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Abstract

This paper is concerned with the existence and approximate controllabil-
ity for impulsive fractional-order stochastic infinite delay integro-differential
equations in Hilbert space. By using Krasnoselskii’s fixed point theorem with
stochastic analysis theory, we derive a new set of sufficient conditions for the
approximate controllability of impulsive fractional stochastic system under
the assumption that the corresponding linear system is approximately con-
trollable. Finally, an example is provided to illustrate the obtained theory.
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1. Introduction

Fractional calculus is an emerging field in the area of the applied mathemat-
ics that deals with derivatives and integrals of arbitrary orders as well as with
their applications. During the history of fractional calculus it was reported that
the pure mathematical formulations of the investigated problems started to be
dressed with more applications in various fields. As a result during the last decade
fractional calculus has been applied successfully to almost every field of science
and engineering. However, despite of the fact that several fields of application of
fractional differentiation and integration are already well established, some others
have just started.

Many applications of fractional calculus dynamics can be found in turbulence
and fluid dynamics, stochastic dynamical system, plasma physics and controlled
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thermonuclear fusion, nonlinear control theory, image processing, nonlinear bio-
logical systems, astrophysics, etc. (see for more details Refs. [5, 14, 16] and the
references therein).

On the other hand, there is also an increasing interest in the recent issue re-
lated to dynamical fractional systems oriented towards the field of control theory
concerning heat transfer, lossless transmission lines [18], the use of discretizing
devices supported by fractional calculus. In recent years, various controllability
problems for different kinds of dynamical systems have been studied in many
publications [1, 13, 24]. From the mathematical point of view, the problems of
exact and approximate controllability are to be distinguished. However, the con-
cept of exact controllability is usually too strong and has limited applicability.
Approximate controllability is a weaker concept than complete controllability
and it is completely adequate in applications [4, 12]. In particular, the fixed
point techniques are widely used in studying the controllability problems for
nonlinear control systems. Klamka studied the practical applicability of the fixed
point theorem in solving various controllability problems for different types of
dynamical control systems. Wang derived a set of sufficient conditions for the
approximate controllability of differential equations with multiple delays by im-
plementing some natural conditions such as growth conditions for the nonlinear
term and compactness of the semigroup. Sakthivel and Anandhi [19] investigated
the problem of approximate controllability for a class of nonlinear impulsive dif-
ferential equations with state-dependent delay by using semigroup theory and
fixed point technique.

Moreover, the study of stochastic differential equations has attracted great
interest due to its applications in characterizing many problems in physics, biol-
ogy, chemistry, mechanics, and so on. The deterministic models often fluctuate
due to noise, so we must move from deterministic control to stochastic control
problems. In the present literature there is only a limited number of papers that
deal with the controllability of stochastic systems [10, 20]. Klamka [11] derived
a set of sufficient conditions for constrained local relative controllability near the
origin for semilinear finite-dimensional dynamical control systems by using the
generalized open mapping theorem.

Sakthivel et al. [21] studied the approximate controllability of nonlinear de-
terministic and stochastic evolution systems with unbounded delay in abstract
spaces. Muthukumar and Balasubramaniam [15] derived a set of sufficient condi-
tions for the approximate controllability of mixed stochastic Volterra-Fredholm
type integro-differential systems in Hilbert spaces by using the Banach fixed point
theorem. More recently, the approximate controllability of fractional stochastic
evolution equations has been studied in [22]. The authors obtained a new set
of sufficient conditions for the approximate controllability of nonlinear fractional
stochastic control system under the assumptions that the corresponding linear
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system is approximately controllable. However, to the best of our knowledge, the
approximate controllability problem for impulsive fractional stochastic integro-
differential system with infinite delay has not been investigated yet. Motivated
by this consideration, in this paper we will study the approximate controllability
for impulsive fractional-order stochastic infinite delay integro-differential system
in Hilbert space under the assumption that the associated linear system is ap-
proximately controllable. Our paper is organized as follows. Section 2 is devoted
to a review of some essential results in fractional calculus and the resolvent oper-
ators that will be used in this work to obtain our main results. In Section 3, we
state and prove the existence of mild solution and controllability result. Section
4 deals with an example to illustrate the abstract results.

2. Preliminaries and basic properties

Let H,K be two separable Hilbert spaces and L(K,H) be the space of bounded
linear operators from K into H. For convenience, we will use the same notation
‖.‖ to denote the norms in H, K and L(K,H), and use (., .) to denote the inner
product of H and K. Let (Ω,F , {Ft}t≥0, IP) be a complete filtered probability
space satisfying that F0 contains all IP-null sets of F . ω = (ωt)t≥0 be a Q-Wiener
process defined on (Ω,F , {Ft}t≥0, IP) with the covariance operator Q such that
TrQ <∞. We assume that there exists a complete orthonormal system {ek}k≥1
in K, a bounded sequence of nonnegative real numbers λk such that Qek = λkek,
k = 1, 2, . . . , and a sequence of independent Brownian motions {βk}k≥1 such that

(ω(t), e)K =

∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ≥ 0.

Let L02 = L2(Q
1
2K,H) be the space of all Hilbert-Schmidt operators from Q

1
2K

to H with the inner product 〈ϕ,ψ〉L02 = Tr(ϕQψ?).
The purpose of this paper is to investigate the existence of mild solution and

the approximate controllability for the following impulsive fractional stochastic
differential equations with infinite delay involving the Caputo derivative in the
form

(1)



cDα
t x(t) = Ax(t) +Bu(t) + f(t, xt, Fx(t)) + σ(t, xt, Gx(t))

dω(t)

dt
,

t ∈ J = [0, T ], T > 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(t) = φ(t), φ(t) ∈ Bh,
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where cDα
t is the Caputo fractional derivative of order α, 0 < α; x(.) takes the

value in the separable Hilbert space H; A : D(A) ⊂ H → H is the infinitesimal
generator of an α-resolvent family {Sα(t)}t≥0; the control function u(.) is given
in L2(J,U), U is a Hilbert space; B is a bounded linear operator from U into H.
The history xt : (−∞, 0] → H, xt(θ) = x(t + θ), θ ≤ 0, belongs to an abstract
phase space Bh; f : J × Bh ×H → H and σ : J × Bh × L02 → H are appropriate
functions to be specified later; Ik : Bh → H, k = 1, 2, . . . ,m, are appropriate
functions. The terms Fx(t) and Gx(t) are given by Fx(t) =

∫ t
0 K(t, s)x(s)ds

and Gx(t) =
∫ t
0 P (t, s)x(s)ds respectively, where K,P ∈ C(D, IR+) are the set

of all positive continuous functions on D = {(t, s) ∈ IR2 : 0 ≤ s ≤ t ≤ T}.
Here 0 = t0 ≤ t1 ≤ · · · ≤ tm ≤ tm+1 = T , ∆x(tk) = x(t+k ) − x(t−k ), x(t+k ) =
limh→0 x(tk + h) and x(t−k ) = limh→0 x(tk − h) represent the right and left limits
of x(t) at t = tk, respectively. The initial data φ = {φ(t), t ∈ (−∞, 0]} is an
F0-measurable, Bh-valued random variable independent of ω with finite second
moments.

Now, we assume that h : (−∞, 0] → (0,∞) with l =
∫ 0
−∞ h(t)dt < ∞ is a

continuous function. We define the abstract phase space Bh by

Bh =

{
φ : (−∞, 0]→ H, for any a>0, (IE|φ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] with φ(0) = 0 and

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|φ(θ)|2)1/2ds <∞

}
.

If Bh is endowed with the norm

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|φ(θ)|2)1/2ds, φ ∈ Bh,

then (Bh, ‖.‖Bh) is a Banach space.
We consider the space

Bb =

{
x : (−∞, T ]→ H such that x|Jk ∈ C(Jk,H) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x0 = φ ∈ Bh, k = 1, 2, . . . ,m

}
,

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 1, 2, . . . ,m. The function
‖.‖Bh defined by

‖x‖Bb = ‖φ‖Bh + sup
0≤s≤T

(IE‖x(s)‖2)1/2, x ∈ Bb

is a seminorm in Bb.
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Lemma 2.1 [17]. Assume that x ∈ Bh. Then xt ∈ Bh for t ∈ J . Moreover,

l(IE‖x(t)‖2)1/2 ≤ l sup
0≤s≤T

(IE‖x(s)‖2)1/2 + ‖x0‖Bh ,

where l =
∫ 0
−∞ h(s)ds <∞.

Let us recall the following known definitions. For details see [5].

Definition 2.2. The fractional integral of order α with the lower limit 0 for a
function f is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−α
ds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma
function.

Definition 2.3. Riemann-Liouville derivative of order α with lower limit zero
for a function f : [0,∞)→ IR can be written as

(2) LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−nds, t > 0, n− 1 < α < n.

Definition 2.4. The Caputo derivative of order α for a function f : [0,∞)→ IR
can be written as

(3) cDαf(t) = LDα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, n− 1 < α < n.

If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0
(t−s)n−α−1fn(s)ds = In−αfn(s), t > 0, n−1 < α < n.

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace
transform of the Caputo derivative of order α > 0 is given as

L{cDαf(t); s} = sαf̂(s)−
n−1∑
k=0

sα−k−1f (k)(0); n− 1 ≤ α < n.
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Definition 2.5. A two parameter function of the Mittag-Leffler type is defined
by the series expansion

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
C

µα−βeµ

µα − z
dµ, α, β ∈ C,R(α) > 0,

where C is a contour which starts and ends at −∞ end encircles the disc |µ| ≤
|z|1/2 counter clockwise.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple
generalization of the exponent function: E1(z) = ez and the cosine function:
E2(z

2) = cosh(z), E2(−z2) = cos(z), and plays a vital role in the theory of
fractional differential equations. The most interesting properties of the Mittag-
Leffler functions are associated with their Laplace integral∫ ∞

0
e−λttβ−1Eα,β(ωtα)dt =

λα−β

λα − ω
, Reλ > ω

1
α , ω > 0,

and for more details see [5].

Definition 2.6 [25]. A closed and linear operator A is said to be sectorial if there
are constants ω ∈ IR, θ ∈ [π2 , π], M > 0, such that the following two conditions
are satisfied:

• ρ(A) ⊂ Σθ,ω = {λ ∈ C : λ 6= ω, |arg(λ− ω)| < θ},
• ‖IR(λ,A)‖ ≤ M

|λ−ω| , λ ∈ Σθ,ω.

Definition 2.7. Let A be a closed and linear operator with the domain D(A)
defined in a Banach space H. Let ρ(A) be the resolvent set of A. We say that
A is the generator of an α-resolvent family if there exist ω ≥ 0 and a strongly
continuous function Sα : IR+ → L(H), where L(H) is a Banach space of all
bounded linear operators from H into H and the corresponding norm is denoted
by ‖.‖, such that {λα : Reλ > ω} ⊂ ρ(A) and

(4) (λαI −A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > ω, x ∈ H,

where Sα(t) is called the α-resolvent family generated by A.

Definition 2.8. Let A be a closed and linear operator with the domain D(A)
defined in a Banach space H and α > 0. We say that A is the generator of
a solution operator if there exist ω ≥ 0 and a strongly continuous function
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Sα : IR+ → L(H) such that {λα : Reλ > ω} ⊂ ρ(A) and

(5) λα−1(λαI −A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > ω, x ∈ H,

where Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent
family. For more details on α-resolvent family and solution operators, we refer
the reader to [5].

Lemma 2.9 [3]. If f satisfies the uniform Hölder condition with the exponent
β ∈ (0, 1] and A is a sectorial operator, then the unique solution of the Cauchy
problem

(6)
cDα

t x(t) = Ax(t) + f(t, xt, Fx(t)), t > t0, t0 ≥ 0, 0 < α < 1,

x(t) = φ(t), t ≤ t0,

is given by

(7) x(t) = Tα(t− t0)(x(t+0 )) +

∫ t

t0

Sα(t− s)f(s, xs, Fx(s))ds,

where

(8) Tα(t) = Eα,1(At
α) =

1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ,

(9) Sα(t) = tα−1Eα,α(Atα) =
1

2πi

∫
B̂r

eλt
1

λα −A
dλ,

here B̂r denotes the Bromwich path; Sα(t) is called the α-resolvent family and
Tα(t) is the solution operator generated by A.

Now, we present the definition of mild solutions for the system (1).

Definition 2.10 [23]. An Ft-adapted stochastic process x : (−∞, T ] → H is
called a mild solution of the system (1) if x0 = φ ∈ Bh satisfying x0 ∈ L02(Ω,H)
and the following conditions:

(i) x(t) is Bh-valued and the restriction of x(.) to (tk, tk+1], k = 1, 2, . . . ,m is
continuous.

(ii) For each t ∈ J , x(t) satisfies the following integral equation
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(10)

x(t) =



φ(t), t ∈ (−∞, 0],∫ t

0
Sα(t− s)[Bu(s) + f(s, xs, Fx(s))]ds

+

∫ t

0
Sα(t− s)σ(s, xs, Gx(s))dω(s), t ∈ [0, t1],

Tα(t− t1)(x(t−1 ) + I1(x(t−1 ))) +

∫ t

t1

Sα(t− s)[Bu(s) + f(s, xs, Fx(s))]ds

+

∫ t

t1

Sα(t− s)σ(s, xs, Gx(s))dω(s), t ∈ (t1, t2],

...

Tα(t−tm)(x(t−m) + Im(x(t−m))) +

∫ t

tm

Sα(t−s)[Bu(s) + f(s, xs, Fx(s))]ds

+

∫ t

tm

Sα(t− s)σ(s, xs, Gx(s))dω(s), t ∈ (tm, T ].

(iii) ∆x|t=tk = Ik(x(t−k )), k = 1, 2, . . . ,m the restriction of x(.) to the interval
[0, T )\{t1, . . . , tm} is continuous.

3. Main results

In the present section, we shall formulate and prove sufficient conditions for the
approximate controllability of the system (1). To do this, we first prove the ex-
istence of solutions for fractional impulsive control system. Then, we show that
under certain assumptions, the approximate controllability of semilinear frac-
tional impulsive control system (1) is implied by the approximate controllability
of the associated linear system.

Definition 3.1 [22]. Let xT (φ;u) be the state value of (1) at the terminal time
T corresponding to the control u and the initial value φ. Introduce the set

R(T, φ) = {xT (φ;u)(0);u(.) ∈ L2(J,U)},

which is called the reachable set of (1) at the terminal time T and its closure in
H is denoted by R(T, φ). The system (1) is said to be approximately controllable
on the interval J if R(T, φ) = H.
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In order to study the approximate controllability for the impulsive fractional
control system (1), we introduce the approximate controllability of its linear part

(11)


cDα

t x(t) = Ax(t) + (Bu)(t), t ∈ J = [0, T ], T > 0, t 6= tk,

∆x(tk) = Ik(x(t−k )), k = 1, 2, . . . ,m,

x(0) = φ(0).

For this purpose, we need to introduce the relevant operator

ΓT0 =

∫ T

0
Sα(T − s)BB?S?α(T − s)ds,

R(q,ΓT0 ) = (qI + ΓT0 )−1,

where B? denotes the adjoint of B and S?α(t) is the adjoint of Sα(t). It is straight-
forward that the operator ΓT0 is a linear bounded operator.

(H0) qR(q,ΓT0 )→ 0 as α→ 0+ in the strong operator topology.

The hypothesis (H0) is equivalent to the fact that the linear fractional control
system (11) is approximately controllable on [0, T ] (see [13], Theorem 2).

In order to establish the result, we impose the following conditions.

(iv) If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for x ∈ H and t > 0 we have
‖Tα(t)‖ ≤Meωt and ‖Sα(t)‖ ≤ Ceωt(1 + tα−1), ω > ω0. Thus we have

‖Tα(t)‖ ≤ M̃T and ‖Sα(t)‖ ≤ tα−1M̃S ,

where M̃T = sup0≤t≤T ‖Tα(t)‖, and M̃S = sup0≤t≤T Ce
ωt(1 + t1−α) (fore more

details, see [25]).

(v) There exist µ1, µ2 > 0 such that

IE‖f(t, γ, x)− f(t, ψ, y)‖2H ≤ µ1‖γ − ψ‖2Bh + µ2IE‖x− y‖2H.

(vi) There exist ν1, ν2 > 0 such that

IE‖σ(t, γ, x)− σ(t, ψ, y)‖2L02 ≤ ν1‖γ − ψ‖
2
Bh + ν2IE‖x− y‖2H.

(vii) f : J ×Bh ×H → H is continuous and there exist two continuous functions
µ1, µ2 : J → (0,∞) such that

IE‖f(t, ψ, x)‖2H ≤ µ1(t)‖ψ‖2Bh + µ2(t)IE‖x‖2H, (t, ψ, x) ∈ J × Bh ×H,

and µ?1 = sups∈[0,t] µ1(s), µ
?
2 = sups∈[0,t] µ2(s).
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(viii) σ : J ×Bh×L02 → H is continuous and there exist two continuous functions
ν1, ν2 : J → (0,∞) such that

IE‖σ(t, ψ, x)‖2L02 ≤ ν1(t)‖ψ‖
2
Bh + ν2(t)IE‖x‖2H, (t, ψ, x) ∈ J × Bh × L02,

and ν?1 = sups∈[0,t] ν1(s), ν
?
2 = sups∈[0,t] ν2(s).

(ix) The functions Ik : H → H is continuous and there exists Λ, Λ̂ > 0 such that

Λ = max
1≤k≤m,x∈B̂p

{IE‖Ik(x)‖2H}, Λ̂ = max
1≤k≤m;x,x̃∈B̂p

{IE‖Ik(x)− Ik(x̂)‖2H},

where B̂p = {y ∈ B0b , ‖y‖2B0b ≤ p, p > 0}.

The set B̂p is clearly a bounded closed convex set in B0b for each p and for

each y ∈ B̂p. From Lemma 2.1, we have

‖yt + ȳt‖2Bh ≤ 2(‖yt‖2Bh + ‖ȳt‖2Bh)

≤ 4

(
l2 sup

0≤t≤T
IE‖y(t)‖2H + ‖y0‖2Bh

)
+ 4

(
l2 sup

0≤t≤T
IE‖y(t)‖2H + ‖ȳ0‖2Bh

)
(12)

≤ 4(‖φ‖2Bh + l2p).

The following lemma is required to define the control function. The reader can
refer to [19] for the proof.

Lemma 3.2. For any x̃T ∈ L2(FT ,H), there exists g̃ ∈ L2F (Ω;L2(0, T ;L02)) such
that

x̃T = IEx̃T +

∫ T

0
g̃(s)dω(s).

Now for any q > 0, k = 1, 2, . . . ,m and x̃ ∈ L2(FT ,H), we define the control
function

u(t) = uq(t) = B?S?α(T − t)(qI + ΓTtk)−1

×

{
IEx̃T +

∫ T

tk

g̃(s)dω(s)− Tα(T − tk)[x(t−k ) + Ik(x(t−k ))]

}
− B?S?α(T − t)

∫ T

tk

(qI + ΓT0 )−1Sα(T − s)f(s, xs, Fx(s))ds

− B?S?α(T − t)
∫ T

tk

(qI + ΓT0 )−1Sα(T − s)σ(s, xs, Gx(s))dω(s).

Next, we mention the statement of Krasnoselskii’s fixed point theorem [23].
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Theorem 3.3. Let B̂ be a nonempty closed convex subset of a Banach space
(X, ‖.‖). Suppose that P and Q map B̂ into X and satisfy

(a) Px+Qy ∈ B̂ whenever x, y ∈ B̂;

(b) P is compact and continuous;

(c) Q is a contraction mapping.

Then there exists z ∈ B̂ such that z = Pz +Qz.

Theorem 3.4. Suppose that the assumptions (iv)− (ix) are satisfied with

(13) p ≥ 5M̃2
T (p+ Λ)M5 + 5M̃2

ST
2α
(λ1
α2

+
λ2

T (2α− 1)

)
M6 +M7

and

(14)
[
M11 + 3M10M̃

2
ST

2α
( 1

α2
(µ1l + µ2F

?) +
1

T (2α− 1)
(ν1l + ν2G

?)
)]

< 1.

Then the impulsive stochastic fractional differential equation (1) has a mild solu-
tion on (−∞, T ].

Proof . Let P1 : B̂p → B̂p and P2 : B̂p → B̂p be defined as

(15) (P1z)(t) =


0, t ∈ [0, t1]

Tα(t− t1)(Z(t−1 ) + I1(Z(t−1 ))), t ∈ (t1, t2]
...
Tα(t− tm)(Z(t−m) + Im(Z(t−m))), t ∈ (tm, T ]

and
(16)

(P2z)(t) =



∫ t

0
Sα(t− s)[Buq(s) + f(s, gs + z̄s, F (g(s) + z̄(s)))]ds

+

∫ t

0
Sα(t− s)σ(s, gs + z̄s, G(g(s) + z̄(s)))dω(s), t ∈ [0, t1],∫ t

t1

Sα(t− s)[Buq(s) + f(s, gs + z̄s, F (g(s) + z̄(s)))]ds

+

∫ t

t1

Sα(t− s)σ(s, gs + z̄s, G(g(s) + z̄(s)))dω(s), t ∈ (t1, t2],

...∫ t

tm

Sα(t− s)[Buq(s) + f(s, gs + z̄s, F (g(s) + z̄(s)))]ds

+

∫ t

tm

Sα(t− s)σ(s, gs + z̄s, G(g(s) + z̄(s)))dω(s), t ∈ (tm, T ].
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It will be shown that the impulsive stochastic fractional differential equation (1)
is approximately controllable if for all q > 0 there exists a fixed point of the
operator P = P1 + P2. To prove this result, we use Krasnoselskii’s fixed point
theorem (Theorem 3.3). We shall show that the operator P = P1 + P2 has a
fixed point, which is a solution of (1).

In order to use Theorem 3.3, we will verify that P1 is compact and continuous
while P2 is a contraction operator. For the sake of convenience, we divide the
proof into several steps.

Step 1. We show that P1z + P2z? ∈ B̂p for z, z? ∈ B̂p. For t ∈ [0, t1], we have

IE‖(P1z)(t) + (P2z?)(t)‖2H

≤ 3IE

∥∥∥∥∥
∫ t

0
Sα(t− s)f(s, gs + 4z̄?s , F (g(s) + z̄?(s)))ds

∥∥∥∥∥
2

H

+ 3IE

∥∥∥∥∥
∫ t

0
Sα(t− s)Buq(s)ds

∥∥∥∥∥
2

H

+ 3IE

∥∥∥∥∥
∫ t

0
Sα(t− s)σ(s, gs + z̄?s , G(g(s) + z̄?(s)))dω(s)

∥∥∥∥∥
2

H

≤ 3

∫ t

0
‖Sα(t− s)‖ds

∫ t

0
‖Sα(t− s)‖IE‖f(s, gs + z̄?s , F (g(s) + z̄?(s)))‖2Hds

+ 3

∫ t

0
‖Sα(t− s)‖2IE‖Buq(s)‖2ds

+ 3

∫ t

0
‖Sα(t− s)‖2IE‖σ(s, gs + z̄?s , G(g(s) + z̄?(s)))‖2L02ds.

We have for t ∈ [0, t1] and MB = ‖B‖,

IE‖uq(s)‖2 ≤ T 2α−2

q2
M2
BM̃

2
S

{
3‖IEx̃T +

∫ t

0
g̃(s)dω(s)‖2

+ 3IE‖
∫ t

0
Sα(T − s)f(s, gs + z̄?s , F (g(s) + z̄?(s)))ds‖2

+ 3IE‖
∫ t

0
Sα(T − s)σ(s, gs + z̄?s , G(g(s) + z̄?(s)))dω(s)‖2

}
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≤ 3
T 2α−2

q2
M2
BM̃

2
S

[
2‖IEx̃T ‖2 + 2

∫ t

0
IE‖g̃(s)‖2ds

+

∫ t

0
‖Sα(T − s)‖ds

∫ t

0
‖Sα(T − s)‖IE‖f(s, gs + z̄?s , F (g(s) + z̄?(s)))‖2ds

+

∫ t

0
‖Sα(T − s)‖2IE‖σ(s, gs + z̄?s , G(g(s) + z̄?(s)))‖2ds

]
.

By using (vii) and (viii), we get

IE‖uq(s)‖2

≤ 3
T 2α−2

q2
M2
BM̃

2
S

[
2‖IEx̃T ‖2 + 2TMg̃ + M̃2

S

∫ t

0
(T − s)α−1ds

×
∫ t

0
(T − s)α−1[µ1(s)‖gs + z̄?s‖2Bh + µ2(s)IE‖F (g(s) + z̄?(s))‖2H]ds

+ M̃2
S

∫ t

0
(T − s)2α−2[ν1(s)‖gs + z̄?s‖2Bh + ν2(s)IE‖G(g(s) + z̄?(s))‖2H]ds

]
≤ 3

T 2α−2

q2
M2
BM̃

2
S

[
2‖IEx̃T ‖2 + 2TMg̃ + M̃2

S

Tα

α

∫ t

0
(T − s)α−1

× [4µ?1(‖φ‖2Bh + l2p) + µ?2F
? sup
s∈[0,T ]

IE‖z?‖2H]ds

+ M̃2
S

∫ t

0
(T − s)2α−2[4ν?1(‖φ‖2Bh + l2p) + ν?2G

? sup
s∈[0,T ]

IE‖z?‖2H]ds
]

≤ 3
T 2α−2

q2
M2
BM̃

2
S

[
2‖IEx̃T ‖2 + 2TMg̃ + M̃2

S

T 2α

α2
[4µ?1(‖φ‖2Bh + l2p) + µ?2F

?p]

× M̃2
S

T 2α−1

2α− 1
[4ν?1(‖φ‖2Bh + l2p) + ν?2G

?p]
]

= M1 + 3
T 2(2α−1)

q2
M2
BM̃

4
S

(
λ1
α2

+
λ2

T (2α− 1)

)
,

where Mg̃ = max{‖g̃(s)‖2; s ∈ [0, t]} and M1 = 3T
2α−2

q2
M2
BM̃

2
S [2‖IEx̃T ‖2+2TMg̃].
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Now, we have

IE‖(P1z)(t) + (P2z?)(t)‖2H

≤ 3M̃2
ST

2α

[
λ1
α2

+
λ2

T (2α− 1)

]

+ 3M̃2
SM

2
B
T 2α−1

2α−1

[
M1 + 3

T 2(2α−1)

q2
M2
BM̃

4
S

(λ1
α2

+
λ2

T (2α− 1)

)]

= 3M̃2
SM2T

2α

[
λ1
α2

+
λ2

T (2α− 1)

]
+M3,

with M2 =
(

1 + 3M̃4
SM

2
B

T 4α−3

q2(2α−1)

)
and M3 = 3M̃2

SM
2
BM1

T 2α−1

2α−1 . Thus, by the

condition (13), we obtain ‖P1z + P2z?‖B0b ≤ p.
Similarly, for t ∈ (ti, ti+1], i = 1, . . . ,m, we get the estimate

IE‖(P1z)(t) + (P2z?)(t)‖2H

≤ 5‖Tα(t− ti)‖2IE‖z(t−i )‖2H + 5‖Tα(t− ti)‖2IE‖Ii(z(t−i ))‖2H

+ 5IE

∥∥∥∥∫ t

ti

Sα(t− s)Buq(s)ds
∥∥∥∥2
H

+ 5IE

∥∥∥∥∫ t

ti

Sα(t− s)f(s, gs + z̄?s , F (g(s) + z̄?(s)))ds

∥∥∥∥2
H

+ 5IE

∥∥∥∥∫ t

ti

Sα(t− s)σ(s, gs + z̄?s , G(g(s) + z̄?(s)))dω(s)

∥∥∥∥2
H
.

Moreover,

IE‖uq(s)‖2

≤ T 2α−2

q2
M2
BM̃

2
S

{
5‖IEx̃T +

∫ t

ti

g̃(s)dω(s)‖2 + 5‖Tα(T − ti)‖2IE‖z(t−i )‖2H

+ 5‖Tα(T − ti)‖2IE‖Ii(z(t−i ))‖2H

+ 3IE

∥∥∥∥∫ t

ti

Sα(T − s)f(s, gs + z̄?s , F (g(s) + z̄?(s)))ds

∥∥∥∥2
+ 3IE

∥∥∥∥∫ t

ti

Sα(T − s)σ(s, gs + z̄?s , G(g(s) + z̄?(s)))dω(s)

∥∥∥∥2
}
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≤ 5
T 2α−2

q2
M2
BM̃

2
SM̃

2
T

[
‖z‖2B0b + IE‖Ii(z(t−i ))‖2H

]
+ M4 + 5

T 2(2α−1)

q2
M2
BM̃

4
S

(
λ1
α2

+
λ2

T (2α− 1)

)
,

M4 = 5T
2α−2

q2
M2
BM̃

2
S

[
2‖IEx̃T ‖2 + 2TMg̃

]
.

Now, we have

IE‖(P1z)(t) + (P2z?)(t)‖2H

≤ 5M2
BM̃

2
S

T 2α−1

2α− 1

[
M4 + 5

T 2α−2

q2
M2
BM̃

2
SM̃

2
T (p+ Λ)

+ 5
T 2(2α−1)

q2
M2
BM̃

4
S

(λ1
α2

+
λ2

T (2α− 1)

)]
+ 5M̃2

T (p+ Λ) + 5M̃2
ST

2α
(λ1
α2

+
λ2

T (2α− 1)

)
= 5M̃2

T (p+ Λ)M5 + 5M̃2
ST

2α
(λ1
α2

+
λ2

T (2α− 1)

)
M6 +M7 ≤ p,

where M5 =
(
1 + 5M4

BM̃
4
S

T 4α−3

q2(2α−1)
)
, M6 =

(
1 + 5M4

BM̃
4
S
T 2(α−2)

q2(2α−1)
)

and M7 =

5M2
BM̃

2
S
T 2α−3

2α−1 M4.

This implies that ‖P1z + P2z?‖B0b ≤ p with λ1 = 4µ?1(‖φ‖2Bh + l2p) + µ?2F
?p

and λ2 = 4ν?1(‖φ‖2Bh + l2p) + ν?2G
?p. Hence, we get P1z + P2z? ∈ Bp.

Step 2. The map P1 is continuous on Bp.

Let {zn}∞n=1 be a sequence in Bp with lim zn → z ∈ Bp. Then for t ∈ (ti, ti+1],
i = 0, 1, . . . ,m, we have

IE‖(P1zn)(t)− (P1z)(t)‖2H

≤ 2‖Tα(t− ti)‖2
[
IE‖zn(t−i )− z(t−i )‖2H + IE‖Ii(zn(t−i ))− Ii(z(t−i ))‖2H

]
.

Since the functions Ii, i = 0, 1, . . . ,m are continuous, then
limn→∞ IE‖P1zn − P1z‖2 = 0 which implies that the mapping P1 is continuous
on Bp.

Step 3. P1 maps bounded sets into bounded sets in Bp.

Let us prove that for p > 0 there exists a ϑ > 0 such that for each z ∈ Bp, we
have IE‖(P1z)(t)‖2H ≤ ϑ for t ∈ (ti, ti+1], i = 0, 1, . . . ,m. We obtain
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IE‖(P1z)(t)‖2H ≤ 2‖Tα(t− ti)‖2
[
IE‖z(t−i )‖2H + IE‖Ii(z(t−i ))‖2H

]
≤ 2M̃2

T (p+ Λ) = ϑ,

which proves the result.

Step 4. The map P1 is equicontinuous.

Let τ1, τ2 ∈ (ti, ti+1], ti ≤ τ1 < τ2 ≤ ti+1, i = 0, 1, . . . ,m, z ∈ Bp. We have

IE‖(P1z)(τ2)− (P1z)(τ1)‖2H

≤ 2‖Tα(τ2 − ti)− Tα(τ1 − ti)‖2
[
IE‖z(t−i )‖2H + IE‖Ii(z(t−i ))‖2H

]
≤ 2(p+ Λ)‖Tα(τ2 − ti)− Tα(τ1 − ti)‖2.

Since Tα is strongly continuous it allows us to conclude that
limτ2→τ1 ‖Tα(τ2 − ti) − Tα(τ1 − ti)‖2 = 0, which implies that P1(Bp) is equicon-
tinuous. Finally, combining Step 1 to Step 4 together with Ascoli’s theorem, we
conclude that the operator P1 is compact.

Next, we show that the map P2 is a contraction mapping. Let z, z? ∈ Bp
and t ∈ (ti, ti+1], i = 0, 1, . . . ,m. We have

IE‖(P2z)(t)− (P2z?)(t)‖2H

≤ 3IE

∥∥∥∥∥
∫ t

ti

Sα(t− s)
[
f(s, gs + z̄s, F (g(s) + z̄(s)))

−f(s, gs + z̄?s , F (g(s) + z̄?(s)))
]
ds

∥∥∥∥∥
2

H

+ 3IE

∥∥∥∥∥
∫ t

ti

Sα(t− s)
[
σ(s, gs + z̄s, G(g(s) + z̄(s)))

−σ(s, gs + z̄?s , G(g(s) + z̄?(s)))
]
dω(s)

∥∥∥∥∥
2

H

+ 3IE

∥∥∥∥∥
∫ t

ti

Sα(t− s)Buq(s)ds

∥∥∥∥∥
2

H

≤ 3

∫ t

ti

‖Sα(t− s)‖ds
∫ t

ti

‖Sα(t− s)‖

× IE‖f(s, gs + z̄s, F (g(s) + z̄(s)))− f(s, gs + z̄?s , F (g(s) + z̄?(s)))‖2Hds
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+ 3

∫ t

ti

‖Sα(t− s)‖2IE‖σ(s, gs + z̄s, G(g(s) + z̄(s)))

−σ(s, gs + z̄?s , G(g(s) + z̄?(s)))‖2L02ds

+ 3

∫ t

ti

‖Sα(t− s)‖2IE‖Buq(s)‖2ds.

Moreover,

IE‖uq(s)‖2

≤ T 2α−2

q2
M2
BM̃

2
S

{
5‖IEx̃T +

∫ t

ti

g̃(s)dω(s)‖2+ 5‖Tα(T − ti)‖2IE‖z(t−i )− z?(t−i )‖2H

+ 5‖Tα(T − ti)‖2IE‖Ii(z(t−i ))− Ii(z?(t−i ))‖2H

+ 5IE

∥∥∥∥∥
∫ t

ti

Sα(T − s)
[
f(s, gs + z̄s, F (g(s) + z̄(s)))

−f(s, gs + z̄?s , F (g(s) + z̄?(s)))
]
ds

∥∥∥∥∥
2

H

+ 5IE

∥∥∥∥∥
∫ t

ti

Sα(T − s)
[
σ(s, gs + z̄s, G(g(s) + z̄(s)))

−σ(s, gs + z̄?s , G(g(s) + z̄?(s)))
]
dω(s)

∥∥∥∥∥
2

H

}

≤ M4 + 5
T 2α−2

q2
M2
BM̃

2
SM̃

2
T

[
‖z − z?‖2B0b + Λ̂

]
+ 5

T 2α−2

q2
M2
BM̃

4
S

∫ t

ti

(T − s)α−1ds

×
∫ t

ti

(T − s)α−1
[
µ1‖z̄s − z̄?s‖2Bh + µ2IE‖F (g(s) + z̄(s))− F (g(s) + z̄?(s))‖2H

]
ds

+ 5
T 2α−2

q2
M2
BM̃

4
S

∫ t

ti

(T − s)2(α−1)
[
ν1‖z̄s − z̄?s‖2Bh

+ ν2IE‖G(g(s) + z̄(s))−G(g(s) + z̄?(s))‖2H
]
ds

≤ M4 + 5
T 2α−2

q2
M2
BM̃

2
SM̃

2
T

[
‖z − z?‖2B0b + Λ̂

]
+ 5

T 2α−2

q2
M2
BM̃

4
S

Tα

α

∫ t

ti

(T − s)α−1

×
[
µ1l sup IE‖z(s)− z?(s)‖2H + µ2F

? sup IE‖z(s)− z?(s)‖2H
]
ds
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+ 5
T 2α−2

q2
M2
BM̃

4
S

Tα

α

∫ t

ti

(T − s)2(α−1)

×
[
ν1l sup IE‖z(s)− z?(s)‖2H + ν2G

? sup IE‖z(s)− z?(s)‖2H
]
ds

≤ M4 + 5
T 2α−2

q2
M2
BM̃

2
SM̃

2
T

[
‖z − z?‖2B0b + Λ̂

]
+ 5

T 2α−2

q2
M2
BM̃

4
ST

2α
[ 1

α2
(µ1l + µ2F

?) +
1

T (2α− 1)
(ν1l + ν2G

?)
]
‖z − z?‖2B0b .

Thus

IE‖(P2z)(t)− (P2z?)(t)‖2H

≤ 3M2
BM̃

2
S

T 2α−1

2α− 1
M4 + 15M4

BM̃
4
S

T 4α−3

(2α− 1)q2

(
‖z − z?‖2B0b + Λ̂

)
+ 3M̃2

ST
2α
(

1 + 5M4
BM̃

2
S

T 4α−3

(2α− 1)q2

)( 1

α2
(µ1l + µ2F

?)

+
1

T (2α− 1)
(ν1l + ν2G

?)
)
‖z − z?‖2B0b

= M8 +M9

(
‖z − z?‖2B0b + Λ̂

)
+ 3M10M̃

2
ST

2α
( 1

α2
(µ1l + µ2F

?) +
1

T (2α− 1)
(ν1l + ν2G

?)
)
‖z − z?‖2B0b

≤
[
M11 + 3M10M̃

2
ST

2α
( 1

α2
(µ1l + µ2F

?) +
1

T (2α− 1)
(ν1l + ν2G

?)
)]
‖z − z?‖2B0b ,

M11 = M8 + (1 + Λ̂)M9.
By the condition (14), we deduce that P2 is a contraction mapping. Hence,

by Krasnoselskii’s fixed point theorem we conclude that problem (1) has at least
one solution on (−∞, T ]. This completes the proof of the theorem.

Theorem 3.5. Assume that the assumptions of Theorem 3.4, hold and, in addi-
tion, the functions f and σ are uniformly bounded on their respective domains.
Further, if Sα(t) is compact, then the fractional stochastic impulsive control sys-
tem (1) is approximately controllable on (−∞, T ].

Proof. Let xq ∈ B̂p be a fixed point of the operator P = P1 + P2. By the
stochastic Fubini theorem, it is easy to see that for all i = 1, 2, . . . ,m

xq(T )

= x̃T − q(qI + ΓTti)
−1
[
IEx̂T +

∫ T

ti

g̃(s)dω(s)− Tα(T − ti)[xq(t−i ) + Ii(x
q(t−i ))]

]
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+ q

∫ T

ti

(qI + ΓTs )−1Sα(T − s)f(s, xqs, Fx
q(s))ds

+ q

∫ T

ti

(qI + ΓTs )−1Sα(T − s)σ(s, xqs, Gx
q(s))dω(s).

It follows from the assumption on f and σ that there exists N such that

‖f(s, xqs, Fx
q(s))‖2 + ‖σ(s, xqs, Gx

q(s))‖2 ≤ N.

Then there is a subsequence denoted by {f(s, xqs, Fxq(s)), σ(s, xqs, Gxq(s))} weakly
converging to some {f(s), σ(s)} in H × L02. Thus from the above equation, we
have

IE‖xq(T )− x̃T ‖2

≤ 6‖q(qI + ΓTti)
−1[IEx̃T − Tα(T − ti)(xq(t−i ) + Ii(x

q(t−i )))]‖2

+ 6IE

(∫ T

ti

‖q(qI + ΓTti)
−1g̃(s)‖2L02ds

)

+ 6IE

(∫ T

ti

‖q(qI + ΓTs )−1Sα(T − s)[f(s, xqs, Fx
q(s))− f(s)]‖ds

)2

+ 6IE

(∫ T

ti

‖q(qI + ΓTs )−1Sα(T − s)f(s)‖ds

)2

+ 6IE

(∫ T

ti

‖q(qI + ΓTs )−1Sα(T − s)σ(s)‖2L02ds

)

+ 6IE

(∫ T

ti

‖q(qI + ΓTs )−1Sα(T − s)[σ(s, xqs, Gx
q(s))− σ(s)]‖2L02ds

)
.

On the other hand, by assumption (H0) for all ti ≤ s ≤ T , i = 1, . . . ,m, the
operator q(qI+ΓTs )−1 → 0 strongly as α→ 0+, and moreover ‖q(qI+ΓTs )−1‖ ≤ 1.
Thus, by the Lebesgue dominated convergence theorem and the compactness of
Sα, we obtain IE‖xq(T ) − x̃T ‖2 → 0 as α → 0+. This gives the approximate
controllability of (1).

4. Example

In this section, we consider an example to illustrate our main theorem. We first
examine the existence of solutions for the fractional stochastic partial differential
equation of the form
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(17)

cDα
t u(t, x) =

∂2

∂x2
u(x, t) + µ(t, x) +

∫ t

−∞
H(t, x, s− t)Q(u(s, x))ds

+

∫ t

0
k(s, t)e−u(s,x)ds

+

[∫ t

−∞
V (t, x, s− t)U(u(s, x))ds+

∫ t

0
p(s, t)e−u(s,x)ds

]
dβ(t)

dt
,

x ∈ [0, π], t ∈ [0, T ], t 6= tk

u(t, 0) = 0 = u(t, π), t ≥ 0,

u(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π]

∆u(tk)(x) =

∫ t

−∞
qk(tk − s)u(s, x)ds, x ∈ [0, π],

where β(t) is a standard cylindrical Wiener process in H defined on a probability
space (Ω,F , {Ft}, IP); cDα

t is the Caputo fractional derivative of order 0 < α < 1;
0 < t1 < t2 < · · · < tn < T are prefixed numbers; H,Q, V and U are continuous;
φ ∈ Bh.

Let H = L2([0, π]) with the norm ‖.‖. Define A : H → H by Az = z′′

with the domain D(A) = {z ∈ H; z, z′′ are absolutely continuous, z′′ ∈ H, and
z(0) = z(π) = 0}. Then

Az =
∞∑
n=1

n2(z, zn)zn, z ∈ D(A),

where zn(x) =
√

2
n sin(nx), n ∈ IN is the orthogonal set of eigenvectors of A.

It is well known that A is the infinitesimal generator of an analytic semigroup
(T (t))t≥0 in H and is given by

T (t)z =

∞∑
n=1

e−n
2t(z, zn)zn, for all z ∈ H, t > 0.

It follows from the above expressions that (T (t))t≥0 is a uniformly bounded com-
pact semigroup, so that, R(λ,A) = (λ − A)−1 is a compact operator for all
λ ∈ ρ(A) i.e. A ∈ Aα(θ0, ω0). Let h(s) = e2s, s < 0, then l =

∫ 0
−∞ h(s)ds = 1

2
and define

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(IE|φ(θ)|2)1/2ds.
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Hence for (t, φ) ∈ [0, T ] × Bh, where φ(θ)(z) = φ(θ, z), (θ, z) ∈ (−∞, 0] × [0, π].
Put u(t) = u(t, .), that is u(t)(x) = u(t, x). Define the bounded linear operator
B : U → H by Bv(t)(x) = µ(t, x), 0 ≤ x ≤ π, v ∈ U ; f : J × Bh × L2([0, π]) →
L2([0, π]) and σ : J × Bh × L02 → L2([0, π]) as follows:

f(t, φ, Fu(t))(x) =

∫ 0

−∞
H(t, x, θ)Q(φ(θ))(x)dθ + Fu(t)(x),

σ(t, φ,Gu(t))(x) =

∫ 0

−∞
V (t, x, θ)U(φ(θ))(x)dθ + Fu(t)(x),

where Fu(t)(x) =
∫ t
0 k(s, t)e−u(s,x)ds and Gu(t)(x) =

∫ t
0 p(s, t)e

−u(s,x)ds. Then,
with the above settings the considered equation (17) can be written in the abstract
form of equation (1). All conditions of Theorem 3.4 are now fulfilled, so we
deduce that the system (17) has a mild solution on (−∞, T ]. On the other hand,
the linear system corresponding to (17) is approximately controllable on [0, T ].
Hence all the conditions of Theorem 3.5 are satisfied. Thus by Theorem 3.5, the
fractional stochastic impulsive control system (17) is approximately controllable
on [0, T ].

5. Conclusion

This paper has investigated the existence and approximate controllability for
impulsive fractional-order stochastic infinite delay integro-differential equations in
Hilbert space. New sufficient conditions for the approximate controllability of the
considered system have been formulated. As the differential inclusion system can
be considered as a generalization of the system described by differential equations,
it should be pointed out that under some suitable conditions on f and σ, one can
establish the approximate controllability with constrained controls for fractional
stochastic differential inclusions with nonlocal conditions. It can be done by
adapting the techniques and ideas established in this paper and the papers [6, 7,
9], and suitably introducing the technique of single valued maps defined in [2].
This is one of our future goals.
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