Evaluate zk = xk + λtk, z′k = PD(zk) and qk = z′k − zk.

Step 8. (Inconsistency detection)
8.1. Set r′k = rk + λ(2− λ) ‖tk‖2 + ‖qk‖2 and r′′k = rk + ‖tk‖2.
8.2. If r′k > R2− (R−‖z′k − xk′+1‖)2 or r′′k > R2− (R−‖xk + tk − xk′+1‖)2,

where k′ is the last iteration in which Step 10 was executed, then go to
Step 10 (f̃k is too low).

Step 9. (Approximation update)
Set xk+1 = z′k, rk+1 = r′k, increase k by 1 and go to Step 1.

Step 10. (Lower bound update)
10.1. Set f

k+1
= f̃k.

10.2. Set fk+1 = fk and xk+1 = xk.
10.3. Set rk+1 = 0, xk+1 = xk, increase k and l by 1 and go to Step 3.

In [1, Section 3], the convergence analysis of the above iterative scheme can
be found.

Steps 6 and 7 are most important in Iterative scheme 2.1. Now we
recall a construction of a subset Lk ⊂ J ′k fulfilling the conditions in Step 6.1
(obtuse cone model). This construction is described in details in [1].
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Algorithm 2.2. (Construction of an obtuse cone and of the projection onto
an acute cone)

Step 0. (Initialization)
Set J ′k = {j ∈ Jk : fj (xk) ≥ f̃k}, L = {k}, G = gk and C = ‖gk‖.

Step 1. Set K = ∅.

Step 2. If L ∪K = J ′k go to Step 5.

Step 3. Choose any r ∈ J ′k\(L ∪K).

Step 4. (Obtuse cone detection)
If γ = (CC>)−1G>gr ≤ 0 then
4.1. Set L := L ∪ {r} and G := [G, gr].
4.2. Make the update C := [C, cr]

> of the Cholesky factorization CC> of
G>G. If the Cholesky procedure breaks down, print f̃k ≤ f∗ and
terminate.

4.3. Go to Step 1.
Otherwise set K := K ∪ {r} and go to Step 2.

Step 5. (Output data of an obtuse cone)
5.1. Set Lk = L, Gk = G and Ck = C.
5.2. Set tk = −Gk(CkC

>
k )−1(G>

k xk − bk), where bk is a vector with coordi-
nates bj

k = cj + f̃k, j ∈ Lk, where cj = 〈gj , xj〉 − f(xj).

Step 6. Terminate.

The proof of the fact that the Iterative scheme 2.1 together with the con-
struction of an obtuse cone described in Algorithm 2.2 generates a sequence
which converges to a solution of the problem (1.1) can be found in [1].

3. Numerical tests

In this section we present the computation results of the presented method.

3..1 Tests problems

3.1.1. Shor’s test problem (Shor) [8]

f(x) = max
{
bi

5∑
j=1

(xj − aij)2 : i = 1, ..., 10
}
,

n = 5, f∗ = 22.60016210, ‖x1 − x∗‖ = 2.2955, f(x1) = 80.
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3.1.2. Goffin’s test problem (Goffin)

f(x) = n max
{
xj : j = 1, ..., n

}−
n∑

j=1
xj ,

n = 15, f∗ = 0, ‖x1 − x∗‖ = 16.733, f(x1) = 105,
n = 50, f∗ = 0, ‖x1 − x∗‖ = 102.042, f(x1) = 1225.

3.1.3. Hilbert’s test problem (L1hil)

f(x) =
n∑

i=1

∣∣∣
n∑

j=1

(
xj − 1

)
/ (i + j − 1)

∣∣∣,

n = 10, f∗ = 0, ‖x1 − x∗‖ = 3.162, f(x1) = 13.3754.

3.1.4. Todd’s test problem (Todd) [9]

f(x) = max
{
0, δx1 + δ2x

2 + 2δ3x
3 : δ2, δ3 = ±1

}
,

n = 3, f∗ = 0, δ = 0.1, f(x1) = 0.1990.

3.1.5. Lemaréchal’s test problem (Maxquad) [5]
f(x) = max

{
x>Aix− x>bi : i = 1, ..., 5

}
,

n = 10, f∗ = −0.84140833, ‖x1 − x∗‖ = 3.189, f(x1) = 5337.

3.1.6. Strongly convex problems (scp)

f(x) = max
{
a>i x + bi : i = 1, ..., m

}
+ s

n∑
j=1

(
xj − cj

)2
,

s − strong convexity constant,
ai, bi − randomly generated in the interval [−1, 1] ,
cj − randomly generated in the interval [−2, 2] ,
m = 10, 20, 50, 100, n = 5, 20, 30, 50.

3..2 Results of numerical tests

Now we present the results of numerical tests for the method of the pro-
jection onto an acute cone with level control, described in Section 2, called
here the PAC method.

The method was programmed in Fortran 90 (Lahey Fortran 90 v.3.5).
All floating point calculations were performed in double precision, allowing
the relative accuracy of 2, 2 · 10−16.

In all tests the stopping criterion fk− f
k
≤ ε was employed with the

absolute optimality tolerance ε, the number of stored subgradients #Jk =
100 and the relaxation parameter λ = 1.



Numerical behavior of the method of ... 153

First we consider the case f∗ is known. In this case we set f
1

= f∗, ν = 1.
We compare two methods: the PAC method and the Polyak method, which
is a special case of the PAC method − one takes Lk = {k} in Iterative
scheme 2.1. The results are presented in Table 1.

PAC method Polyak method
Function ε #f/g f(xk) #f/g f(xk)

Shor
n=5

f ∗ = 22.60016210

10−2

10−4

10−6

10−8

18
29
39
48

22.60899720
22.60019525
22.60016287
22.60016210

1713
> 5 ∗ 104

-
-

22.61012596
22.60050317

-
-

Goffin
n=15

f ∗ = 0.0

10−2

10−4

10−6

10−8

15
15
15
15

0.00000000
0.00000000
0.00000000
0.00000000

597
1037
1476
1916

0.00995232
0.00009805
0.00000100
0.00000001

Goffin
n=50

f ∗ = 0.0

10−2

10−4

10−6

10−8

50
50
50
50

0.00000000
0.00000000
0.00000000
0.00000000

7717
13207
18696
24187

0.00999477
0.00009994
0.00000100
0.00000001

L1hil
n=10

f ∗ = 0.0

10−2

10−4

10−6

10−8

10
13
17
27

0.00102746
0.00001424
0.00000011
0.00000000

140
> 5 ∗ 104

-
-

0.00984823
0.00024440

-
-

Todd
n=3

f ∗ = 0.0

10−2

10−4

10−6

10−8

5
5
5
5

0.00000000
0.00000000
0.00000000
0.00000000

748
1899
3050
4200

0.00998941
0.00009988
0.00000100
0.00000001

Maxquad
n=10

f ∗ = −0.84140833

10−2

10−4

10−6

10−8

23
33
43
54

-0.83204753
-0.84131302
-0.84140758
-0.84140833

684
> 5 ∗ 104

-
-

-0.83147061
-0.84127579

-
-

Table 1

Now we present the numerical tests for the case f∗ is unknown. In this case
we set ν = 0.5. We compare two methods: the PAC method and the method
of Kim, Ahn and Cho of projection with level control [2] (called here KAC),
which is in fact a special case of the PAC method – one takes Lk = {k} in
Iterative scheme 2.1. The results are presented in Table 2.
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PAC method KAC method
Function R ε #f/g f(xk) #f/g f(xk)

Shor
n=5

f
1

= 0.0
100.0

10−2

10−4

10−6

10−8

30
43
54
71

22.60280198
22.60020768
22.60016251
22.60016210

> 5 ∗ 104

-
-
-

22.63133991
-
-
-

3.0

10−2

10−4

10−6

10−8

25
38
49
63

22.60280198
22.60020768
22.60016251
22.60016210

28946
-
-
-

22.60188847
-
-
-

Goffin
n=15

f
1

= −100.0
1000.0

10−2

10−4

10−6

10−8

25
27
30
34

0.00014978
0.00004575
0.00000059
0.00000000

> 5 ∗ 104

-
-
-

0.43445713
-
-
-

18.0

10−2

10−4

10−6

10−8

25
29
34
37

0.00393333
0.00006029
0.00000034
0.00000001

> 5 ∗ 104

-
-
-

0.01526670
-
-
-

Goffin
n=50

f
1

= −100.0
1000.0

10−2

10−4

10−6

10−8

64
70
77
80

0.00072351
0.00007746
0.00000009
0.00000000

> 5 ∗ 104

-
-
-

32.72499431
-
-
-

105.0

10−2

10−4

10−6

10−8

64
70
77
80

0.00072351
0.00007746
0.00000009
0.00000000

> 5 ∗ 104

-
-
-

0.43717914
-
-
-

L1hil
n=10

f
1

= −100.0
1000.0

10−2

10−4

10−6

10−8

14
42
54
80

0.00466617
0.00004219
0.00000051
0.00000001

> 5 ∗ 104

-
-
-

0.11135363
-
-
-

4.0

10−2

10−4

10−6

10−8

10
18
27
59

0.00563384
0.00004197
0.00000040
0.00000000

> 5 ∗ 104

-
-
-

0.00481994
-
-
-

Maxquad
n=10

f
1

= −10.0
100.0

10−2

10−4

10−6

10−8

236
285
315
508

-0.84060870
-0.84139841
-0.84140810
-0.84140833

> 5 ∗ 104

-
-
-

-0.83251823
-
-
-

4.0

10−2

10−4

10−6

10−8

145
236
282
344

-0.84017311
-0.84139640
-0.84140805
-0.84140833

27370
> 5 ∗ 104

-
-

-0.84079048
–0.84079048

-
-

Table 2
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Finally, we present the numerical tests for several strongly convex problems
3.1.1, 3.1.6. For such problems an upper approximation R of diam(D) can
be updated in each iteration. More precisely, we provide:

Step 1.2. Evaluate Rk = min

{√
f(xk)−f

k
s , ‖gk‖

2s

}

and substitute R by Rk in Iterative scheme 2.1, where s is a strong convexity
constant (see [2] for details). Similarly, for strongly convex problems f

k
is

additionally updated by adding the following step to Iterative scheme 2.1:

Step 1.3. If f(xk) − ‖gk‖2
2s > f

k
, then set f

k+1
= f(xk) − ‖gk‖2

2s and go
to Step 10.2, (see [2] for details). We call such a modification of Iterative
scheme 2.1 the strongly convex (sc) variant of the PAC method.
Two methods are compared for such a modification of Iterative scheme 2.1:
the PAC method and the KAC method.

a) The results for the strongly convex problem 3.1.6 with the strong con-
vexity constant s = 1 are presented in Table 3.

PAC method PAC method, KAC method
m× n ε sc variant sc variant

#l #f/g #l #f/g #l #f/g

10×5

10−2

10−4

10−6

10−8

12
18
23
30

23
33
41
44

7
13
18
25

10
19
24
26

8
14
-
-

38
3068
> 3 ∗ 104

-

20×20

10−2

10−4

10−6

10−8

12
17
23
28

18
27
34
39

11
16
21
28

16
23
27
28

12
15
-
-

190
12472
> 3 ∗ 104

-

50×30

10−2

10−4

10−6

10−8

12
18
24
30

26
35
43
45

9
14
20
26

13
21
28
29

9
18
-
-

70
6149
> 3 ∗ 104

-

100×50

10−2

10−4

10−6

10−8

12
17
23
29

23
31
38
41

15
21
27
32

20
25
31
33

13
18
-
-

268
12328
> 3 ∗ 104

-

Table 3
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b) The results for the Shor’s problem 3.1.1 are presented in Table 4 (note,
that the Shor’s function is strongly convex with a strong convexity constant
s = 1).

PAC method KAC method
sc variant sc variant

Function ε #f/g f(xk) #f/g f(xk)

Shor
n=5

f
1

= 0.0

10−2

10−4

10−6

10−8

27
40
51
64

22.60280198
22.60020768
22.60016251
22.6001620

6204
34692
> 5 ∗ 104

-

22.60184265
22.60020224
22.60019054
-

Table 4

3..3 Conclusions

First we explain why we have compared the method of projection onto an
acute cone (the PAC method) with the variable target subgradient method
of Kim, Ahn and Cho [2] (the KAC method) and with its variant – the
subgradient method of Polyak [6]. As we have previously observed the last
two methods are special cases of the PAC method: obtuse cones are one-
dimensional in the Polyak and in the KAC method. Therefore, we search
in the numerical tests the influence of the possibility of the construction of
multi-dimensional obtuse cones in Algorithm 2.2 on the speed of conver-
gence. In both cases we see that the employing of the obtuse cone model
accelerates considerably the convergence. We see that the Polyak method
and the KAC method did not attain the optimality tolerance ε = 10−4 in a
reasonable number of objective evaluations. Even the previously described
update of Rk and f

k
in the strongly convex case does not help the KAC

method to attain the optimality tolerance ε = 10−4. However, the PAC
method converges better after this additional update of Rk and f

k
. Fur-

thermore, for the PAC method the geometrical convergence in all cases and
for all tested functions is observed, as Tables 1 and 2 show.

The knowledge of the minimal objective value f∗ does not have so much
influence on the convergence, as theoretically expected. We have also tested
the PAC method for much less initial values of lower bounds f

1
of f∗ than

the presented in Table 2. The number of objective evaluations was only
a bit bigger than for those presented in Table 2 values of f

1
. The results

presented in Table 2 show also that the estimation R of ‖x1 − x∗‖ has only
little influence on the convergence. The cause of this surprising phenomenon
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is the fact that in almost all cases the lower bound f
1

was updated in Step
10 of Iterative scheme 2.1 by detection that Sk = ∅ in Step 6.2 (actually,
this equality has been detected by the Cholesky procedure in Step 4.2 of
Algorithm 2.2). The inconsistency has been detected very rarely in Step 8
of Iterative scheme 2.1, contrary to the KAC method.

Very good results of the PAC method for the Goffin’s test function can
be explained by a special form of the Goffin’s function f(x) = maxi∈I fi(x),
where all gradients∇fi(x) generate an obtuse cone, since 〈∇fi(x),∇fj(x)〉 <
0 for all i, j, i 6= j. Therefore, the constructed obtuse cones have big dimen-
sion for this test function.

We have not compared the PAC method with methods of ”bundle type”
[3, 4, 7]. This comparison will be the aim in our next study. An initial anal-
ysis shows that in some cases the behavior of the PAC method is comparable
with the bundle methods, in other cases the bundle methods converge better
than the PAC method does. Nevertheless, the cost of one iteration for the
PAC method seems to be smaller than for the bundle methods. These meth-
ods employ namely QP-procedure in each iteration. On the other hand,
Algorithm 2.2 seems to be relatively cheap. Note, that the complexity of
this Algorithm has the most important influence on the cost of one iteration
of the PAC method.

Acknowledgement

I would like to thank Professor Andrzej Cegielski for his collaboration and
many helpful suggestions during the preparation of the paper.

References

[1] A. Cegielski, A method of projection onto an acute cone with level control in
convex minimization, Mathematical Programming 85 (1999), 469–490.

[2] S. Kim, H. Ahn and S.-C. Cho, Variable target value subgradient method, Math-
ematical Programming 49 (1991), 359–369.

[3] K.C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Springer-
Verlag, Berlin 1985.
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