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Abstract

We study a projection method with level control for nonsmoooth
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1. Introduction

We consider the convex minimization problem

(1)
minimize f(x)
subject to x ∈ D,

where f : R
n → R is a convex (not necessarily differentiable) function and

D ⊂ R
n is a nonempty, convex and compact subset. Then the solution set

M = Argmin
x∈D

f(x) = {z ∈ D : f(z) ≤ f(x) for all x ∈ D}

is nonempty, i.e., f attains its minimum f ∗ = min{f(x) : x ∈ D}.
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We suppose that for any x ∈ D we can evaluate the objective value f(x)
and a single subgradient gf (x), and that for any x ∈ R

n we can evaluate the
metric projection PD(x) of x onto D.

We use the following notation:

x = (ξ1, . . . , ξn)> − an element of R
n,

xk − kth element of a sequence (xk),

〈x, y〉 =
∑n

i=1 ξiηi − the standard scalar product of vectors x, y ∈ R
n,

‖x‖ =
√
〈x, x〉 − the Euclidean norm of a vector x ∈ R

n,

S(h, α) = {x ∈ R
n : h(x) ≤ α} − the sublevel set of a function h with a

level α,

S′(h, α) = {x ∈ R
n : h(x) < α},

∂f(x) = {g ∈ R
n : f(y)− f(x) ≥ 〈g, y − x〉, y ∈ R

n} − the subdifferen-
tial of a function f at x,

gk = gf (xk) − a subgradient of f at xk ∈ R
n (any element of ∂f(xk)),

fk(·) = 〈gk, · − xk〉+ f(xk) − a linearization of f at xk,

f̌k = max1≤i≤k fi − the best model (lower bound) of f ,

f̌∗
k = minx∈D f̌k(x),

d(x,C) = infz∈C ‖z − x‖ − the distance of x to the subset C,

diam(C) = supx,y∈C ‖y − x‖ − the diameter of subset C,

PC(x) = argminy∈C ‖y − x‖ − the metric projection of x onto a closed,
convex subset C ⊂ R

n.

We study the projection method, with level control for problem (1), of the
form

(2)
x1 ∈ D − arbitrary

xk+1 = PD(xk + λktk),

where:

• λk ∈ (0, 2) is so called relaxation parameter,

• vector tk has the form

(3) tk = P⋂
i∈L

k

S(fi,αk)
xk − xk,

• Lk ⊂ {1, 2, . . . , k} is a subset of saved linearization,
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• αk = (1 − νk)αk + νkαk denotes the current level (an approximation of
the minimal value f ∗ of the objective function f),

• νk ∈ (0, 1] is a level parameter,

• αk = min1≤i≤k f(xi) is an upper bound of f ∗,

• αk ≤ f∗ is a lower bound of f ∗ which is updated in each iteration.

Additionally, we assume that we know:

– an initial lower bound α1 of f∗,

– an upper bound R of the distance of the starting point x1 to the solution
set M , R ≥ d(x1,M).

Remark 1. The presented method is a genaralization of the following meth-
ods.

a) Let f ∗ be known. If we set νk = 1 and αk = f∗, then αk = f∗.
If additionaly, Lk = {k}, then

⋂
i∈Lk

S(fi, αk) = S(fk, f
∗) and tk =

−f(xk)−f∗

‖gk‖
gk

‖gk‖
. We obtain the Polyak subgradient projection method [8].

b) Let νk = ν ∈ (0, 1). If Lk = {k}, then
⋂

i∈Lk
S(fi, αk) = S(fk, αk) and

tk = − f(xk)−αk

‖gk‖
gk

‖gk‖
. We obtain the variable target value subgradient

method of Kim-Ahn-Cho [5].

c) Let αk = f̌∗
k (of course αk ≤ f∗) and νk = ν ∈ (0, 1). If Lk =

{1, 2, . . . , k}, then
⋂

i∈Lk
S(fi, αk) = S(f̌k, αk). We obtain the level

method of Lemaréchal-Nemirovskii-Nesterov [7].

d) Let νk = ν ∈ (0, 1) and let Lk ⊂ {1, 2, ..., k} such that k ∈ Lk. Then⋂
i∈Lk

S(fi, αk) = S(fLk
, αk), where fLk

= maxi∈Lk
fi. We obtain the

subgradient projection method with level control proposed by Kiwiel
[6].

e) Let νk = ν ∈ (0, 1). If Lk ⊂ {1, 2, . . . , k} is such that the system
of subgradients {gi : i ∈ Lk} is linearly independent and generates
an obtuse cone, then

⋂
i∈Lk

S(fi, αk) = S(fLk
, αk) for model fLk

=
maxi∈Lk

fi. We obtain the method of projection with level control and
obtuse cone selection proposed by Cegielski [2].

f) Let νk = ν ∈ (0, 1). Let Lk ⊂ {1, 2, . . . , k} be such that the system of
subgradients {gi : i ∈ Lk} is obtained from so called residual selection
model. We have the method of projection with level control and residual
selection studied in [3] and [4].
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In Section 2 we present a general iterative scheme for the considered projec-
tion method with level control. In Section 3 we analyse the convergence of
the method. In the last section we estimate the efficiency of the method.

2. Projection method with level control

Now we formulate the general projection method with level control.
Recall that the point xε ∈ D is an ε-optimal solution of problem (1) if

it satisfies the following condition:

(4) f(xε) ≤ f(x) + ε for all x ∈ D.

Let (xk) be a sequence generated by the following iterative scheme, which
is a modification of the schemes presented in [2, Iterative Scheme 2], [6,
Algorithm 2.2].

Iterative Scheme 2. (Projection method with level control)

Step 0. (Initialization)

0.1 Choose: x1 ∈ D (starting point), ε ≥ 0 (optimality tolerance),
λ, λ ∈ (0, 2) such that λ ≤ λ (lower and upper bounds of the relax-
ation parameter), ν, ν ∈ (0, 1) such that ν ≤ ν (lower and upper bounds
of the level parameter), R ≥ d(x1,M) (upper bound of the distance of the
starting point x1 to the solution set), α1 ∈ (−∞, f ∗] (initial lower bound
of f∗), α0 ∈ (f(x1),+∞) (initial upper bound of f ∗), m ≥ 1 (number of
saved linearizations).

0.2 Set: k = 1 (iterations counter), l = 0 (counter of updates of the lower
bound αk), r1 = 0 (initial distance parameter), x1 = x1.

Step 1. (Objective evaluations)

Calculate f(xk) and gk ∈ ∂f(xk).

Step 2. (Upper bound update)

If f(xk) < αk−1 set αk = f(xk) and xk = xk.

Otherwise, set αk = αk−1 and xk = xk−1.

Step 3. (Stopping criterion)
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3.1 If αk− αk ≤ ε, then terminate (xk is an ε-optimal solution).

3.2 If ‖gk‖R ≤ ε, then terminate (xk is an ε-optimal solution).

Step 4. (Level update)

4.1 Choose νk ∈ [ν, ν].

4.2 Set αk = (1− νk)αk + νkαk.

Step 5. (Update of saved linearizations of f)

Set Jk = {k −m + 1, . . . , k}.

Step 6. (Selection of linearizations)

6.1 Choose an appropriate subset Lk ⊂ Jk such that k ∈ Lk.

6.2 If the equality Sk :=
⋂

i∈Lk
S(fi, αk) = ∅ is detected, then go to

Step 10 (level αkis too low).

Step 7. (Projection)

7.1 Construct tk = PSk
(xk)− xk.

7.2 Choose λk ∈ [λ, λ].

7.3 Evaluate zk = xk + λktk.

7.4 Evaluate z′k = PDzk and qk = z′k − zk.

Step 8. (Inconsistency detection)

8.1 Set:

r′k = rk + λk(2− λk)‖tk‖
2 + ‖qk‖

2,

r′′k = rk + ‖tk‖
2.

8.2 If

r′k > R2 − (R− ‖z′k − xk′+1‖)
2 or

r′′k > R2 − (R− ‖xk + tk − xk′+1‖)
2,

where k′ is the last iteration in which Step 10 was executed (initial
k′ = 0), then go to Step 10 (level αk is too low).

Step 9. (Approximation update)

9.1 Set xk+1 = z′k.

9.2 Set rk+1 = r′k.
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9.3 Increase k by 1 and go to Step 1.

Step 10. (Lower bound update)

10.1 Set αk+1 = αk, αk+1 = αk and xk+1 = xk.

10.2 Set rk+1 = 0.

10.3 Set xk+1 = xk.

10.4 Increase k and l by 1 and go to Step 3.

Steps 6 and 7 were discussed in detail in [2, 3, 6] and [4].

Remark 3.

a) By the definition of subgradient we have inequality

(5) f(x) ≥ f(x1)− ‖g1‖R
′

for all x ∈ D, where R′ ≥ diam(D). Indeed, the subgradient g1 of f at
x1 satisfies the inequality

f(x) ≥ f(x1)− 〈g1, x1 − x〉 .

By the Schwarz inequality and inequality R′ ≥ diam(D), we obtain (5)
for all x ∈ D. If we do not know a better initial lower bound α1 of f∗,
then we can take

α1 = f(x1)− ‖g1‖R
′.

b) From the equalities in Steps 2 and 10.1 we have

xk = argmin
1≤i≤k

f(xi).

c) If Lk = {k} in Step 6.1, then Iterative Scheme 2 assigns the vector tk

such as in the method of Kim-Ahn-Cho [5]. In this case we have

Sk = {x ∈ R
n : fk(x) = 〈gk, x− xk〉+ f(xk) ≤ αk}

and

tk = −
(f(xk)− αk)gk

‖gk‖
2 .
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Furthermore, if k ∈ Lk and Sk =
⋂

i∈Lk
S(fi, αk) 6= ∅, then we obtain

(6) ‖tk‖ ≥
f(xk)− αk

‖gk‖
.

We denote

(7) fL = max
i∈L

fi,

where L ⊂ {1, 2, . . . , k}. Since fi ≤ f, i ∈ L and fi(xi) = f(xi) for i ∈ L, we
have f(x) ≥ fL(x) for all x ∈ R

n and f(xi) = fL(xi) for i ∈ L.
The following lemmas explain why we have to go to Step 10 when the

condition in Step 6.2 is satisfied.

Lemma 4. If functions h, f : R
n → R are such that h ≤ f , then S(f, α) ⊂

S(h, β) for α, β ∈ R such that α ≤ β.

Proof. Let y ∈ S(f, α). Therefore, f(y) ≤ α. By the assumption of the
lemma, we have h(y) ≤ f(y). Consequently h(y) ≤ α ≤ β and y ∈ S(h, β).

Lemma 5. If β < α then S(f, β) ⊂ S ′(f, α) ⊂ S(f, α).

Proof. Let y ∈ S(f, β), then f(y) ≤ β. By the assumption of the lemma,
we obtain f(y) ≤ β < α. Hence, y ∈ S ′(f, α) and consequently y ∈ S(f, α).

Lemma 6. Let function h : R
n → R be such that h ≤ f . If S(h, α) ∩D = ∅

for some α ∈ R, then α < f ∗.

Proof. Suppose that S(h, α) ∩D = ∅ and α ≥ f ∗. Then f ∗ ∈ S(f, α) ∩D.
Let h be such that h ≤ f . Then S(f, α) ∩D ⊂ S(h, α) ∩D, by Lemma 4,
and, consequently, S(h, α) ∩D 6= ∅. We obtain a contradiction.

Lemma 7. Let function h : R
n → R be such that h ≤ f . If S ′(h, α)∩D = ∅

for some α ∈ R, then α ≤ f ∗.

Proof. Suppose that S ′(h, α)∩D = ∅ and α > f ∗. Let β ∈ R be such that
α > β > f∗. Then

S′(h, α) ∩D ⊃ S(h, β) ∩D ⊃ S(h, f ∗) ∩D ⊃ S(f, f ∗) ∩D = M 6= ∅,

by Lemmas 4 and 5. We obtain a contradiction.



108 R. Dylewski

The model fL of the form (7) satisfies the condition fL ≤ f . Therefore, we
can use the function fL in Lemma 6 and Lemma 7 instead of the function h.

Remark 8.

a) If the condition in Step 6.2 is satisfied, then αk < f∗ (level αk is too
low), by Lemma 6. Therefore, we can execute the lower bound update
(go to Step 10).

b) Suppose that condition in Step 6.2 is substituted for

S′
k :=

⋂

i∈Lk

S′(fi, αk) = ∅.

If this condition is satisfied, then αk ≤ f∗, by Lemma 7. Therefore, we
can execute Step 10.

The following lemmas explain why we have to go to Step 10 when the situ-
ation described in Step 8.2 occurs. Recall that z ′

k = PDzk and qk = z′k − zk

(see Step 7).

Lemma 9. If αk ≥ f∗ for k ≥ 1 then

(8) ‖xk+1 − z‖2 ≤ ‖xk − z‖2 − λk(2− λk) ‖tk‖
2 − ‖qk‖

2

for all z ∈M . Furthermore, if αk ≥ f∗ for k = k1, . . . , k2, then

(9) ‖xk2+1 − z‖2 ≤ ‖xk1
− z‖2 −

k2∑

k=k1

(λk(2− λk) ‖tk‖
2 + ‖qk‖

2)

for all z ∈M .

Proof. (See [2, Lemma 1 and Corollary 1]).

Remark 10. If

(10)

k2∑

k=k1

(λk(2− λk) ‖tk‖
2 + ‖qk‖

2) > ‖xk1
− z‖2 − ‖xk2+1 − z‖2 ,

then αk < f∗ for some k, k1 ≤ k ≤ k2.
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Lemma 11. Suppose that the sequence (αk) is non-increasing for k =
k1, . . . , k2. If

(11)

k∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) > R2 − (R−
∥∥z′k − xk1

∥∥)2

for some k, k1 ≤ k ≤ k2, then αk < f∗.

Proof. (See [2, Lemma 4]).

Lemma 12. Suppose that the sequence (αk) is non-increasing for i = k1,

. . . , k2. If

(12)

k−1∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) + ‖tk‖
2 > R2 − (R− ‖xk + tk − xk1

‖)2

for some k, k1 ≤ k ≤ k2, then αk < f∗.

Proof. Suppose that the assumptions of the lemma are satisfied but αk ≥
f∗. By Lemma 9, we obtain

(13)
k−1∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) ≤ ‖xk1
− z‖2 − ‖xk − z‖2

for all z ∈M . Suppose that λk = 1 in Step 7. By inequality (8) in Lemma
9, we obtain

(14) ‖tk‖
2 ≤ ‖xk − z‖2 − ‖xk + tk − z‖2 .

By inequalities (13) and (14), we have

(15)

k−1∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) + ‖tk‖
2 ≤ ‖xk1

− z‖2 − ‖xk + tk − z‖2
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On the other hand, by the assumption of the lemma, the inequality R ≥
‖xk1

− z‖ and the triangle inequality, we obtain

k−1∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) + ‖tk‖
2

> R2 − (R− ‖xk + tk − xk1
‖)2

≥ ‖xk1
− z‖2 − (‖xk1

− z‖ − ‖xk + tk − xk1
‖)2

≥ ‖xk1
− z‖2 − ‖xk + tk − z‖2 .

which is a contradiction to inequality (15).

Remark 13. The first condition in Step 8.2 corresponds to the condition in
Lemma 11 and the second condition in Step 8.2 corresponds to the condition
in Lemma 12. Hence, we have to go to Step 10 when one of the inequalities
in Step 8.2 is satisfied.

3. Convergence analysis

In this section we show that any sequence generated by Iterative Sheme 2 has
a limit point in the solution set M . The idea of the proof of the convergence
comes from [2]. Suppose that Iterative Scheme 2 does not terminate.

Denote αk ↓ α for a non-increasing real sequence (αk) converging to α.

Lemma 14. Suppose αk ↓ α for k ≥ k1. Then α ≥ f ∗ if and only if

k∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) ≤ R2 for all k ≥ k1.

Proof. (=⇒) The implication follows from Lemma 11.
(⇐=) Suppose that

∑k
i=k1

(λi(2 − λi) ‖ti‖
2 + ‖qi‖

2) ≤ R2 for all k ≥ k1.
Then ‖tk‖ → 0 and, consequently,

f(xk)− αk

‖gk‖
→ 0,

by Remark 3 c). The function f is locally Lipschitz continuous and the
sequence (xk) is bounded. Therefore, the sequence ‖gk‖ is bounded. Hence,
f(xk)− αk → 0, and, consequently, f(xk)→ α. Hence, α ≥ f ∗.
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Lemma 15. Suppose αk ↓ α for k ≥ k1. If α ≥ f ∗, then f(xk) → α and
each accumulation point x of the sequence (xk) belongs to S(f, α).

Proof. Suppose αk ↓ α ≥ f∗ for k ≥ k1. Then

k∑

i=k1

(λi(2− λi) ‖ti‖
2 + ‖qi‖

2) ≤ R2

for all k ≥ k1, by Lemma 14. Furthermore, f(xk) → α (see the proof of
Lemma 14). Let x̃ be an accumulation point of the sequence (xk). Such a
point exists because the sequence (xk) is bounded. Since xk ∈ D for all k

and set D is closed, therefore x̃ ∈ D. Now, from the continuity of f , we
have f(x̃) = α and x̃ ∈ S(f, α).

Denote 4k = αk − αk.

Theorem 16. The sequences (αk), (αk), (αk) converge to f ∗.

Proof. If Step 10 is executed in the kth iteration then αk+1 = αk and,
consequently

4k+1 = αk+1 − αk+1

= αk − αk

= αk − (1− νk)αk − νkαk

= νk4k.

Hence, if Step 10 is executed infinitely many times, then 4k → 0 since
νk ≤ ν < 1. Consequently, the sequences (αk), (αk), (αk) converge to f ∗.

Now suppose that k1 is the last iteration in which Step 10 is executed.
Then αk is constant for k > k1 and (αk)k>k1

is a non-increasing sequence.
Let α = limk αk. By Lemma 14, α ≥ f ∗. Otherwise the first condition in
Step 8.2 is satisfied and Step 10 would be executed for some k > k1. Since
f(xk) ≥ αk and νk ≥ ν, we have

αk = (1− νk)αk + νkαk

≤ (1− νk)f(xk) + νkαk

≤ (1− ν)f(xk) + ν αk.
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By Lemma 15, we obtain

(1− ν)f(xk) + ν αk → (1− ν)α + ν αk1+1,

since αk is constant for k > k1. Furthermore,

(1− ν)α + ν αk1+1 ≤ α,

since ν ∈ (0, 1) and αk1+1 ≤ f∗ ≤ α. Consequently, we obtain

α← αk ≤ (1− ν)f(xk) + ν αk → (1− ν)α + ν αk1+1 ≤ α.

Therefore, we have (1 − ν)α + ν αk1+1 = α, and, consequently, αk = α for
k > k1, since ν > 0 and αk is constant for k > k1. Hence, f ∗ ≥ αk = α ≥ f∗

for k > k1, and, consequently, αk = α = f∗ for k > k1.

Since νk ≥ ν,

αk = (1− νk)αk + νkαk ≤ (1− ν)αk + ν αk.

Therefore, we obtain

αk =
αk − νkαk

1− νk

≥
αk − ν αk

1− ν
,

since ν < 1. Moreover,
αk − ν αk

1− ν
→ α,

since αk → α and αk = α for k > k1. Of course, f(xk) ≥ αk and f(xk)→ α,
by Lemma 15. Hence,

α← f(xk) ≥ αk ≥
αk − ν αk

1− ν
→ α,

consequently, αk → α = f∗. Therefore, αk → α = f∗.

Theorem 17. Each accumulation point x of the sequence (xk) belongs to M .
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Proof. By Theorem 16, f(xk) = αk → f∗. Moreover, the sequence (xk)
is bounded. Let x be an accumulation point of the sequence (xk). Since
xk ∈ D for all k and set D is closed, therefore x ∈ D. From the continuity
of f , we have f(x) = f ∗ and x ∈ S(f, f ∗) = M .

4. Efficiency

The idea of the efficiency estimate comes from [6]. The efficiency of the
method is the number of objective evaluations (function and subgradient
calculations) sufficient to obtain an ε-optimal solution.

All considerations in this Section deal with Iterative Scheme 2. We
assume that ε > 0 in Step 0. By Theorem 16, the stopping criterion αk−
αk ≤ ε is satisfied for some k ∈ N (xk is an ε-optimal solution) and Iterative
Scheme 2 generates finite sequence of iterations.

We denote:

• p – the final value of k,

• l′ – the final value of l,

• m = p− l′ – the number of objective evaluations,

• kl – the iteration at which lth execution of Step 10 occurs, l = 1, . . . , l ′,

• k0 = 0, kl′+1 = p,

• δl = 4kl
= αkl

− αkl
, l = 1, . . . , l′ + 1,

• jl = kl − kl−1 − 1, l = 2, . . . , l′ + 1, j1 = k1.

Lemma 18. For l = 1, . . . , l′ we have

δl+1 ≤ 4kl+1 ≤ νδl.

Proof. Recall that 4k = αk − αk is nonincreasing for k ≤ p. For l =
1, . . . , l′ and for kl < k ≤ kl+1 we have the inequality

δl+1 = 4kl+1
≤ 4k ≤ 4kl+1.

Since αkl+1 = αkl
, αkl+1 = αkl

(Step 10.1) and νk ≤ ν, hence

4kl+1 = αkl+1 − αkl+1

= αkl
− αkl

= νk(αkl
− αkl

)

≤ ν(αkl
− αkl

) = νδl.
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Denote dγe = min {n ∈ N : n ≥ γ}.

Theorem 19. Suppose l′ ≥ 1. Then

l′ ≤

⌈
log ε

41

log ν

⌉
.

Proof. By Lemma 18, we obtain

4kl+1 ≤ νδl ≤ ν2δl−1 ≤ . . . ≤ ν lδ1 = νl4k1

for l = 1, . . . , l′. Furthermore, 4k1
≤ 41 since k1 ≥ 1. Hence,

4kl+1 ≤ νl41

for l = 1, . . . , l′. From this inequality for l = l′ − 1 and from inequalities
kl′−1 + 1 ≤ kl′ and 4k

l′
> ε we obtain

νl′−141 ≥ 4k
l′−1+1 ≥ 4k

l′
> ε.

Hence,

l′ − 1 < logν

ε

41
,

since ν < 1, and, consequently,

l′ ≤

⌈
log ε

41

log ν

⌉
.

Now we estimate the number of the objective evaluations, which is enough
to obtain an ε-optimal solution.

Remark 20. The number of the objective evaluations is equal to
∑l′+1

l=1 jl.
Indeed,

l′+1∑

l=1

jl = k1 + (k2 − k1 − 1) + . . . + (kl′ − kl′−1 − 1) + (kl′+1 − kl′ − 1)

= kl′+1 − l′ = p− l′ = m.



Projection method with level control in ... 115

Lemma 21. For l′ ≥ 1 and l = 2, . . . , l′ + 1 we have

(16) R2 ≥ λ(2− λ)jl

(
ν4kl−1

L

)2

,

where L is a Lipschitz constant of the function f on D and R ≥ d(x1,M).

Proof. Let l ∈ {2, . . . , l′ + 1}. For k such that kl−1 + 1 ≤ k ≤ kl − 1
the inequalities in Step 8.2 are not satisfied and we have∑kl−1

k=kl−1+1

(
λk(2− λk) ‖tk‖

2 + ‖qk‖
2
)
≤ R2. Therefore, we obtain for l =

2, . . . , l′,

R2 ≥

kl−1∑

k=kl−1+1

(
λk(2− λk) ‖tk‖

2 + ‖qk‖
2
)

≥

kl−1∑

k=kl−1+1

λk(2− λk)‖tk‖
2

≥ λ(2− λ)

kl−1∑

k=kl−1+1

(
f(xk)− αk

‖gk‖

)2

≥ λ(2− λ)

kl−1∑

k=kl−1+1

(
ν4k

L

)2

≥ λ(2− λ)

kl−1∑

k=kl−1+1

(
ν4kl−1

L

)2

= λ(2− λ)

(
ν4kl−1

L

)2

jl,

where the third inequality stems from λ ≤ λk ≤ λ and Remark 3 c), the
fourth from

f(xk)− αk ≥ αk − αk = νk (αk − αk) ≥ ν4k

and ‖gk‖ ≤ L, the fifth from the inequality 4k ≥ 4kl−1 for k ≤ kl − 1, and
the final equality from

kl − 1− (kl−1 + 1) + 1 = kl − kl−1 − 1 = jl.
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Remark 22.

a) If l′ ≥ 1 and l = 1, then, similarly as in proof of Lemma 21, one can
show that

(17) R2 ≥ λ(2− λ)(j1 − 1)

(
ν4k1−1

L

)2

,

since

k1 − 1− (k0 + 1) + 1 = k1 − 1 = j1 − 1.

b) If l′ = 0 then m = p = k1 = j1 and, for m > 1, similarly as in proof of
Lemma 21, one can show that

R2 ≥ λ(2− λ)(m− 1)

(
ν4m−1

L

)2

.

Since 4m−1 > ε, the number of the objective evaluations fulfills the
inequality

m ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

+ 1.

Theorem 23. If l′ ≥ 1, then

(18) m ≤
1

λ(2− λ)ν2(1 − ν2)

(
RL

ε

)2

+ 1,

where L is a Lipschitz constant of f on the set D and R ≥ d(x1,M).

Proof. From Remark 20, we have m =
∑l′+1

l=1 jl.

Now we estimate jl for l = 1, . . . , l′ + 1. For l = 1, . . . , l′, we obtain

(19)
4kl−1 ≥ 4kl

= δl

≥ ν−1δl+1 ≥ . . . ≥ ν(l−l′)δl′ ,

where the inequalities stems from Lemma 18. From Lemma 21 and from
the above inequalities, we obtain
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(20)

jl ≤
(
λ(2− λ)ν2

)−1
(

RL

4kl−1

)2

≤
(
λ(2− λ)ν2

)−1
(

RL

δl′

)2

ν2(l′−l)

for l = 2, . . . , l′. For l = l′ + 1, we have

4k
l′+1−1 = 4p−1 > ε.

From Lemma 21 for l = l′ + 1 and from the above inequality, we obtain

(21)

jl′+1 ≤
(
λ(2− λ)ν2

)−1

(
RL

4k
l′+1−1

)2

<
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

.

From Remark 22 and inequality 19, we obtain

(22)

j1 − 1 ≤
(
λ(2− λ)ν2

)−1
(

RL

4k1−1

)2

≤
(
λ(2− λ)ν2

)−1
(

RL

δl′

)2

ν2(l′−1).

Now we estimate the number of the objective evaluations. At first, we
consider the case when p > kl′ + 1. Then,

(23) δl′ ≥ ν−14k
l′+1 > ν−1ε,

where we obtain the first inequality similarly as in the proof of Lemma 18.
From inequalities (20) and (23), we obtain

jl ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

ν2(l′−l+1)

for l = 2, . . . , l′. From inequalities (22) and (23), and from ν ∈ (0, 1), we
obtain

(24) j1 ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

ν2l′ + 1.
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Since
l′+1∑

l=1

ν2(l′−l+1) =

l′∑

i=0

ν2i ≤
∞∑

i=0

ν2i =
1

1− ν2 ,

then, consequently, we obtain

m =

l′+1∑

l=1

jl ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2 l′+1∑

l=1

ν2(l′−l+1) + 1

≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2 1

1− ν2 + 1.

Now we consider the case when p = kl′ + 1. Then,

(25) δl′ > ε

and jl′+1 = 0. Similarly as above, we obtain

jl ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

ν2(l′−l)

for l = 2, . . . , l′ and

j1 ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2

ν2(l′−1) + 1.

Since
l′∑

l=1

ν2(l′−l) =

l′−1∑

i=0

ν2i ≤
∞∑

i=0

ν2i =
1

1− ν2 ,

then, consequently, we obtain

m =

l′∑

l=1

jl ≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2 l′∑

l=1

ν2(l′−l) + 1

≤
(
λ(2− λ)ν2

)−1
(

RL

ε

)2 1

1− ν2 + 1.
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Corollary 24. If 41 ≥ ε > 0, then Iterative Scheme 2 requires at most

m(ε) =

⌈
1

λ(2− λ)ν2(1− ν2)

(
RL

ε

)2
⌉

+ 1

objective evaluations and at most

k(ε) = m(ε) +

⌈
log ε

41

log ν

⌉

iterations to obtain an ε-optimal solution, where L is a Lipschitz constant
of the function f on the set D, whereas R ≥ d(x1,M).

Proof. Suppose that l′ ≥ 1. Then, m ≤ m(ε) by Theorem 23 and

l′ ≤ l(ε) =

⌈
log ε

41

log ν

⌉

by Theorem 19. Consequently,

p = m + l′ ≤ m(ε) + l(ε) = k(ε).

Suppose now that l′ = 0. Then, m = p = k1 = j1. If p = 1, then 4p =
41 < ε. We obtain a contradiction with assumption 41 ≥ ε. If p > 1, then

m ≤
1

λ(2− λ)ν2

(
RL

ε

)2

+ 1

≤
1

λ(2− λ)ν2(1− ν2)

(
RL

ε

)2

+ 1

≤

⌈
1

λ(2− λ)ν2(1− ν2)

(
RL

ε

)2
⌉

+ 1

by Remark 22 b).

Remark 25. The result obtained in Corollary 24 is a generalization of the
results presented in [2, 6], where νk = ν for k = 1, 2, . . .
If νk = ν ∈ (0, 1) for k ≥ 1 in Iterative Scheme 2, then

m(ε) =
⌈

1
λ(2−λ)ν2(1−ν2)

(
RL
ε

)2⌉
+ 1 and k(ε) = m(ε) +

⌈ log ε

41

log ν

⌉
.
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