Discussiones Mathematicae
Differential Inclusions, Control and Optimization 30(2010) 101-120

PROJECTION METHOD WITH LEVEL CONTROL
IN CONVEX MINIMIZATION

ROBERT DYLEWSKI

Faculty of Mathematics, Computer Science
and Econometrics, University of Zielona Gdra
65-516 Zielona Gora, ul. Prof. Z. Szafrana 4a, Poland

e-mail: r.dylewski@wmie.uz.zgora.pl

Abstract

We study a projection method with level control for nonsmoooth
convex minimization problems. We introduce a changeable level pa-
rameter to level control. The level estimates the minimal value of the
objective function and is updated in each iteration. We analyse the
convergence and estimate the efficiency of this method.
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1. INTRODUCTION
We consider the convex minimization problem

minimize  f(x)
subject to x € D,

(1)

where f : R™ — R is a convex (not necessarily differentiable) function and
D C R" is a nonempty, convex and compact subset. Then the solution set

M = Argmin f(z) ={z € D : f(z) < f(x) for all z € D}
zeD

is nonempty, i.e., f attains its minimum f* = min{f(z) : z € D}.
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We suppose that for any z € D we can evaluate the objective value f(x)
and a single subgradient g¢(x), and that for any € R™ we can evaluate the
metric projection Pp(x) of x onto D.

We use the following notation:

r=(&,...,&)" — an element of R",

xr — kth element of a sequence (xy),

(z,y) = Z?:l &n; — the standard scalar product of vectors z,y € R”,
|z|| = \/{(z,z) — the Euclidean norm of a vector z € R",

S(h,a) = {zx € R": h(z) < a} — the sublevel set of a function h with a
level «,

S'(h,a) ={x € R": h(x) < a},

Of(z) ={g e R": f(y) — f(x) > {9,y — x),y € R"} — the subdifferen-
tial of a function f at x,

gr = g¢(xr) — a subgradient of f at x;, € R" (any element of 0f(xy)),

fe(:) = {9k, — xx) + f(zr) — a linearization of f at zy,

fr = maxi<i< fi — the best model (lower bound) of f,

fi = mingep fi(z),

d(z,C) =inf,cc ||z — z|| — the distance of = to the subset C,

diam(C) = sup, yec ||y — z|| — the diameter of subset C,

Pc(r) = argming ¢ ||y — z|| — the metric projection of 2 onto a closed,
convex subset C' C R"™.

We study the projection method, with level control for problem (1), of the
form

x1 € D — arbitrary
(2)

Try1 = Pp(og + Aity),
where:

o )\ € (0,2) is so called relaxation parameter,

e vector t; has the form

(3) tr = PﬂieLk S(fi,ak)xk — Ty,

o L C{l1,2,...,k} is a subset of saved linearization,
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ar = (1 — vg)ag + vy, denotes the current level (an approximation of
the minimal value f* of the objective function f),

v € (0,1] is a level parameter,
o, = minj<;<y, f(z;) is an upper bound of f*,

a; < f*is a lower bound of f* which is updated in each iteration.

Additionally, we assume that we know:

an initial lower bound oy of f*,

an upper bound R of the distance of the starting point x1 to the solution
set M, R > d(xy,M).

Remark 1. The presented method is a genaralization of the following meth-
ods.

a)

Let f* be known. If we set v, = 1 and o, = f*, then a = f*.
If additionaly, Ly = {k}, then ;o S(fi,ax) = S(fx, f*) and t; =

_ @R gk
lgell Ngxll®

Let vy = v € (0,1). If Ly = {k}, then miELk S(fi,ar) = S(fr, ) and

%”g—’;”. We obtain the variable target value subgradient

method of Kim-Ahn-Cho [5].

Let o, = f; (of course a;, < f*) and vy = v € (0,1). If Ly =
{1,2,...,k}, then ﬂieLk S(fi,ar) = S(fk,ar). We obtain the level
method of Lemaréchal-Nemirovskii-Nesterov [7].

Let vy = v € (0,1) and let Ly C {1,2,...,k} such that k € L;. Then
Nicr, S(fisar) = S(fr,, ax), where fr, = max;er, fi. We obtain the
subgradient projection method with level control proposed by Kiwiel
[6].

Let v, = v € (0,1). If Ly C {1,2,...,k} is such that the system
of subgradients {g; : ¢ € L} is linearly independent and generates
an obtuse cone, then niELk S(fi,on) = S(fr,,ar) for model fr, =
max;er, fi- We obtain the method of projection with level control and
obtuse cone selection proposed by Cegielski [2].

Let vy = v € (0,1). Let Ly C {1,2,...,k} be such that the system of
subgradients {g; : i € Ly} is obtained from so called residual selection
model. We have the method of projection with level control and residual
selection studied in [3] and [4].

We obtain the Polyak subgradient projection method [8].

ty = —
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In Section 2 we present a general iterative scheme for the considered projec-
tion method with level control. In Section 3 we analyse the convergence of
the method. In the last section we estimate the efficiency of the method.

2. PROJECTION METHOD WITH LEVEL CONTROL

Now we formulate the general projection method with level control.
Recall that the point z. € D is an e-optimal solution of problem (1) if
it satisfies the following condition:

(4) f(ze) < f(z) + € for all x € D.

Let (zx) be a sequence generated by the following iterative scheme, which
is a modification of the schemes presented in [2, Iterative Scheme 2], [6,
Algorithm 2.2].

Iterative Scheme 2. (Projection method with level control)

Step 0. (Initialization)

0.1 Choose: x1 € D (starting point), € > 0 (optimality tolerance),
MAA € (0,2) such that A < X (lower and upper bounds of the relax-
ation parameter), v,v € (0,1) such that v <7 (lower and upper bounds
of the level parameter), R > d(x1, M) (upper bound of the distance of the
starting point 1 to the solution set), a; € (—oo, f*] (initial lower bound
of f*), ap € (f(x1),+00) (initial upper bound of f*), m > 1 (number of
saved linearizations).

0.2 Set: k = 1 (iterations counter), | = 0 (counter of updates of the lower
bound oy,), 11 = 0 (initial distance parameter), T; = 1.

Step 1. (Objective evaluations)
Calculate f(zx) and gi € Of (zg).

Step 2. (Upper bound update)

If f(xg) < ag_1 set ar = f(zy) and Ty = zk.

Otherwise, set ap = ap_1 and Ty = Tg_1.

Step 3. (Stopping criterion)
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3.1 If &, — a3, < ¢, then terminate (Ty, is an e-optimal solution).

3.2 If ||gx|| R < &, then terminate (xy is an e-optimal solution).

Step 4. (Level update)

4.1 Choose vy, € [v,7].
4.2 Set a, = (1 — vg)q + Ve,

Step 5. (Update of saved linearizations of f)
Set Jy={k—m+1,...,k}.

Step 6. (Selection of linearizations)

6.1 Choose an appropriate subset L C Ji such that k € Ly.

6.2 If the equality Sy, :=V;cz, S(fi,ax) = 0 is detected, then go to
Step 10 (level ayis too low).

Step 7. (Projection)
7.1 Construct t, = Ps, (x)) — x}.
7.2 Choose \; € [\, A].
7.3 Evaluate zp = xp + Aptg.
7.4 Evaluate zj, = Ppzj and q = 2, — 2.

Step 8. (Inconsistency detection)

8.1 Set:

re =Tk + Me(2 = M) [kl + llae®,

ric =i+ 1l

8.2 If

r. > R? — (R — ||z}, — xpr41|))? or

e > R? — (R — |lzg + ty — w41 )%,

where £’ is the last iteration in which Step 10 was executed (initial
k' = 0), then go to Step 10 (level oy, is too low).

Step 9. (Approximation update)

9.1 Set zp41 = 2.
9.2 Set 141 =17,
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9.3 Increase k by 1 and go to Step 1.

Step 10. (Lower bound update)

10.1 Set ay, 1 = g, Qpy1 = @ and T = Tp.
10.2 Set ri1 = 0.

10.3 Set zp41 =T

10.4 Increase k and [ by 1 and go to Step 3.

Steps 6 and 7 were discussed in detail in [2, 3, 6] and [4].

Remark 3.
a) By the definition of subgradient we have inequality

(5) f(x) > f(z1) = ||lga|| R

for all x € D, where R’ > diam(D). Indeed, the subgradient g; of f at
x1 satisfies the inequality

f(@) = fla1) = (91,21 — ).

By the Schwarz inequality and inequality R’ > diam(D), we obtain (5)
for all x € D. If we do not know a better initial lower bound «; of f*,
then we can take

ay = f(z1) = llgrll ®"

b) From the equalities in Steps 2 and 10.1 we have

Tk = argmin f(x;).
1<i<k

c) If L = {k} in Step 6.1, then Iterative Scheme 2 assigns the vector t,
such as in the method of Kim-Ahn-Cho [5]. In this case we have

Sk ={z € R": fi(x) = (g, — z) + f(2r) < .}
and
(f(zr) — ar)gr

ty = — .
1%
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Furthermore, if k € Ly and S = S(fi,ar) # 0, then we obtain

1€l
(6) el > L)~k
gk
We denote
(7) o= max fis

where L C {1,2,...,k}. Since f; < f,i € L and f;(z;) = f(z;) fori € L, we
have f(z) > fr(x) for all z € R™ and f(x;) = fr(x;) for i € L.

The following lemmas explain why we have to go to Step 10 when the
condition in Step 6.2 is satisfied.

Lemma 4. If functions h, f : R™ — R are such that h < f, then S(f,«) C
S(h,B) for a, B € R such that o < 3.

Proof. Let y € S(f,«). Therefore, f(y) < a. By the assumption of the
lemma, we have h(y) < f(y). Consequently h(y) < o < 8 and y € S(h, ).

|
Lemma 5. If 8 < « then S(f,3) C S'(f,a) C S(f, ).

Proof. Let y € S(f,[3), then f(y) < . By the assumption of the lemma,
we obtain f(y) < 8 < a. Hence, y € S’(f,«) and consequently y € S(f, a).

|
Lemma 6. Let function h : R™ — R be such that h < f. If S(h,a)N D =)
for some a € R, then o < f*.

Proof. Suppose that S(h,a) N D =0 and o > f*. Then f* € S(f,a) N D.
Let h be such that h < f. Then S(f,a) N D C S(h,«) N D, by Lemma 4,
and, consequently, S(h,a) N D # (). We obtain a contradiction. [

Lemma 7. Let function h : R™ — R be such that h < f. If S’(h,a)ND = ()
for some a € R, then a < f*.

Proof. Suppose that S’ (h,a)ND = () and o > f*. Let 8 € R be such that
a > (B> f*. Then

S'(h,a)ND D> S(h,B)ND D Sh, f¥YNDDS(f, f*)ND =M #0,

by Lemmas 4 and 5. We obtain a contradiction. [ |
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The model f1, of the form (7) satisfies the condition f;, < f. Therefore, we
can use the function f7 in Lemma 6 and Lemma 7 instead of the function h.

Remark 8.

a) If the condition in Step 6.2 is satisfied, then ay < f* (level «y is too
low), by Lemma 6. Therefore, we can execute the lower bound update
(go to Step 10).

b) Suppose that condition in Step 6.2 is substituted for

Se= [ §'(finon) = 0.

1€l

If this condition is satisfied, then aj < f*, by Lemma 7. Therefore, we
can execute Step 10.

The following lemmas explain why we have to go to Step 10 when the situ-
ation described in Step 8.2 occurs. Recall that z/,’C = Ppz;, and g = zjﬁ — 2k
(see Step 7).

Lemma 9. Ifap > f* for k> 1 then
(8) ki1 = 2l° < o = 207 = Ae(2 = o) [Itell® = llasl®

for all z € M. Furthermore, if a > f* for k =kq,..., ks, then

ko
9) Mok = 201 < iy — 217 = D w2 = M) 1t + llaxll®)
k=k1
forall z € M.
Proof. (See [2, Lemma 1 and Corollary 1]). ]
Remark 10. If
ko

(10) D w2 = M) ltell® + llal®) > Mgy — 20° = g — 2117,

k=Fk1

then ap < f* for some k, k1 < k < ko.



PROJECTION METHOD WITH LEVEL CONTROL IN ... 109

Lemma 11. Suppose that the sequence (ay) is mon-increasing for k =

Kook If
k
(11) > a2 =) ltl? + llall?) > R? = (R — ||21, — 21, |])?
1=kq

for some k, k1 <k < ko, then a < f*.
Proof. (See [2, Lemma 4]). ]

Lemma 12. Suppose that the sequence (ay) is non-increasing for i = kq,

ko If
k—1

(12) D> a2 = M) Il + Nl ll?) + [1t6l® > B? = (R — [k + t — 2k, |])?
i=k1

for some k, k1 <k < ko, then ay < f*.

Proof. Suppose that the assumptions of the lemma are satisfied but ag >
f*. By Lemma 9, we obtain

k—1
(13) i@ =) 6l + llaall®) < Nl — 217 =l — 211

i=k1

for all z € M. Suppose that A\, =1 in Step 7. By inequality (8) in Lemma
9, we obtain

(14) ltl® <l — 211 — Ik + 8 — 2]

By inequalities (13) and (14), we have

k—1

(15) > a2 = M) Il + Naill®) + Nekll® < Nk, — 2017 = [l + t — 21/
1=kq



110 R. DYLEWSKI

On the other hand, by the assumption of the lemma, the inequality R >
|xk, — z|| and the triangle inequality, we obtain

N

-1
(N2 = o) (11 + llasll®) + Nl
1

R?* — (R — ||lwg + tp — xp, ||)?

I
>

AV

2
o, = 2I° = (lor, = 2l = llow + te — 2, [)?

Y

gy — 211 = llzg + tx — 2]

which is a contradiction to inequality (15). ]

Remark 13. The first condition in Step 8.2 corresponds to the condition in
Lemma 11 and the second condition in Step 8.2 corresponds to the condition
in Lemma 12. Hence, we have to go to Step 10 when one of the inequalities
in Step 8.2 is satisfied.

3. CONVERGENCE ANALYSIS

In this section we show that any sequence generated by Iterative Sheme 2 has

a limit point in the solution set M. The idea of the proof of the convergence

comes from [2]. Suppose that Iterative Scheme 2 does not terminate.
Denote ay, | o for a non-increasing real sequence (ay,) converging to a.

Lemma 14. Suppose o | a for k> ky. Then o > f* if and only if

k
D> 2= M) Il + Nlll?) < B for all k> k.

i=k1

Proof. (=) The implication follows from Lemma 11.
(¢<=) Suppose that Y1, (Mi(2 — A [[ti]|* + [|gs]|*) < R? for all k > k.
Then ||tx]| — 0 and, consequently,

fzg) — oy

— 0,
gl

by Remark 3 ¢). The function f is locally Lipschitz continuous and the
sequence (z) is bounded. Therefore, the sequence ||gx|| is bounded. Hence,
f(zr) — ax — 0, and, consequently, f(zy) — «. Hence, a > f*. [



PROJECTION METHOD WITH LEVEL CONTROL IN ... 111

Lemma 15. Suppose oy, | « for k > ky. If a > f*, then f(zr) — « and
each accumulation point x of the sequence (xy) belongs to S(f, ).

Proof. Suppose ap | a > f* for k > ki. Then

k
> a2 =2 1l + llail®) < R?

i=k1

for all & > ky, by Lemma 14. Furthermore, f(z;) — « (see the proof of
Lemma 14). Let & be an accumulation point of the sequence (xj). Such a
point exists because the sequence (zj) is bounded. Since xj € D for all k
and set D is closed, therefore T € D. Now, from the continuity of f, we
have f(z) = o and = € S(f, a). ]

Denote Ay = o — ay,.
Theorem 16. The sequences (@), (ay), (o) converge to f*.

Proof. If Step 10 is executed in the kth iteration then oy, = o and,
consequently

Apy1 = Qg1 — Qe

ap — ap

ap — (1 — Vk)ak — VO
= I/kAk.

Hence, if Step 10 is executed infinitely many times, then A, — 0 since
v <7 < 1. Consequently, the sequences (ay), (o), (o) converge to f*.

Now suppose that ki is the last iteration in which Step 10 is executed.
Then q;, is constant for k£ > ki and (ag)k>k, is a non-increasing sequence.
Let a = limg a. By Lemma 14, a > f*. Otherwise the first condition in
Step 8.2 is satisfied and Step 10 would be executed for some k£ > k;. Since
f(z) > @k and v > v, we have

ap = (1 — )y + vpay
< (1 =) f(on) + vray
< (I-v)f(zr) +vay.
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By Lemma 15, we obtain
(1 —v)f(ze) +ra, — (1 —v)at+rvoy, 4,
since q, is constant for k > k;. Furthermore,
(1-v)a+rva 4 <a,
since v € (0,1) and ay, 1 < f* < a. Consequently, we obtain
a—ap < (L-v)f(zr) +vay — (1 -v)a+rva, 4 <o
Therefore, we have (1 — v)a + v ay, 1 = @, and, consequently, o) = o for
k > ki, since v > 0 and ¢, is constant for k£ > k;. Hence, f* > a; = a > f*
for k > ky, and, consequently, o), = a = f* for k > k.
Since v, > v,

ap = (1 —vp)o + vpey, < (1 —v)ag +vay.

Therefore, we obtain

Qg — VkQy, | Ok — Vg

ay = >
11—y 1—v
since v < 1. Moreover,
QE — Vo
LS
I1-v

since o — o and o, = « for k > ky. Of course, f(z) > @ and f(zr) — a,
by Lemma 15. Hence,

ap — Vo
aHf(xk)ZakZuﬁoh
1-v
consequently, @ — « = f*. Therefore, ap — a = f*. [ |

Theorem 17. Fach accumulation point T of the sequence (Ty) belongs to M.
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Proof. By Theorem 16, f(Ty) = ar — f*. Moreover, the sequence (Ty)
is bounded. Let T be an accumulation point of the sequence (Z). Since
T, € D for all k and set D is closed, therefore * € D. From the continuity
of f, we have f(z) = f* and T € S(f, f*) = M. [ ]

4. EFFICIENCY

The idea of the efficiency estimate comes from [6]. The efficiency of the
method is the number of objective evaluations (function and subgradient
calculations) sufficient to obtain an e-optimal solution.

All considerations in this Section deal with Iterative Scheme 2. We
assume that € > 0 in Step 0. By Theorem 16, the stopping criterion aj—
o, < ¢ is satisfied for some k € N (T, is an e-optimal solution) and Iterative
Scheme 2 generates finite sequence of iterations.

We denote:

e p — the final value of k,

e [’ — the final value of [,

e m = p — I’ — the number of objective evaluations,

e k; — the iteration at which Ith execution of Step 10 occurs, [ =1,...,1’,
® ko =0, kyy1 =p,

e =0y =ay —ap,l=1,...,I'+1,

e =k —ki1—11=2,...)I'+1, j1 = k.

Lemma 18. Forl=1,...,l' we have
o1 < Dpy1 SV

Proof. Recall that Ay = @j — o, is nonincreasing for £k < p. For | =
1,...,0" and for k; < k < k; 1 we have the inequality

041 = Dy <D < Dgygr
Since @k, 41 = Qg,, 41 = o, (Step 10.1) and v, < 7, hence

Dpt1 = Qg1 — Qpyq1
= g, — ay,
= I/k‘ (ak‘l - gk‘l)

< v(ak, —ay,) = V0.
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Denote [y] =min{n € N:n > ~}.

Theorem 19. Suppose I" > 1. Then

I'< 8 A .
| logv

Proof. By Lemma 18, we obtain

Akﬂrl <vy < ?2(5171 <...< 9151 = lekl
for l =1,...,l'. Furthermore, Ay, < A; since k; > 1. Hence,
Apyyr < 7

for I = 1,...,0'. From this inequality for [ = I’ — 1 and from inequalities
ky—1 +1 < kp and Ay, > e we obtain

-1
7N > Dy, 1> Dy, > e

Hence,
€
' —1 < log, —,
08y A

since 7 < 1, and, consequently,

g
I'< [log A_l—‘
logv -
Now we estimate the number of the objective evaluations, which is enough
to obtain an e-optimal solution.

Remark 20. The number of the objective evaluations is equal to Z%:rll J1-
Indeed,

U'+1
Zjl = k1+(k2—k’1—1)+...+(kl/—kl/,1—1)+(kl/+1—kl/—1)
=1

=kp—U'=p-1'=m.
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Lemma 21. Forl'>1 andl =2,...,I' +1 we have

_ A 1\2
(16) R > A2 - Nji (%) :

where L is a Lipschitz constant of the function f on D and R > d(x1,M).

Proof. Let | € {2,...,I' + 1}. For k such that k; 1 +1 < k < k; — 1
the inequalities in Step 8.2 are not satisfied and we have
ZZ’ kll 1 ( K(2 = N 1tel® + quH2) < R2. Therefore, we obtain for [ =
2.1,

k-1
B> 3T (2=l + llael?)
k=k,_q+1
k-1
> ) M@=l
k=k;_1+1
k-1
> A2-X) (f _ak>
A T
k-1
>A2-%) 3 (Z )
k=k,_q+1
k-1
>A2-N Y 4 >

k=k;_1+1
— (A 1\ 2
=2 ()

where the third inequality stems from A < Ax < X and Remark 3 c), the
fourth from

flag) — o > Qg — ap = v (@ — ag,) > v

and ||gx|| < L, the fifth from the inequality Ay > Ay, 4 for £ <k — 1, and
the final equality from

ki —1—(ka+1)+1=k—-k_1—-1=j.
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Remark 22.
a) If I’ > 1 and [ = 1, then, similarly as in proof of Lemma 21, one can
show that
2 -, . ZAklfl 2
(17) RE2A2=-N0h - =——]
since

k?l—l—(k0+1)+1:k1—1:j1—1.

b) If I’ = 0 then m = p = k1 = j; and, for m > 1, similarly as in proof of
Lemma 21, one can show that

J#ZA@—an—U<ﬂi“ﬁé

Since A,,—1 > €, the number of the objective evaluations fulfills the
inequality

m< (A2 - N?) (%)2 +1

Theorem 23. If I > 1, then

1 RL\?
18) mgg@—%f@—ﬂ)@$>+L

where L is a Lipschitz constant of f on the set D and R > d(xz1, M).

Proof. From Remark 20, we have m = Zﬁ/jll Ji-
Now we estimate j; for [ =1,...,I’+ 1. For [ =1,...,I’, we obtain

A1 = Ay, =6
(19) )
> 5*151+1 > .2 ol )51’7

where the inequalities stems from Lemma 18. From Lemma 21 and from
the above inequalities, we obtain
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— ov-1( RL \?
i< (Ae-nA)
(20) <A/€z—1>

for il =2,...,I'. For l =1+ 1, we have

Akl/ Ap_l > €.

41—l =

From Lemma 21 for [ =1’ + 1 and from the above inequality, we obtain
RL ’
i < 2 ) [
Jr+1 = (A( )\)Z ) (Akl/ B )
Ty 2y —1 RL 2
< (pe-Te) " (EEY

From Remark 22 and inequality 19, we obtain

2
-1 e-2) " ()

(21)

(22)

IN

2
(z-0) ™ (52) 7.
l/

Now we estimate the number of the objective evaluations. At first, we
consider the case when p > ki 4+ 1. Then,
(23) oy > iflAkl/H > ?718,

where we obtain the first inequality similarly as in the proof of Lemma 18.
From inequalities (20) and (23), we obtain

2
i< -0y (BE) e

for I = 2,...,l'. From inequalities (22) and (23), and from 7 € (0,1), we
obtain

(24) i< A@-N2)" (%)2#” +1.
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Since

<
+
—
~

then, consequently, we obtain

U'+1 \ /RL 2U'+1
_ < ( RL S2U—141) |
m Z]l — NP ( . ) Zu +

=1

Now we consider the case when p = ky 4+ 1. Then,
(25) op > ¢

and jyy1 = 0. Similarly as above, we obtain

2
a<Ae-?) <@> 72

e

_ RL '
i< (A(z_)\)zg) 1 <_> F20-1 4 q
€
Since
14 -1 00 1

1'—1 —2 —2
( ) I/lgzyz_l_v27

=1 =0 =0

then, consequently, we obtain

2 RL\? <
m=Yi s (20 ()
=1 =1

< (A2-n2) (@>2 Lo
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Corollary 24. If A1 > ¢ >0, then lterative Scheme 2 requires at most

1 RL\?
mie) = L(z—X)ZQ(l — (?) W 1

objective evaluations and at most

log Ail
logv

k(e) =m(e) + [

iterations to obtain an e-optimal solution, where L is a Lipschitz constant
of the function f on the set D, whereas R > d(x1,M).

Proof. Suppose that I’ > 1. Then, m < m(e) by Theorem 23 and

I < i(e) = [bgﬁw

logv
by Theorem 19. Consequently,
p=m+1' <m(e) +1(e) = k(e).

Suppose now that I’ = 0. Then, m = p = k; = ji. If p =1, then A, =
A1 < e. We obtain a contradiction with assumption A1 > €. If p > 1, then

1 (RL>2
m< ——— (22) 41
A2—-Mp? \ €

=0 _X);(l — 7 <%)2 +1

L(Q S T <@” o

by Remark 22 b). n

IN

Remark 25. The result obtained in Corollary 24 is a generalization of the
results presented in [2, 6], where vy = v for k =1,2,...
If vy =v € (0,1) for kK > 1 in Iterative Scheme 2, then

log —£_
() = | sammps ()] + 1 and k(o) = mie) + [ 55|
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