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1. Introduction

In this paper, we shall establish sufficient conditions for the controllabil-
ity on semi-infinite intervals of functional differential inclusions of first and
second order in Banach spaces. More precisely, in Section 3 we study the
controllability of functional differential inclusions of the form

y′ −Ay ∈ F (t, yt) + (Bu)(t), t ∈ J = [0,∞),(1)

y0 = φ,(2)

where F : J × C(J0, E) −→ 2E (here J0 = [−r, 0]) is a bounded, closed,
convex valued multivalued map, φ ∈ C(J0, E), A is the infinitesimal gen-
erator of a strongly continuous semigroup T (t), t ≥ 0 and E a real Banach
space with the norm | · |. Also the control function u(·) is given in L2(J, U),
a Banach space of admissible control functions with U as a Banach space.
Finally, B is a bounded linear operator from U to E. For any continuous
function y defined on the interval [−r,∞) and any t ∈ J , we denote by yt

the element of C(J0, E) defined by

yt(θ) = y(t + θ), θ ∈ J0.

Here yt(·) represents the history of the state from time t − r, up to the
present time t.

In Section 4, we investigate the controllability of functional integrodif-
ferential inclusions

y′ −Ay ∈
∫ t

0
K(t, s)F (s, ys)ds + (Bu)(t), t ∈ J = [0,∞),(3)

y0 = φ,(4)

where F, φ,A, B are as in the problem (1) – (2) and K : D −→ R, D =
{(t, s) ∈ J × J : t ≥ s}.

In Section 5, we study the controllability of second order functional
differential inclusions of the form

y′′ −Ay ∈ F (t, yt) + (Bu)(t), t ∈ J = [0,∞),(5)

y0 = φ, y′(0) = y1(6)

where F, φ, B are as in the problem (1) – (2), y1 ∈ E and A is the infinites-
imal generator of a strongly continuous cosine family {C(t) : t ∈ R}.
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Controllability results of nonlinear functional differential systems and non-
linear integrodifferential systems, on compact intervals, in Banach spaces,
by using the Schauder fixed point theorem, were studied by Balachandran,
Balasubramaniam and Dauer in [1], [2]. On the other hand, controllability
results on functional differential and integrodifferential inclusions, on com-
pact intervals in Banach spaces, were studied by the authors in [3] by using
a fixed point theorem for condensing maps due to Martelli [17].

In this paper, we define a new notion, the infinite controllability, and
study the controllability of systems (1) – (2), (3) – (4) and (5) – (6) based
on a fixed point theorem due to Ma [16], which is an extension on locally
convex topological spaces, of Schaefer’s theorem.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

Jm is the compact real interval [0,m] (m ∈ N).
C(J,E) is the linear metric Fréchet space of continuous functions from J
into E with the metric (see Corduneanu [5], Dugundji and Granas [7])

d(y, z) =
∞∑

m=0

2−m‖y − z‖m

1 + ‖y − z‖m
for each y, z ∈ C(J,E),

where
‖y‖m := sup{|y(t)| : t ∈ Jm}.

A measurable function y : J −→ E is Bochner integrable if and only if |y|
is Lebesgue integrable. For properties of the Bochner integral we refer to
Yosida [20].

L1(J,E) denotes the linear space of equivalence classes of all measurable
functions y : J −→ E.

Vp denotes the neighbourhood of 0 in C(J,E) defined by

Vp := {y ∈ C(J,E) : ‖y‖m ≤ p for each m ∈ N}.

The convergence in C(J,E) is the uniform convergence on compact intervals,
i.e. yj −→ y in C(J,E) if and only if for each m ∈ N, ‖yj − y‖m −→ 0 in
C(Jm, E) as j −→∞.
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M ⊆ C(J,E) is a bounded set if and only if there exists a positive function
ϕ ∈ C(J,R) such that

|y(t)| ≤ ϕ(t) for all t ∈ J and all y ∈ M.

A set M ⊆ C(J,E) is compact if and only if for each m ∈ N,M is a compact
set in the Banach space (C(Jm, E), ‖ · ‖m).

Let (X, ‖ · ‖) be a Banach space. A multivalued map G : X −→ 2X is
convex (closed) valued if G(x) is convex (closed) for all x ∈ X. G is bounded
on bounded sets, if G(D) = ∪x∈DG(x) is bounded in X for any bounded set
D of X (i.e. supx∈D{sup{‖y‖ : y ∈ G(x)}} < ∞).

G is called upper semicontinuous (u.s.c.) on X, if for each x∗ ∈ X, the
set G(x∗) is a nonempty, closed subset of X, and if for each open set V of
X containing G(x∗), there exists an open neighbourhood V of x∗ such that
G(V ) ⊆ V .

G is said to be completely continuous, if G(D) is relatively compact, for
every bounded subset D ⊆ X.

If the multivalued map G is completely continuous with nonempty com-
pact values, then G is u.s.c. if and only if G has a closed graph (i.e.
xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)).

G has a fixed point if there is x ∈ X such that x ∈ G(x).
In the following, BCC(X) denotes the set of all nonempty bounded, closed
and convex subsets of X.

A multivalued map G : J −→ BCC(E) is said to be measurable, if for
each x ∈ E, the function Y : J −→ R defined by

Y (t) = d(x,G(t)) = inf{|x− z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of
Deimling [6], Górniewicz [11] and Hu and Papageorgiou [14].

We say that a family {C(t) : t ∈ R} of operators in B(E) is a strongly
continuous cosine family if

(i) C(0) = I (I is the identity operator in E),
(ii) C(t + s) + C(t− s) = 2C(t)C(s) for all s, t ∈ R,

(iii) the map t 7−→ C(t)y is strongly continuous for each y ∈ E.
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The strongly continuous sine family {S(t) : t ∈ R}, associated with the given
strongly continuous cosine family {C(t) : t ∈ R}, is defined by

S(t)y =
∫ t

0
C(s)yds, y ∈ E, t ∈ R.

The infinitesimal generator A : E −→ E of a cosine family {C(t) : t ∈ R} is
defined by

Ay =
d2

dt2
C(0)y.

For more details on strongly continuous cosine and sine families, we refer the
reader to Goldstein [10], Heikkila and Lakshmikantham [13] and to Fattorini
[8], [9] and Travis and Webb [18], [19].

The considerations of this paper are based on the following fixed point
result.

Lemma 2.1 [16]. Let X be a locally convex space and N : X −→ 2X be
a compact convex valued, u.s.c. multivalued map such that for every closed
neighbourhood Vp of 0, N(Vp) is a relatively compact set for each p ∈ N. If
the set

Ω := {y ∈ X : λy ∈ N(y) for some λ > 1}
is bounded, then N has a fixed point.

3. First order functional differential inclusions

Definition 3.1. A function y ∈ C([−r,∞), E) is called a mild solution to
(1) – (2) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e.
on J , y0 = φ, and

y(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bu)(s) ds +

∫ t

0
T (t− s)v(s)ds.

Definition 3.2. The system (1) – (2) is said to be infinite controllable on
the interval [−r,∞), if for every initial function φ ∈ C([−r, 0], E), for every
y1 ∈ E and for every m > 0 there exists a control u ∈ L2(Jm, U), such that
the mild solution y(t) of (1) – (2) satisfies y(m) = y1.
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Let us list the following hypotheses:

(H1) A is the infinitesimal generator of a compact semigroup T (t), t ≥ 0
and there exists M ≥ 1 such that |T (t)| ≤ M, t ≥ 0.

(H2) F : J × C(J0, E) −→ BCC(E); (t, u) 7−→ F (t, u) is measurable with
respect to t for each u ∈ C(J0, E), u.s.c. with respect to u for each
t ∈ J and for each fixed u ∈ C(J0, E) the set

SF,u =
{

g ∈ L1(J,E) : g(t) ∈ F (t, u) for a.e. t ∈ J
}

is nonempty;

(H3) for every m > 0 the linear operator W : L2(Jm, U) → E, defined by

Wu =
∫ m

0
T (m− s)Bu(s) ds,

has an invertible operator W−1 which takes values in L2(Jm, U)\kerW
and there exist positive constants M1 and M2 such that ‖B‖ ≤ M1

and ‖W−1‖ ≤ M2.

(H4) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, y)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J
and all u ∈ E, where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is
continuous and increasing with

∫ ∞

cm

du

ψ(u)
= ∞;

where cm = M(‖φ‖+ M0) and

M0 = mM1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(‖y‖) ds

]
.

Remark 3.3. Examples with W : L2(J, U) → E such that W−1 exists and
is bounded are discussed in [4].

The following lemma is crucial in the proof of our main theorems.
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Lemma 3.4 [15]. Let I be a compact real interval and X be a Banach
space. Let F be a multivalued map satisfying (H2) and let Γ be a linear
continuous mapping from L1(I, X) to C(I,X), then the operator

Γ ◦ SF : C(I, X) −→ BCC(C(I,X)), y 7−→ (Γ ◦ SF )(y) := Γ(SF,y)

is a closed graph operator in C(I,X)× C(I, X).

Now, we are able to state and prove our main theorem.

Theorem 3.5. Assume that hypotheses (H1) – (H4) are satisfied. Then
the problem (1) – (2) is infinite controllable on [−r,∞).

Proof. Let C([−r,∞) be the Fréshet space of continuous functions from
[−r,∞) into E endowed with the seminorms

‖y‖r,m := sup{|y(t)| : t ∈ [−r,m]}, for y ∈ C([−r,∞).

Using hypothesis (H3) for an arbitrary function y(·) define the control

um
y (t) = W−1

[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)g(s)ds

]
(t),

where

g ∈ SF,y =
{

g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J
}

.

We shall now show that when using this control, the operator N :
C([−r,∞), E) −→ 2C([−r,∞),E) defined by:

N(y) :=





h ∈ C([−r,∞), E) : h(t) =





φ(t), if t ∈ J0

T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s)ds

+
∫ t

0
T (t− s)g(s)ds, if t ∈ J





has a fixed point. This fixed point is then the mild solution to the system
(1) – (2). Clearly, y1 ∈ N(y)(m).

We shall show that N(Vq) is relatively compact for each neighbourhood Vq

of 0 ∈ C([−r,∞), E) with q ∈ N and the multivalued map N has bounded,
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closed and convex values and it is u.s.c. The proof will be given in several
steps.

Step 1. N(y) is convex for each y ∈ C([−r,∞), E).

This step is obvious. However, for completness, we give the proof. If h1, h2

belong to N(y), then there exist g1, g2 ∈ SF,y such that for each t ∈ J we
have

hi(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s) ds +
∫ t

0
T (t− s)gi(s) ds, i = 1, 2.

Let 0 ≤ α ≤ 1. Then for each t ∈ J we have

(αh1 + (1− α)h2)(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s) ds

+
∫ t

0
T (t− s)[αg1(s) + (1− α)g2(s)]ds.

Since SF,y is convex (because F has convex values), then

αh1 + (1− α)h2 ∈ N(y).

Step 2. N(Vq) is bounded in C([−r,∞), E) for each q ∈ N.

Indeed, it is enough to show that for each m ∈ N there exists a positive
constant `m such that for each h ∈ N(y), y ∈ Vq one has ‖h‖r,m ≤ ˜̀

m. If
h ∈ N(y), then there exists g ∈ SF,y such that for each t ∈ Jm we have

h(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s) ds +
∫ t

0
T (t− s)g(s)ds.

By (H1), (H3) and (H4) we have for each t ∈ Jm

‖h(t)‖m ≤ |T (t)φ(0)|+
∥∥∥
∫ t

0
T (t− s)(Bum

y )(s) ds
∥∥∥ +

∥∥∥
∫ t

0
T (t− s)g(s)ds

∥∥∥

≤ ‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ M sup

y∈[0,q]
ψ(y)

(∫ m

0
p(s)ds

)]

+ M sup
y∈[0,q]

ψ(y)
(∫ m

0
p(s)ds

)
:= `m.
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Then for each h ∈ N(Vq) we have

‖h‖r,m ≤ ˜̀
m = max{‖φ‖, `m}.

Step 3. For each q ∈ N, N(Vq) is equicontinuous for Vq ∈ C([−r,∞), E).

Let t1, t2 ∈ Jm, 0 < t1 < t2 and Vq be a neighbourhood of 0 in C([−r,∞), E)
for q ∈ N.

For each y ∈ Vq and h ∈ N(y), there exists g ∈ SF,y such that

h(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s)ds +
∫ t

0
T (t− s)g(s)ds, t ∈ J.

Thus

|h(t2)− h(t1)| ≤ |[T (t2)− T (t1)]φ(0)|

+
∥∥∥∥
∫ t2

0
[T (t2 − s)− T (t1 − s)]BW−1

[
y1 − T (m)φ(0)

−
∫ m

0
T (m− s)g(s)ds

]
(η)dη

∥∥∥∥

+
∥∥∥∥
∫ t2

t1

T (t1 − s)BW−1

[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)g(s)ds

]
(η)dη

∥∥∥∥

+
∥∥∥∥
∫ t2

0
[T (t2 − s)− T (t1 − s)] g(s)ds

∥∥∥∥ +
∥∥∥∥
∫ t2

t1

T (t1 − s)g(s)ds

∥∥∥∥

≤ |T (t2)− T (t1)|‖φ‖

+
∫ t2

0
‖T (t2 − s)− T (t1 − s)‖M1M2

[
|y1|+ M‖φ‖

+M

∫ m

0
p(s)ψ(‖y(s)‖)ds

]
(η)dη

+
∫ t2

t1

‖T (t1 − s)‖M1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(‖y(s)‖)ds

]
(η)dη

+
∥∥∥∥
∫ t2

0
[T (t2 − s)− T (t1 − s)]

∫ s

0
g(τ)dτds

∥∥∥∥ + M sup
y∈[0,q]

ψ(y)
(∫ t2

t1

p(s)ds
)
.
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As t2 −→ t1 the right-hand side of the above inequality tends to zero.
The equicontinuity for the cases t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 follows

from the uniform continuity of φ on the interval J0 and from the relation

|h(t2)− h(t1)| = |h(t2)− φ(t1)| ≤ |h(t2)− h(0)|+ |φ(0)− φ(t1)|

respectively.

As a consequence of Step 2, Step 3, together with the fact that T (t) is
compact and the definition of the metric of the Fréchet space C([−r,∞), E),
we can conclude that N(Vq) is relatively compact in C([−r,∞), E).

Step 4. N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists gn ∈ SF,yn such that

hn(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

yn
)(s)ds +

∫ t

0
T (t− s)gn(s)ds, t ∈ J,

where

um
yn

(t) = W−1
[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)gn(s)ds

]
(t).

We must prove that there exists g∗ ∈ SF,y∗ such that

h∗(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y∗)(s)ds

+
∫ t

0
T (t− s)g∗(s)ds, t ∈ J,

(7)

where

um
y∗(t) = W−1

[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)g∗(s)ds

]
(t).

Set
um

y (t) = W−1
[
y1 − T (m)φ(0)

]
(t).

The idea is then to use the facts that

(i) hn −→ h∗;



Controllability on infinite time horizon for ... 271

(ii)

hn(t)− T (t)φ(0)−
∫ t

0
T (t− s)(Bum

yn
)(s)ds ∈ Γ(SF,yn).

where
Γ : L1(J,E) −→ C(J,E)

g 7−→ Γ(g)(t) =
∫ t

0
T (t− s)

[
BW−1

(∫ m

0
T (m− σ)g(σ)dσ

)
(s) + g(s)

]
ds.

If Γ ◦ SF was a closed graph operator, we would be done. But we do not
know whether Γ ◦ SF is a closed graph operator. So, we cut the functions
yn, hn(t)−T (t)φ(0)−∫ t

0 T (t−s)(Bum
yn

)(s)ds, gn and we consider them defined
on the interval [k, k + 1] for aN(y) k ∈ N ∪ {0}. Then, using Lemma 3.4,
in this case we are able to affirm that (7) is true on the compact interval
[k, k + 1], i.e.

h∗(t)
∣∣∣
[k,k+1]

= T (t)φ(0)−
∫ t

0
T (t− s)(Bum

y∗)(s)ds +
∫ t

0
T (t− s)gk

∗ (s)ds

for a suitable L1-selection gk∗ of F (t, y∗(t)) on the interval [k, k + 1].
At this point we can paste the functions gk∗ obtaining the selection g∗

defined by
g∗(t) = gk

∗ (t) for t ∈ [k, k + 1).

We obtain then that g∗ is an L1-selection and (7) is satisfied. We give now
the details. Since f, W−1 are continuous, then um

yn
(t) −→ um

y∗(t) for t ∈ J.

Clearly, we have that

∥∥∥
(
hn − T (t)φ(0)−

∫ t

0
T (t− s)(Bum

yn
)(s)ds

)

−
(
h∗ − T (t)φ(0)−

∫ t

0
T (t− s)(Bum

y∗)(s)ds
)∥∥∥

m
→ 0, as n −→∞.

Now, we consider for all k ∈ N ∪ {0}, the mapping

Sk
F : C([k, k + 1], E) −→ L1([k, k + 1], E)

u 7−→ Sk
F,u := {h ∈ L1([k, k + 1], E) : h(t) ∈ F (t, u) for a.e. t ∈ [k, k + 1]}.
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Also, we consider the linear continuous operators

Γk : L1([k, k + 1], E) −→ C([k, k + 1], E)

g 7−→ Γ(g)(t) =
∫ t

0
T (t− s)

[
BW−1

(∫ m

0
T (m− σ)g(σ)dσ

)
(s) + g(s)

]
ds.

Clearly, Γ is linear and continuous. Indeed, one has

‖Γg‖∞ ≤ M(mMM1M2 + 1)‖g‖L1 .

From Lemma 3.4, it follows that Γk ◦ Sk
F is a closed graph operator for all

k ∈ N ∪ {0}. Moreover, we have that
(
hn(t)− T (t)φ(0)−

∫ t

0
T (t− s)(Bum

yn
)(s)ds

)∣∣∣
[k,k+1]

∈ Γk(Sk
F,yn

).

Since yn −→ y∗, it follows from Lemma 3.4 that
(
h∗(t)− T (t)φ(0)−

∫ t

0
T (t− s)(Bum

y∗)(s)ds
)∣∣∣

[k,k+1]
=

∫ t

0
T (t− s)gk

∗ (s)ds

for some gk∗ ∈ Sk
F,y∗ . So the function g∗ defined on J by

g∗(t) = gk
∗ (t) for t ∈ [k, k + 1)

is in SF,y∗ since g∗(t) ∈ F (t, y∗t) for a.e. t ∈ J .

Therefore N(Vq) is relatively compact for each neighbourhood Vq of 0 ∈
C([−r,∞), E) with q ∈ N and the multivalued map N has bounded, closed
and convex values and it is u.s.c.

Step 5. The set

Ω := {y ∈ C([−r,∞), E) : λy ∈ N(y) for some λ > 1}
is bounded.

Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus there exists g ∈ SF,y such
that

y(t) = λ−1T (t)φ(0)

+λ−1

∫ t

0
T (t− s)BW−1

[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)g(s) ds

]
(η)dη

+λ−1

∫ t

0
T (t− s)g(s)ds, t ∈ J.
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This implies by (H1), (H3) – (H4) that for each t ∈ Jm we have

‖y(t)‖m ≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(‖ys‖)ds

]

+M

∥∥∥∥
∫ t

0
g(s)ds

∥∥∥∥

≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(‖ys‖)ds

]

+M

∫ t

0
p(s)ψ(‖ys‖)ds.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ m.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ Jm, by the previous
inequality we have for t ∈ Jm

µ(t) ≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(‖ys‖)ds

]

+M

∫ t∗

0
p(s)ψ(‖ys‖)ds

≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ M

∫ m

0
p(s)ψ(µ(s))ds

]

+M

∫ t

0
p(s)ψ(µ(s))ds.

If t∗ ∈ J0 then µ(t) = ‖φ‖ and the previous inequality obviously holds.
Let us take the right-hand side of the above inequality as v(t), then we

have
v(0) = M(‖φ‖+ M0), µ(t) ≤ v(t), t ∈ Jm

and
v′(t) = Mp(t)ψ(µ(t)), t ∈ Jm.

Using the nondecreasing character of ψ we get

v′(t) ≤ Mp(t)ψ(v(t)), t ∈ Jm.
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This implies for each t ∈ Jm that
∫ v(t)

v(0)

du

ψ(u)
≤ M

∫ t

0
p(s)ds ≤ M

∫ m

0
p(s)ds < +∞.

From (H4) we have that ∫ v(t)

v(0)

du

ψ(u)
= ∞

thus there exists a constant L = L(m, p, ψ) such that v(t) ≤ L, t ∈ Jm, and
hence µ(t) ≤ L, t ∈ Jm. Since for every t ∈ Jm, ‖yt‖ ≤ µ(t), we have

‖y‖r,m := sup{|y(t)| : −r ≤ t ≤ m} ≤ L,

where L depends only on m and on the functions p and ψ. This shows that
Ω is bounded.

Set X := C([−r,∞), E). As a consequence of Lemma 2.1 we deduce that
N has a fixed point and thus the system (1) – (2) is infinite controllable on
[−r,∞).

4. First order integrodifferential inclusions

Now, we shall study the controllability of the problem (3) – (4).

Definition 4.1. A function y ∈ C([−r,∞), E) is called a mild solution to
(3) – (4) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e.
on J, y0 = φ, and

y(t) = T (t)φ(0) +
∫ t

0
T (t− s)(Bu)(s) ds +

∫ t

0
T (t− s)

∫ s

0
K(s, τ)v(s)dτds.

Definition 4.2. The system (3) – (4) is said to be infinite controllable on
the interval [−r,∞), if for every initial function φ ∈ C([−r, 0], E), for every
y1 ∈ E and every m > 0 there exists a control u ∈ L2(Jm, U), such that the
mild solution y(t) to (3) – (4) satisfies y(m) = y1.

We need the following assumptions:

(H5) for each t ∈ Jm, K(t, s) is measurable on [0, t] and

K(t) = ess sup{|K(t, s)|, 0 ≤ s ≤ t},

is bounded on Jm;
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(H6) the map t 7−→ Kt is continuous from J to L∞(Jm,R); here Kt(s) =
K(t, s);

(H7) ‖F (t, u)‖ := sup{|v| : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J
and all u ∈ C(J0, E), where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is
continuous and increasing with

∫ ∞

c′m

dτ

ψ(τ)
= +∞;

where c′m = M(‖φ‖+ M ′
0), and

M ′
0 = mM1M2

[
|y1|+ M‖φ‖+ mM sup

t∈Jm

K(t)
∫ m

0
p(s)ψ(‖y‖)ds

]
.

Theorem 4.3. Assume that hypotheses (H1) – (H3), (H5) – (H7) are sat-
isfied. Then the problem (3) – (4) is infinite controllable on [−r,∞).

Proof. Using hypothesis (H3) for an arbitrary function y(·) define the
control

um
y (t) = W−1

[
y1 − T (m)φ(0)−

∫ m

0
T (m− s)

∫ s

0
K(s, τ)g(τ) dτds

]
(t),

where

g ∈ SF,y =
{

g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J
}

.

We shall now show that when using this control, the multivalued map, N :
C([−r,∞), E) −→ 2C([−r,∞),E) defined by:

N(y) :=





h ∈ C([−r,∞), E) : h(t) =





φ(t), if t ∈ J0

T (t)φ(0) +
∫ t

0
T (t− s)(Bum

y )(s)ds

+
∫ t

0
T (t− s)

∫ s

0
K(s, u)g(u)duds,

if t ∈ J





has a fixed point. This fixed point is then the mild solution to the system
(3) – (4). Clearly y1 ∈ N(y)(m).
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As in Theorem 3.5 we can show that N(Vq) is relatively compact for each
neighbourhood Vq of 0 ∈ C([−r,∞), E) with q ∈ N and the multivalued
map N has bounded, closed and convex values and it is u.s.c.. We repeat
only the Step 5, i.e. we show that the set

Ω := {y ∈ C([−r,∞), E) : λy ∈ N(y) for some λ > 1}

is bounded.

Let y ∈ Ω. Then λy ∈ N(y) for some λ > 1. Thus there exists g ∈ SF,y such
that

y(t) = λ−1T (t)φ(0)

+ λ−1

∫ t

0
T (t− s)BW−1

[
y1 − T (m)φ(0)

−
∫ m

0
T (m− s)

∫ s

0
K(s, τ)g(τ) dτds

]
(η)dη

+ λ−1

∫ t

0
T (t− s)

∫ s

0
K(s, τ)g(τ)dτds, t ∈ J.

This implies by (H1), (H3), (H5) – (H7) that for each t ∈ Jm we have

‖y(t)‖m

≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ mM supt∈Jm

K(t)
∫ m

0
p(s)ψ(‖ys‖)ds

]

+M

∥∥∥∥
∫ t

0

∫ s

0
K(s, τ)g(τ)dτds

∥∥∥∥

≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ mM supt∈Jm

K(t)
∫ m

0
p(s)ψ(‖ys‖)ds

]

+Mm sup
t∈Jm

K(t)
∫ t

0
p(s)ψ(‖ys‖)ds.

We consider the function µ defined by

µ(t) = sup{|y(s)| : −r ≤ s ≤ t}, 0 ≤ t ≤ m.

Let t∗ ∈ [−r, t] be such that µ(t) = |y(t∗)|. If t∗ ∈ [0,m], by the previous
inequality we have for t ∈ [0, m]
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µ(t) ≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ mM sup

t∈Jm

K(t)
∫ m

0
p(s)ψ(‖ys‖)ds

]

+Mm sup
t∈Jm

K(t)
∫ t∗

0
p(s)ψ(‖ys‖)ds

≤ M‖φ‖+ mMM1M2

[
|y1|+ M‖φ‖+ mM sup

t∈Jm

K(t)
∫ m

0
p(s)ψ(‖ys‖)ds

]

+Mm sup
t∈Jm

K(t)
∫ t

0
p(s)ψ(µ(s))ds.

If t∗ ∈ J0, then µ(t) = ‖φ‖ and the previous inequality holds, since M ≥ 1.
Let us take the right-hand side of the above inequality as v(t), then we

have
v(0) = M [‖φ‖+ M ′

0], µ(t) ≤ v(t), t ∈ Jm

and
v′(t) = mM sup

t∈Jm

K(t)p(t)ψ(µ(t)), t ∈ Jm.

Using the nondecreasing character of ψ we get

v′(t) ≤ Mm sup
t∈Jm

K(t)p(t)ψ(v(t)), t ∈ Jm.

This implies for each t ∈ Jm that
∫ v(t)

v(0)

du

ψ(u)
≤ Mm sup

t∈Jm

K(t)
∫ t

0
p(s)ds ≤ Mm sup

t∈Jm

K(t)
∫ m

0
p(s)ds < +∞.

From (H7) we have that ∫ v(t)

v(0)

du

ψ(u)
= ∞

thus there exists a constant L = L(m, p, ψ) such that v(t) ≤ L, t ∈ Jm, and
hence µ(t) ≤ L, t ∈ Jm. Since for every t ∈ Jm, ‖yt‖ ≤ µ(t), we have

‖y‖r,m := sup{|y(t)| : −r ≤ t ≤ m} ≤ L,

where L depends only on m and on the functions p and ψ. This shows that
Ω is bounded.
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Set X := C([−r,∞), E). As a consequence of Lemma 2.1 we deduce that
N has a fixed point and thus the system (3) – (4) is infinite controllable on
[−r,∞).

5. Second order functional differential inclusions

The controllability of the system (5) – (6) is considered in this Section.

Definition 5.1. A function y ∈ C([−r,∞), E) is called a mild solution to
(5) – (6) if there exists a function v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e.,
on J, y0 = φ, and

y(t) = C(t)φ(0) + S(t)y1 +
∫ t

0
S(t− s)v(s)ds +

∫ t

0
S(t− s)Bu(s)ds.

Definition 5.2. The system (5) – (6) is said to be infinite controllable on
the interval [−r,∞), if for every y0, y1, x1 ∈ E, and every m > 0 there exists
a control u ∈ L2(Jm, U), such that the mild solution y(t) to (5) – (6) satisfies
y(m) = x1.

For the proof of the main result in this Section we need furthermore the
following assumptions:

(H8) A is the infinitesimal generator of a given strongly continuous and
bounded cosine family {C(t) : t ∈ J}. Assume that C(t), t > 0 is
compact and there exists M > 0 such that M = sup{|C(t)|; t ∈ J};

(H9) for each m > 0 the linear operator W : L2(Jm, U) → E, defined by

Wu =
∫ m

0
S(m− s)Bu(s) ds,

has an invertible operator W−1 which takes values in L2(Jm, U)\kerW
and there exist positive constants M1 and M2 such that ‖B‖ ≤ M1

and ‖W−1‖ ≤ M2.

(H10) ‖F (t, u)‖ := sup{|v| ∈ F (t, y)} ≤ p(t)ψ(‖u‖) for almost all t ∈ J and
all u ∈ E, where p ∈ L1(J,R+) and ψ : R+ −→ (0,∞) is continuous
and increasing with ∫ ∞

c∗m

du

ψ(u)
= +∞
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where c∗m = M(‖φ‖+ m|y1|+ M∗
0 ), and

M∗
0 = mM1M2

[
|x1|+ M‖φ‖+ mM |y1|+ mM

∫ m

0
p(s)ψ(‖y‖)ds

]
.

Now, we are able to state and prove our main theorem.

Theorem 5.3. Assume that hypotheses (H2) and (H8) – (H10) are satisfied.
Then the problem (5) – (6) is infinite controllable on [−r,∞).

Proof. Using hypothesis (H9) for an arbirtary function y(·) define the
control

um
y (t) = W−1

[
x1 − C(m)φ(0)− S(m)y1 −

∫ m

0
S(m− s)g(s)ds

]
(t)

where

g ∈ SF,y =
{

g ∈ L1(J,E) : g(t) ∈ F (t, yt) for a.e. t ∈ J
}

.

We shall now show that, when using this control, the operator N :
C([−r,∞), E) −→ 2C([−r,∞),E) defined by:

N(y) :=





h ∈ C([−r,∞), E) : h(t) =





φ(t), if t ∈ J0

C(t)φ(0) + S(t)y1

+
∫ t

0
S(t− s)(Buy)(s)

+
∫ t

0
S(t− s)g(s)ds, if t ∈ J





where g ∈ SF,y, has a fixed point. This fixed point is then the mild solution
to the system (5) – (6). Clearly, x1 ∈ N(y)(m).

Similarly, as in the proof of Theorem 3.5 one can show that N(Vq) is rela-
tively compact for each neighbourhood Vq of 0 ∈ C([−r,∞), E) with q ∈ N
and the multivalued map N has bounded, closed and convex values and it
is u.s.c. from which the result follows.
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6. The implicit case

According to §74 of [11] we would like to consider the implicit functional
differential inclusions (for details and references see [11]).

Let F : J × C(J0, E) × E → 2E be a multivalued map and A, as in
Section 1, be an infinitesimal generator (values of F are not necessarily
convex).

We would like to study the following differential inclusion

(6.1) (y′ −Ay) ∈ F (t, yt, y
′ −Ay).

To do it we shall consider the map associated with (6.1)

(6.2) G : J × C(J0, E) → 2E

defined as follows:

F (t, x) = Fix(F (t, x · )) = {y ∈ E | y ∈ F (t, x, y)}.

Evidently, (6.1) is equivalent to following one:

(6.3) (y′ −Ay) ∈ G(t, xt).

So, it is enough to solve the problem (6.3).
Usually, (under natural assumptions on F ) the map G is u.s.c. but not

in general with convex values.. Therefore, the following assumption on F is
necessary:

(6.4) ∀t ∈ J ∀x ∈ C(J0, E) dim Fix(F (t, x, · )) = 0,

where dim stands for the topological dimension.
By using the fixed point index arguments (comp. [11]) we can prove:

Theorem 6.1. If F satisfies all assumptions of Section 3 and (6.4), then G
possess a lower semicontinuous selector η with compact values.

The proof is strictly analogous to the proof of (74.7) in [11].
Finally, the problem (6.1) is reduced to the following one:

(6.5) (y′ −Ay) ∈ η(t, xt),

where η is an l.s.c. map with compact values.
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It is well known that (6.5) is solvable under typical assumptions.
Note that even for singlevalued F = f the map η is in general multi-

valued. The only case, when η is singlevalued is when Fix(F (t, x, ·)) is a
singleton, i.e., for example if F = f satisfies the Lipschitz condition with
respect to the last variable.

Finally, we recommend [12] for considering problem (1) on a thin domain
contained in E. Let us remark also that using the method presented in this
section the second order inclusions can be considered (comp. [11]). Note
that implicit problems can be formulated on a thin domain, i.e., on a closed
subset of E but it is an open problem how to formulate the second order
case on thin domains (comp. [12]).
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[12] L. Górniewicz, P. Nistri and V. Obukhovskii, Differential inclusions on prox-
imate retracts of Hilbert spaces, International J. Nonlin. Diff. Eqn. TMA, 3
(1997), 13–26.

[13] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Dis-
continuous Nonlinear Differential Equations, Marcel Dekker, New York 1994.

[14] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Volume I:
Theory, Kluwer, Dordrecht, Boston, London 1997.

[15] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in
the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci.
Math. Astronom. Phys. 13 (1965), 781–786.

[16] T.W. Ma, Topological degrees for set-valued compact vector fields in locally
convex spaces, Diss. Math. 92 (1972), 1–43.

[17] M. Martelli, A Rothe’s type theorem for non-compact acyclic-valued map, Boll.
Un. Mat. Ital. 4 (3) (1975), 70–76.

[18] C.C. Travis and G.F. Webb, Second order differential equations in Banach
spaces, Proc. Int. Symp. on Nonlinear Equations in Abstract Spaces, Academic
Press, New York (1978), 331–361.

[19] C.C. Travis and G.F. Webb, Cosine families and abstract nonlinear second
order differential equations, Acta Math. Hungar. 32 (1978), 75–96.

[20] K. Yosida, Functional Analysis, 6th edn. Springer-Verlag, Berlin 1980.

Received 5 December 2001


