
Discussiones Mathematicae 171
Differential Inclusions, Control and Optimization 20 (2000) 171–194

LARGE-SCALE NONLINEAR PROGRAMMING

ALGORITHM USING PROJECTION METHODS

Pawe l Bia loń

National Institute of Telecommunications
Decision Support System Laboratory

ul. Szachowa 1, 04–894 Warszawa, Poland

e-mail: P.Bialon@itl.waw.pl

Abstract

A method for solving large convex optimization problems is pre-
sented. Such problems usually contain a big linear part and only a
small or medium nonlinear part. The parts are tackled using two
specialized (and thus efficient) external solvers: purely nonlinear and
large-scale linear with a quadratic goal function. The decomposition
uses an alteration of projection methods. The construction of the
method is based on the zigzagging phenomenon and yields a non-
asymptotic convergence, not dependent on a large dimension of the
problem. The method preserves its convergence properties under lim-
itations in complicating sets by geometric cuts. Various aspects and
variants of the method are analyzed theoretically and experimentally.
Keywords: nonlinear optimization, large scale optimization, projec-
tion methods, zigzagging.
1991 Mathematics Subject Classification: 65M99, 49M45,
49M27, 65-06, 90C06, 90C99.

1 Introduction

The goal of the author was to investigate how projection methods (for
feasibility problems) can be utilized in decomposing large scale nonlinear
optimization problems. Several observations led to the proposed approach.

First, large nonlinear problems usually contain a big linear part and
only a small or average nonlinear part (with the size measured, say, by the
number of constraints). Nonlinear functions carry much more information

172 P. Bia loń

than linear ones. Developing and validating an optimization model with a
large nonlinear part would be difficult. An appropriate decomposition of
the problem onto both the parts has a potential of accelerating the solution
process. The big linear part could be tackled by a specialized, fast solver
(actually, allowing for linear constraints and a quadratic goal function).

Second, many practitioners prefer a fast convergence in early stages of
an optimization run (quick hitting a neighborhood of the optimal point)
over often analyzed asymptotic properties, like superlinear convergence.

Moreover, the author would like to treat the goal and constraint func-
tions uniformly, in order to simplify the algorithm design and analysis.

The last two motivations have determined the use of projection methods
for feasibility problems [2, 6]. It is possible to reduce the original optimiza-
tion problem to a sequence of feasibility problems, i.e. problems of finding
a common point of several sets. The minimized goal function f(x) may be
replaced with a constraint of the form of f(x) < Q, where changing param-
eter Q, the predicted optimal value of the problem, within an outer loop (a
bisection scheme or the level control scheme [7]) generates the sequence. The
paper discusses mainly the inner loop, i.e. solving the feasibility problem.
Some remarks and analyzes directed towards the outer loop are also given.

The feasibility problem is solved by making sequential projections onto
two sets: one ”linear” (defined by linear constraints) and one ”nonlinear”
(defined by nonlinear constraints). The projections are realized by special-
ized optimization solvers: quadratic and nonlinear. The use of the former
well fits the current optimization ”market” tendencies. More and more au-
thors of linear solvers offer nowadays quadratic extensions to their products.

An important feature of the described approach is that we do not have
to add accelerating cuts after each projection. The user may resign cutting
off either the linear set or the nonlinear set. Both the choices will turn out
to have numerical motivations. However, resigning one of the groups of cuts
would normally destroy the theoretical profit of cumulating cuts: a decrease
in zigzagging. It is shown how to maintain the profit anyway.

The author compares his results to similar propositions of Kiwiel [10,
8, 9] and Cegielski [3, 4]. The common feature of all the methods is a
cumulation of cuts, though realized in different ways. The author gives
also some general remarks regarding the behavior of an algorithm under a
cumulation of cuts.

Usually an optimization problem is not reduced to a sequence of fea-
sibility problems but the subgradient method of Polyak [16] or one of the
many derivatives like that of Lemaréchal, Nemirovskii and Nesterov [12] is

Large-scale nonlinear programming algorithm ... 173

used. In [12], projecting onto a level set of a linear model of the objective
function – which corresponds to the movement in the direction opposite to
a subgradient – is replaced with projecting onto its more accurate model,
built from cumulated successive cuts. The works [4, 3, 10, 8, 9] propose cut
cumulation techniques and almost all of them show how to embed it in a
subgradient algorithm. Unfortunately, these methods issue projections onto
the admissible set of the original problem, which seemed hardly realizable,
even with the used solvers: the set was composed of linear and nonlinear
constraints and the projection looked hardly decomposable. The alterna-
tive technique of tackling constraints via nondifferentiable penalties would
– except of some particular approaches – increase the Lipschitz constants of
the goal function and cause a related (by the power of quadratic growth)
decrease in the algorithm efficiency.

The article describes the method and its variants, the convergence anal-
ysis and the results of experimental investigations of its various aspects, as
well as possible extensions. The paper pictures the current preliminary stage
of the work on the method.

Notation. We shall operate in the finite-dimensional Hilbert space Rn,
whose members are identified with column vectors, with scalar product
〈x, y〉 = x>y. The default norm will be the Euclidean norm ‖ · ‖ =

√〈·, ·〉.
This norm by default generates other objects, e.g., distance of a point from
a set. We use the following notation:

dist(A,B) = infa∈A, b∈B ‖a− b‖ – distance between nonempty subsets A
and B of Rn,

dist(b, A) = infa∈A ‖a−b‖ – distance of a point b ∈ Rn from a nonempty
subset A ⊂ Rn,

ab with a ∈ Rn, b ∈ Rn – line segment with ends a, b,
PAx = arg miny∈A ‖y − x‖ – projection of x ∈ R onto a closed convex

A ⊂ Rn,
LinA – linear subspace generated by A ⊂ Rn,
cone – set A ⊂ R such that x ∈ A, α ≥ 0 ⇒ αx ∈ A and x, y ∈ A ⇒

(x + y) ∈ A,
coneA – cone generated by A ⊂ Rn, i.e. the lowest cone containing A,
C? = {x ∈ Rn : ∀y∈C 〈x, y〉 ≤ 0} – cone dual to a cone C ⊂ Rn,
acute cone – any cone C ⊂ Rn such that ∀x∈C, y∈C 〈x, y〉 ≤ 0,
obtuse cone – any cone C ⊂ Rn such that C? ∩ LinC is an acute cone.

174 P. Bia loń

Recall that the equivalent definition for y being PAx (A closed, convex) is

y ∈ A ∧ ∀z∈A (z − y)>(y − x) ≥ 0(1)

The inequality (1) in z (with x,y treated as constants) will be called the cut
based on projection PAx of a point x or the cut based on the step from x to
y. For natural i, let imod∞ = i. For integer a, b where a > b, {a, . . . , b}
denotes the empty set.

Acknowledgements. The final target of this work will be to use it in aug-
menting the IAC-DIDAS-N/DIDAS-N++ [11] decision support system de-
veloped in the Institute of Automatic Control at Warsaw University of Tech-
nology, and being now reconstructed at the National Institute of Telecom-
munications. This work was supported by National Institute of Telecom-
munications, Grant No. 063015. The author is greatful to Prof. Cegielski
for his valuable comments, to Dr. Gondzio for making available his lin-
ear solver HOPDM (see [1] and the references therein), and to Dr. Granat
for the guidance of this work. The author much appreciates the help of
Dr. Makowski who gave his LPDIT [14] library of C++ classes for vectors,
matrices and linear programming problems and last – but not least – the
guidance of Prof. Wierzbicki, as well as his pointing out the question of the
structure of large problems and other remarks.

2 Problem formulation

The initial optimization problem is defined as follows

min
xN

f(xN) f : RnN → R
s.t.

g̃(xN) ≤ 0 g̃ : RnN → RmN−1

Ax ≤ b A is a matrix of type mLI × n

Bx = d B is a matrix of type mLE × n

xlo
N ≤ xN ≤ xup

N , xlo
L ≤ xL ≤ xup

L .

(2)

Here x = (xN
>, xL

>)>, xN ∈ RnN , xL ∈ RnL , f and g̃i continuous, quasi-
convex. A resulting feasibility problem F (Q), where Q is a real parameter,

Large-scale nonlinear programming algorithm ... 175

consists in finding x satisfying

g(xN) ≤ 0

Ax ≤ b

Bx = d

xlo
N ≤ xN ≤ xup

N , xlo
L ≤ xL ≤ xup

L ,

(3)

where g : RnN → RmN , gi(·) = g̃i(·), i = 1, . . .mN − 1, gmN (·) = f(·) − Q.
The feasibility problem has nN nonlinear, nL linear variables, mN nonlinear
inequality, mLI linear inequality, mLE linear equality constraints. Define
m = mN +mLI +mLE , n = nL +nN . It helps the efficiency of the approach
when mN ¿ m and also when nN ¿ n.

3 The idea of solving the feasibility problem

Define ”nonlinear” and ”linear” sets

N = {xN ∈ RnN : g(xN) ≤ 0 ∧ xlo
N ≤ xN ≤ xup

N }
L = {xN ∈ RnN : xlo

N ≤ xN ≤ xup
N ∧ ∃

xL∈RnL (xlo
L ≤ xL ≤ xup

L

∧ A(xN
>, xL

>)> ≤ b ∧B(xN
>, xL

>)> = d)}
Notice that these are not actually the sets of points allowed by nonlinear
and linear constraints but their orthogonal projections on the subspace of
nonlinear variables. The author will prefer this subspace in the description
of the algorithm. Projecting yN ∈ RnN onto N can be realized by solving
the nonlinear optimization subproblem minxN

1
2‖xN − yN‖2 s.t. xN ∈ N .

Projecting yN ∈ RnN onto L can be realized by solving the quadratic opti-
mization subproblem minx

1
2‖xN − yN‖2 s.t. xlo

N ≤ xN ≤ xup
N ∧ (xlo

L ≤ xL ≤
xup

L ∧ A(xN
>, xL

>)> ≤ b ∧ B(xN
>, xL

>)> = d). Note that if the solution
(x?

N
>, x?

L
>)> of the later subproblem satisfies x?

N ∈ N then (x?
N
>, x?

L
>)>

solves (3). We can use either the whole solution (x?
N
>, x?

L
>)> of this sub-

problem or only the vector x?
N . The former is appropriate for the users

needs (the printout of final solution). The later is more suitable for the
description of the algorithm. From now we we will resign from subscripts
N in the names of the elements of the subspace RnN of nonlinear variables.
The possibility of reducing the algorithm analysis a low-dimensional space
RnN helps the algorithm efficiency, at least as long the upper level of the
decomposition is considered.

176 P. Bia loń

In the simplest scheme, the k-th iteration of the algorithm (k = 1, 2, . . .)
would be described by two evaluations of points in RnN :

x̄k = PL′k x̆k−1, x̆k = PN ′k x̄k(4)

with x̆0 being the starting point. L′k and N ′k are subsets of L and N
constructed from them as

L′k = {y ∈ L : ∀j∈Jk (y − x̆j−1)>(x̆j−1 − x̄j−1) ≥ 0}(5)

N ′k = {y ∈ N : ∀i∈Ik (y − x̄i)>(x̄i − x̆i−1) ≥ 0}.(6)

Define geometric cuts (g-cuts) of type A and B as inequalities

(y − x̆j−1)>(x̆j−1 − x̄j−1) ≥ 0 (type A g-cuts or A-cuts)(7)

(y − x̄i)>(x̄i − x̆i−1) ≥ 0 (type B g-cuts or B-cuts).(8)

Set Jk in (5) equals to ∅ in case of lack of type A g-cuts, to {k} (if k ≥ 2)
or to ∅ (if k = 1) in case of noncumulated type A g-cuts, and to {2, . . . k} in
case of (full1) cumulation of type A g-cuts. Set Ik in (6) equals to ∅ in case
of lack of type B g-cuts, to {k} (if k ≥ 2) or to ∅ (if k = 1) in case of noncu-
mulated type B g-cuts, and to {2, . . . , k} in case of full cumulation of type B
g-cuts. Symbols ”̆ ” and ”̄ ” are mnemonic notations for (results of) projec-
tions onto the nonlinear and linear sets, respectively, perhaps narrowed by
some cuts.

Geometric cuts are a standard way to improve the convergence of pro-
jection methods, which could be unacceptably slow without them.

An assumption was made that the user wants to resign either generating
g-cuts of type A or of type B. Both the types of cuts have their numerical
drawbacks. A-type g-cut can be a quite dense constraint in the definition of
L′k. Such a cut, in principle, introduces up to nN extra nonzero elements
in the matrix defining L′k. Thus, it may significantly increase the matrix
density, especially when nN is not very small in comparison with n and
m; cumulating the cuts magnifies this effect. The second disadvantage of
type A cuts is that they may lead to subproblems with degenerated (e.g.,
nearly ”parallel”) constraints. This is especially dangerous for linear solvers
(the nonlinear solver from the current version of IAC-DIDAS-N++ uses

1Later also a periodic cumulation will be considered.

Large-scale nonlinear programming algorithm ... 177

the penalty shifting technique [18] and should tackle such degenerated con-
straints more easily). However, B-type g-cuts, when cumulated, may lead
to an excessive relative growth of the nonlinear subproblem size when mN

is small. The choice of cuts type used should then depend on the properties
of the particular problem (2).

The further description assumes the user has chosen to use only A-type
cuts. Zigzagging often slows down projection algorithms. In the sequel
we will measure zigzagging Z(yi)(k, l) (with k < l) of a finite subsequence
(yi)l

i=k of a sequence (yi)∞i=0 of points in a Hilbert space generated by some
algorithm as

Z(yi)(k, l) =
∑l−1

i=k ‖yi+1 − yi‖
‖yl − yk‖ .(9)

Denote also Z.(i) = Z.(0, i). Using a single (noncumulated) cut cannot in
general prevent the algorithm from large zigzagging. An example of this is
constructed in two stages. First, we need an infeasible problem for which
the algorithm cycles.

Example 1. (cycling) Let us consider the algorithm with only noncumu-
lated type A g-cuts present and any problem for which nN = 2 and

N = {x ∈ R2 : ‖x− z‖2 ≤ 1}, z = (0,
√

3)>

L = {x ∈ R2 : x2 ≤ 0}
x̄1 = (−1, 0)>.

Drawing this example it is easy to verify that the algorithm produces the
cyclic sequence x̄1 = (−1, 0)>, x̆1 = (−1

2 ,
√

3
2)>, x̄2 = (1, 0)>, x̆2 = (1

2 ,
√

3
2)>,

x̄3 = (−1, 0)>,

Now we will augment our example by introducing an additional dimension.

Example 2. (zigzagging under noncumulated A-type g-cuts) Now let
nN = 3 and the algorithm as above and the problem will be such that

N = {x ∈ R3 : (x1 − z1)2 + (x2 − z2)2 ≤ 1}, z = (0,
√

3)>

L = {x ∈ R3 : x2 − εx3 ≤ 0}
x̄1 = (−1, 0, 0)>.

178 P. Bia loń

where ε > 0 is small. If ε were equal 0 the produced sequence would be
same as above (if we reject the third coordinate of the generated points). If
ε > 0 and is small, the sequence is very similar but additionally exhibits a
small progress in the direction of the third axis of R3. This small progress
combined with a fair cycling gives large zigzagging.

4 Decreasing zigzagging

Cumulating the geometric cuts in Example 2 would avert an excessive zigzag-
ging. However, in terms of the zigzagging analysis given below there is no
such a guarantee for a whole class of problems. This is because only after
every second real step (after projecting onto the nonlinear set) a geometric
cut is constructed based on the step made and only these cuts are memo-
rized. If the geometric cuts were constructed and memorized with a ”full
frequency” (after each projection), zigzagging would grow like a square root
with the number of steps (projections) done so far.

Theorem 1. Let a sequence (xi)n
i=0 (where n ≥ 1) of points in a Hilbert

space satisfy the cumulated geometric cuts condition:

∀s, 1≤s≤n−1 (xs − xs−1)>(xn − xs) ≥ 0.(10)

Then the following assessment for the sequence zigzagging holds:

∑n−1
i=0 ‖xi+1 − xi‖
‖xn − x0‖ ≤ √

n.

Proof. For n = 1 the claim is trivial. In order to show the claim for n > 1,
we first need to prove that

n∑

i=1

‖xi − xi−1‖2 ≤ ‖xn − x0‖2.(11)

We will show it using induction, i.e. by proving

n∑

i=l

‖xi − xi−1‖2 ≤ ‖xn − xl−1‖2(12)

for l changing from n down to 1.

Large-scale nonlinear programming algorithm ... 179

For l = n, (12) is trivial. Now assume (12) is true for l = k (1 < k ≤ n). We
are going to show that it holds for l = k− 1. From the theorem assumption
(with s ← k − 1)

(xk−1 − xk−2)>(xn − xk−1) ≥ 0.(13)

Thus ‖xn − xk−1‖2 + ‖xk−1 − xk−2‖2 ≤ ‖xn − xk−2‖2 and, using (12) (with
l = k) we obtain

(n∑

i=k

‖xi − xi−1‖2
)

+ ‖xk−1 − xk−2‖ ≤ ‖xn − xk−2‖2

and then
n∑

i=k−1

‖xi − xi−1‖2 ≤ ‖xn − xk−2‖2,

which is (12) with l = k − 1. The induction is complete and (11) is proven.
Certainly

(n∑

i=1

‖xi − xi−1‖
)2

=
(n∑

i=1

‖xi − xi−1‖ · 1
)2

.

Using the Cauchy-Schwarz inequality we can write

(n∑

i=1

‖xi − xi−1‖
)2 ≤

(n∑

i=1

‖xi − xi−1‖2
)
·
(n∑

i=1

12
)
.(14)

Now taking (11) into account we state that

(n∑

i=1

‖xi − xi−1‖
)2 ≤ ‖xn − x0‖2 ·

(n∑

i=1

12
)
.

Consequently, ∑n−1
i=0 ‖xi+1 − xi‖
‖xn − x0‖ ≤ √

n

Prior to discussing the theorem applications to the convergence analysis and
similar results in the literature we will show how to modify the method so
it satisfies the assumptions of the theorem.

180 P. Bia loń

5 Anti-zigzagging cuts

The author proposes the anti-zigzagging cut (z-cut), defined as

(y − x̄i−1)>(x̄i−1 − x̄i−2) ≥ 0(15)

where y is an independent variable. Let us consider the standard version of
the algorithm in which such cuts are cumulated and together with noncu-
mulated type A g-cuts are used to define the sets L′k; in (4):

L′k = {y ∈ L : (y − x̆k−1)>(x̆k−1 − x̄k−1) ≥ 0} ∩ L̃′k(16)

with

L̃′k = {y ∈ L : ∀i∈{3, ... k}(y − x̄i−1)>(x̄i−1 − x̄i−2) ≥ 0}(17)

(unless k = 1 – then L′k = L). Set N ′i remains equal to N .
If we use the sequence x̄2, x̄3, x̄4, . . . as sequence (xi)∞i=0 in Theorem

1, the assumptions of the theorem will be fulfilled. z-cuts allow to decrease
zigzagging and do not complicate set N . However, for stating convergence
results it will be necessary to show they are valid, i.e. do not cut off any
point from the solution set S = N ∩ L. Type A or B g-cuts may be proven
valid from the alternative definition (1) of projection with N or L (perhaps
narrowed by earlier proper cuts) taken as A.

Any newly created z-cut is also valid since it is implied by two valid
cuts: the second last type A g-cut we have constructed and a type B g-cut
we might (but do not) construct. The implication is understood in the sense
of the cut cumulating techniques from the works of Cegielski, Kiwiel and
Shchepakin cited in this paper. In the following lemma, validity of several
cuts (based on projections of a certain point p onto certain supersets of the
solution set) implies validity of a constructed ”surrogate cut”.

Lemma 1. (adopted from [3, Remark 7 on Theorem 3]) Let p, z ∈ Rn,
p 6= z. If
(i) S = {si : i = 1, . . . , q} is a linearly independent system,
(ii) ∀i∈{1,...,q} (z − (p + si))>si ≥ 0,
(iii) coneS is obtuse,
(iv) t solves the system

∀i∈{1,...,q} (si)>(t− si) = 0,(18)

then (z − (p + t))>t ≥ 0.

Large-scale nonlinear programming algorithm ... 181

Proof. In the referenced remark we replaced inequalities of the form
(a − b)>c ≥ c>c with the equivalent (a − (b + c))>c ≥ 0, equality (si)>t =
(si)>si with the equivalent (si)>(t−si) = 0, changed the numeration of s-es
and put B = {z}.
Often projections of different points, obtained during the algorithm course,
are used instead of projections of one point p (projecting a common p is
typical for feasibility problems: the projections are made onto sets of points
allowed by particular problem constraints). We will not thoroughly discuss
modifications of the ”surrogating” technique for such a case (see e.g. [4,
Section 6]). We confine ourselves to showing a trick to retain the satisfaction
of assumption (ii) in Lemma 1 when we project a point r 6= p:

Remark 1. If (si)>(r − p) ≥ 0 then (z − (r + si))>si ≥ 0 implies (z − (p +
si))>si ≥ 0.

Proof. Trivial.

We give a tool for ensuring obtuseness of cones.

Definition 1. (see [4, Definition 5.4A]) Cone K is a regular obtuse cone (in
LinK) if K = coneS for some system S = {si : i ∈ I ⊂ Z} of linearly
independent vectors in Rn satisfying (si)>sj ≤ 0 for all i 6= j, i, j ∈ I.

Lemma 2. (see [4, Theorem 5.4A]) A regular obtuse cone K ⊂ Rn is obtuse.

We will also need some establishments regarding angles made by the algo-
rithm.

Lemma 3. (an angle made when returning to a closed convex set by a
projection) Let A ⊂ Rn be closed convex, a ∈ A, b /∈ A, c = PAb. Then
(c− b)>(b− a) ≤ 0.

Proof. Assume the contradictory (c − b)>(b − a) > 0. This inequality
together with (a−c)>(c−b) ≥ 0 (which follows from the alternative definition
(1) of the projection of b onto A) gives (c−b)>(b−c) ≥ 0 and, consequently,
c = b, which is false since c ∈ A, b /∈ A.

Lemma 4. (Lemma 3 modified for a projection onto narrowed set A) Let
A ⊂ Rn be closed convex, a ∈ A, b /∈ A, H = {y ∈ Rn : (y−b)>(b−a) ≥ 0},
H ∩A be nonempty, c = PH∩Ab. Then (c− b)>(b− a) = 0.

182 P. Bia loń

Proof. Assume (c − b)>(b − a) 6= 0 by contradiction. Now, since c ∈ H,
(c − b)>(b − a) > 0. Thus, using Lemma 3, c 6= PAb. Denote d = PAb. We
have c 6= d. To complete the contradiction we will show c 6= PA∩Hb. Since
PAb is uniquely determined ‖d− b‖ < ‖c− b‖. This and the convexity of the
distance function ‖ · −b‖ yield

∀p∈cd, p 6=c, p 6=d ‖p− b‖ < ‖c− b‖.(19)

From continuity of function (· − b)>(b − a), from (c − b)>(b − a) > 0 and
from c 6= d

∃p?∈cd, p 6=c, p6=d (p? − b)>(b− a) > 0.(20)

Such a p? is in A by convexity of A and by c ∈ A, d ∈ A. (20) also says that
p? ∈ H. Thus p? ∈ A ∩H and ‖p? − b‖ < ‖c− b‖ (which follows from (19))
yields the contradiction: c 6= PA∩Hb.

Theorem 2. (validity of z-cuts) Consider algorithm (4), where L′k is de-
fined by (16), N ′k = N , with x̆0 ∈ RnN being the starting point. Let
S = N ∩ L be nonempty and let k ≥ 2. If x̄k−1 /∈ N and x̆k−2 /∈ L (a
solution not found yet) then S ⊂ L′k.

Proof. We prove the Theorem by induction. The inclusion S ⊂ L′2 is
obvious since L̃′2 = L. Suppose that S ⊂ L′k−1 for some k, k ≥ 3. It is
enough to prove that

∀z∈S (z − x̄k−1)>(x̄k−1 − x̄k−2) ≥ 0,(21)

which we do in two steps:
1. From the assumption, x̆k−2 /∈ L̃′k−1. The assumptions of Lemma 4 are

fulfilled with A ← L̃′k−1, b ← x̆k−2, c ← x̄k−1. The lemma yields

(x̄k−1 − x̆k−2)>(x̆k−2 − x̄k−2) = 0.(22)

2. Now apply Lemma 1 with z ∈ S, p ← x̄k−2 q ← 2, s1 ← x̆k−2−x̄k−2, s2 ←
x̄k−1− x̆k−2 after the following validation of the assumptions fulfillment:
(i) by (22) and inequalities x̄k−1 6= x̆k−2, x̆k−2 6= x̄k−2 (obtained from

x̄k−1 /∈ N , x̄k−2 /∈ N and – what follows from k ≥ 3 – x̆k−2 ∈ N).
(ii) – Case of i = 1 – from the alternative definition (1) of projection

of x̄k−2 onto set N , being a superset of S.

Large-scale nonlinear programming algorithm ... 183

– Case of i = 2. We have (z− x̄k−1)>(x̄k−1− x̆k−2) ≥ 0 by (1) ap-
plied to projection of x̆k−2 onto {v ∈ L̃′k−1 : (v−x̆k−2)>(x̆k−2−
x̄k−2) ≥ 0}, being a superset of S (by the induction assumption
and by (1) applied to the projection x̄k−2 onto N). Now apply
Remark 1 with p ← x̄k−2, r ← x̆k−2, using (22).

(iii) from (22), the linear independence of vectors s1, s2 (established in
(i)), Definition 1, Lemma 2

(iv) easy to verify using (22).

Remark 2. Cumulating both z − cuts and A− cuts does not influence the
proof of z-cuts validity if we redefine L̃′k as {y ∈ L : ∀i ∈ {2, . . . , k − 1}
(y − x̆i−1)>(x̆i−1 − x̄i−2) ≥ 0 ∧ ∀j∈{3, ... k}(y − x̄j−1)>(x̄j−1 − x̄j−2) ≥ 0} so
it accounts for all the cuts constructed so far except of the last A-cut.

The reason for introducing z-cuts can be described as ”spoiling” influence
of projections onto N on the zigzagging reduction by cumulated g-cuts. A
similar phenomenon of spoiling effect of some projections was discussed in
[3, Section 5]. The remedy applied in this work bases also on Lemma 1, but
the retour to a set is done without a narrowing cut.

6 The algorithm for the feasibility problem

The algorithm for problem (3) will be described in terms of the space of
nonlinear variables.

The algorithm
Parameters: tolerance tN ≥ 0, cuts existence and cumulation options, cu-
mulation period2 T ∈ [3,∞], starting point x̆0. We initiate the iteration
counter k to 1.
1. x̄k = PL′k x̆k−1, where

L′k = {y ∈ L : (∀p∈Jk (y − x̆p−1)>(x̆p−1 − x̄p−1) ≥ 0)

∧ (∀j∈Kk (y − x̄j−1)>(x̄j−1 − x̄j−2) ≥ 0)},

where Jk equals to ∅ in case of lack of type A g-cuts, to {k} (if k ≥ i+2)
or to ∅ (if k = i + 1) in case of noncumulated type A g-cuts, and to
2The word ”period” will refer either to an epoche of the algorithm run or to the length

of the epoches, depending on the context.

184 P. Bia loń

{i + 2, . . . k} in case of cumulation of type A g-cuts; Kk equals to ∅ in
case of lack of z-cuts, to {k} (if k ≥ i + 3) or to ∅ (otherwise) in case of
noncumulated z-cuts, and to {i+3, . . . k} in case of cumulation of z-cuts.
Here i is the number of the last iteration in the previous period (or 0 if
we are in the first period), i.e i = k − (k mod T). If L′k = ∅ STOP –
report infeasibility.

2. x̆k = PN x̄k. If N = ∅ STOP – report infeasibility. If ‖x̆k − x̄k‖ ≤ tN

STOP – return the last solution of the quadratic nonlinear problem as
the solution. Otherwise, set k := k + 1, go to 1.

Remark 3. If T < ∞ then Theorem 2 should be used for each period of the
algorithm course separately; the iteration numbers in each period should be
shifted to start with 1.

Remark 4. The inner procedure was given under the assumption of nonex-
istence of type B g-cuts and existence of type A g-cuts; the transformation
to the reverse assumption (nonexistence of type A g-cuts and existence of
type B g-cuts) is trivial; one should, however, remember that the defini-
tions of sets L and N should remain the same and the distance made during
projecting on L should be then used in the stopping criterion.

Later we will also consider a modification of the algorithm:

Modification. (early point projection) In step 1 of the algorithm for fea-
sibility problem, if k mod T = 0, evaluate x̄k as x̄k = PL′kxk−T+1.

The term ”standard version of the algorithm” denotes the variant with non-
cumulated A-cuts, cumulated z-cuts, with the Modification not applied.

7 Convergence

In this section we shall by default refer to the standard version of the algo-
rithm described in Section 6, with tN = 0, T = ∞.

We shall first define a property of our feasibility problem saying that if
we are close to both the sets N and L, we are close to their intersection.

Definition 2. (Bounded regularity, adopted from [2, Definition 5]) A fea-
sible problem (3) or the pair of its sets L, N is boundedly regular if for each
bounded G ⊂ RnN

∀ε>0∃δ>0∀x∈G max(dist(x, L),

dist(x,N)) < δ ⇒ dist(x,N ∩ L) < ε.
(23)

Large-scale nonlinear programming algorithm ... 185

Remark 5. For a boundedly regular problem and for each bounded G ⊂
RnN there exist a regularity function φG : R+ \{0} → R+ \{0} that satisfies

dist(x,N ∩ L) ≥ ε ⇒
((x ∈ N ⇒ dist(x, L) ≥ φG(ε)) ∧ (x ∈ L ⇒ dist(x,N) ≥ φG(ε)))

for each x ∈ G.

Indeed: Fix G. Take φG(ε) = δ with δ satisfying

∀x∈G max(dist(x, L), dist(x,N)) < δ ⇒ dist(x,N ∩ L) < ε.

It is easy to prove that φG is a regularity function by using the following
fact:

x ∈ L ⇒ max(dist(x, L),dist(x, N)) = dist(x,N)

and
x ∈ N ⇒ max(dist(x, L), dist(x,N)) = dist(x, L).

We will often write φ instead of φG. The explicit definition of G may be
suppressed, since often some bounded set containing all the points generated
by the algorithm can be easily shown (e.g., L may be taken if the bound
constraints on all the variables in the problem are finite). The regularity
function allows assessing the distances from N and L but this implies an
assessment for lengths of variously defined steps of our algorithms, e.g.
‖x̄i − x̆i−1‖ or ‖x̄i − x̄i−1‖, even though we project onto L′k, not onto L:

Remark 6. Consider points x̄i−1, x̆i−1, x̄i, x̆i generated by the algorithm
from Section 6 with any cutting scheme, with any T ∈ [3,∞] and any
tN ≥ 0 and assume that the Modification was not applied or i mod T 6= 0.
The following statements are true:

a) If S 6= ∅ then ‖x̄i − x̆i−1‖ ≥ φ(dist(x̆i−1, L ∩ N)) and ‖x̆i − x̄i‖ ≥
φ(dist(x̄i, N∩L)) from L′i ⊂ L, N ′i ⊂ N and the definition of orthogonal
projection.

b) If an A-cut (y − x̆i−1)>(x̆i−1 − x̄i−1) ≥ 0 took part in the construction
of L′i then ‖x̄i − x̄i−1‖ ≥ ‖x̄i − x̆i−1‖ from the cosine theorem.

Fact 1. (see [2, Proposition 5.4 (iii)]) As L and N are closed convex subsets
of the finite-dimensional space RnN , bounded regularity holds.

186 P. Bia loń

Definition 3. (compare Definition 5.6 in [2]) A feasible problem (3) or
the pair L, N of its sets is boundedly linearly regular if for each bounded
G ⊂ RnN we can give κ(G) > 0 such that

∀x∈Gdist(x,N ∩ L) ≤ κ(G)max(dist(x, L), dist(x,N)).

Remark 7. If κ is such as in Definition 3 then the functions φG(x) = κ(G)·x
are regularity functions for this problem.

Fact 2. If L, N bounded then L∩intN 6= ∅ implies bounded linear regularity
of the pair L,N .

Proof. See Corollary 5.14 in [2].

By an absence of equality constraints3, L ∩ intN 6= ∅ is likely whenever the
current approximated optimal value Q of the optimization problem is set
still too big. For a one-element intersection it might happen that there is
no linear φ, which the reader can easily check for nN = 2, L = {(x1, x2)> :
x2 ≤ 0}, N = {(x1, x2)> : x2 ≥ x2

1}.
A more exhaustive discussion of conditions for regularities of the prob-

lems is given in [2, Section 5].
Several folklore properties of the projection methods will be quoted in

the sequel.

Definition 4. A finite or infinite sequence (xi) of points in a Hilbert space
H has the Fejér contraction property w.r.t. C ⊂ H if

‖xi − c‖2 ≥ ‖xi+1 − c‖2 + ‖xi+1 − xi‖2(24)

for each c ∈ C. Similarly, operator O : H → H has this property if for each
c ∈ C and x ∈ H ‖x− c‖2 ≥ ‖Ox− c‖2 + ‖Ox− x‖2.

Fact 3. Projection onto a closed convex set has the F.c.p. w.r. to this set
and, consequently, to each of its subsets.

Proof. See calculations in [10] on page 228 with tmin = tmax = 1.

Remark 8. For sequences or operators, Fejér contraction property w.r.t. C
implies Fejér monotonicity w.r.t. C: ‖xi − c‖ ≥ ‖xi+1 − c‖ for all c ∈ C or,
respectively, ‖x− c‖ ≥ ‖Ox− c‖ for all c ∈ C, x ∈ H.

3In case of presense of equality constraints an analysis would involve relative interiors
and essential cores of sets – see [2, Section 5].

Large-scale nonlinear programming algorithm ... 187

Remark 9. Sequence (xi) having Fejér contraction property w.r.t. S ⊂ RnN

and with ‖xi+1 − xi‖ ≥ κdist(xi, S), exhibits an at least
√

1− κ2-linearly
decreasing distance from S.

Indeed: Take c = PSxi. Now ‖xi − c‖ = dist(xi, S) and thus the Fe-
jér contraction property yields dist2(xi, S) ≥ ‖xi+1 − c‖2 + ‖xi+1 − xi‖2.
Hence dist2(xi, S) ≥ ‖xi+1−c‖2 +κ2dist2(xi, S). This implies dist2(xi, S) ≥
dist2(xi+1, S) + κ2dist2(xi, S). Now dist(xi+1, S) ≤ √

1− κ2dist(xi, S).
Taking Remark 6a) into account, we may prove in this way a linear

convergence for our algorithm with any cutting scheme for linearly regular
problems: we must take sequence4 x̄1, x̆1, x̄2, x̆2, . . . as (xi). The result
is known, though often inexact projections are considered [2, 13] and thus
an additional property of focusing for algorithms is introduced in order to
assure a linear convergence.

Assume now that for some reason x̄i ∈ A for a bounded A ⊂ RnN (as already
pointed out, A = L may be often taken).

Consequence 1. (of Theorem 1) Let φ = φA be a regularity function for
the set pair (N,L) and let S 6= ∅, T = ∞, tN = 0. Then the number r
of iterations needed by the (standard version of) the algorithm to achieve
error ε (i.e. first r satisfying dist(x̄r, S) ≤ ε) is not greater than

(
diam(A)

φ(ε)

)2

+ 3.(25)

Proof. The algorithm cannot terminate with reporting infeasibility, since
neither N nor L′k generated in step 1 are empty (from S 6= ∅, N ⊃ S and
Theorem 2). Assume now we reached r greater than (25) and we have not at-
tained error ε. Then by the definition of regularity function and by Remark
6a), b) ‖x̄i+1 − x̄i‖ ≥ φ(ε) for i ≥ 1. Thus ‖x̄3 − x̄r‖ ≥ 1

Z(x̄)i (3,r)(r − 3)φ(ε)

with Z(x̄)i given by (9). As the z-cut construction starts from the 3rd itera-
tion, we have, using Theorem 1 with a suitable index shifting, ‖x̄3 − x̄r‖ ≥

1√
r−3

(r − 3)φ(ε), so ‖x̄3 − x̄r‖ ≥ √
r − 3φ(ε) and, by r >

(
diam(A)

φ(ε)

)2
+ 3,

‖x̄3 − x̄r‖ > diam(A) (nonsense).

In an outer loop of the algorithm, the detection of infeasibility will also take
place.

4If A-cuts are present, we may take sequence x̄1, x̄2, x̄3, . . . and use also Remark 6b).

188 P. Bia loń

Consequence 2. (of Theorem 1) In case of infeasibility (dist(L,N) =
d > 0) the standard algorithm version with T = ∞ and tN = 0 needs
at most

r =
(

diam(A)
d

)2

+ 3(26)

steps to detect infeasibility.

Proof. Assume we have reached a greater r and the infeasibility has not
been detected. By Remark 6b), ‖x̄i+1 − x̄i‖ ≥ d for i ≥ 1. Now we repeat
the reasoning from the proof of Consequence 1, using d instead of φ(ε).

Remark 10. It seems reasonable to cumulate both z-cuts and (type A) g-
cuts in order to quickly detect infeasibility. As every cut that have ever been
used is then cumulated, the problem is – up to the moment of detection of
infeasibility – not distinguishable (under the used oracle) from some feasible
problem5. Therefore any good convergence properties of feasible problems
apply and force the algorithm to quickly converge to the imagined solution
(which is impossible) or to detect the infeasibility. It is difficult to calculate a
regularity function for the ”imagined” feasible problem, but the step lengths
still can be assessed as minorized by d.

Remark 11. Consider the standard version of the algorithm with T = ∞,
tN = 0. A fulfillment of the condition

∑i
j=1 ‖x̄j+1 − x̄j‖2 > diam2(L),

with i being the current iteration number, also can indicate infeasibility,
like in [7], since for any feasible problem

∑i
j=1 ‖x̄j+1− x̄j‖2 ≤ dist2(x̄1, S)−

dist2(xi+1, S) holds by Remark 6 a), b) and by iterated Fejér contraction
property, causing a contradictory: diam2(L) >

∑i
j=1 ‖x̄j+1 − x̄j‖2. This

would give a similar (inverse-quadratic in d) infeasibility detection speed
estimate as (26). However, infeasibility of a subproblem created using cu-
mulated cuts seems to appear sooner than the satisfaction of the condition
from [7], as shown experimentally in [5] for the method from [3].

The Consequence 1 of Theorem 1 is a bit wasteful since it uses φ of the
final error, a small number, to assess the lengths of all steps. It would seem
more economic to determine a relation between the number of steps and a
relatively low decrease in error (in some later analysis the consecutive error
decreases could be gathered):

5All we can say is that N ∩ L, if nonempty, must be a subset of the current L′i.

Large-scale nonlinear programming algorithm ... 189

Remark 12. (on Consequence 1 of Theorem 1) Assume additionally the
uniqness of solution: S = {s}. The iterates following the current one
xp are in the ball B with center in s and radius dist(xj , S), due to Fejér
monotonicity. Then, by a similar argument6, to decrease the error from
εI(= dist(x̄p, S)) to εII we need at most

(
diam(B)
φ(εII)

)2

=
(

2εI

φ(εII)

)2

iterations7, assumed that p ≥ 3.

Cut cumulation techniques were considered by several authors. Cegielski
proposes in [4] a cone method for feasibility problems and for subgradient
methods; the application of the later one is described in [3]. Similar ap-
proaches, expressed in a more algebraic form were studied in [8], another
conical method was also proposed in [17]. Cegielski chooses from several pro-
jection vectors a linearly independent system that – like in Lemma 1 – spans
an obtuse cone. Projection onto the area allowed by the cuts corresponding
to the projections is realized by solving a low-dimensional linear system (18)
(or similar) with a Gram matrix. Kiwiel in [10] projects on his surrogate cut
by solving an auxiliary quadratic programming problem (note that we also
use quadratic programming). Solving small auxiliary problems is perhaps
easier than augmenting an existing one (this happens if the solving time
grows faster than linearly with the size of problem; though the particular
sizes used in both constructions should be examined more thoroughly). We
also do not filter out ”nonvaluable” cuts. However, since we already use a
large-scale solver, the complication of the big problem by additional cuts
is not necessarily essential. We can tune this complication by regulating
T . Once we agreed to use auxiliary solvers, our algorithm enjoys a bigger
implementational simplicity.

Both the constructions of cited authors serve for producing long steps
since such cause a big decrease in the error square, by Fejér contraction
property. In the described works, the obtained lengths are compared to
the lenghts for a nonaccelerated version of the algorithm (c.f. [4, Section
5.2]). Let us perform a similar analysis. Consider the standard version of
the algorithm with T < ∞, with the Modification. Assume k mod T = 1
and (k + l + 1)modT = 0 and l < T (so k and k + l + 1 belong to the same

6i.e. a contradiction saying that ‖xp − xr‖ > diam(B), where r > p +
(

diam(B)
φ(εII)

)2

.
7φ = φB may be taken.

190 P. Bia loń

period). Without z-cuts, the decrease of dist2(x̄k, S) − dist2(x̄k+l+1, S) in
error square between the k-th and (k + l + 1)-th iterate would be at least∑l+1

j=1 ‖x̄k+j − x̄k+j−1‖2 by Fejér contraction property (24) used l + 1 times.
If now the step from xk to xk+l+1 is advantageous or indifferent in the sense
of the Fejér- contraction-estimate of decrease in error square, the following
must hold:

l+1∑

j=1

‖x̄k+j − x̄k+j−1‖2 ≤ ‖x̄k − x̄k+l+1‖2.(27)

In our algorithm it holds simply due to (11) when sequence (x̄i)k+l+1
i=k satisfies

the cumulated cuts condition. Both cited authors similarly assure a gain
from their ”long steps”, though instead of previous steps x̄k+j − x̄k+j−1

(j ≤ l), vectors of projections on the sets defining the feasibility problem
can also be used. In the conical construction such an assurance is based on
the properties of constructed cones (acute/obtuse) and was the reason to
introduce such cones.

In singular cases, like (x̄k) = (1, 0, 0, . . . , 0)>, (x̄k+1) = (0, 1, 0, . . . , 0)>,
. . . , (27) may hold as an equality, giving no gain. This brings a discomfort
but similar cases are also possible in the cited propositions. In the conical
method, it may happen when the configuration of projection vectors does
not allow to choose a subsystem generating an obtuse cone, except of a one-
element system or when the projection vectors are perpendicular each to
other. In the method of surrogate constraints, such a degenerated case is
caused by intersecting of particular hyperplanes (note that in our algorithm
the z- cut hyperplanes intersect in x̄k+l+1 in the singular case).

The zigzagging bound in Theorem 1, which is of the type of a square
function, turns out to be still a bit too large then. The author refers to this
question in Section 9

8 Preliminary experiments
The algorithm was implemented in C++; it uses the HOPDM linear-
quadratic solver; nonlinear subproblems were solved analytically in experi-
ments below.

Generated test problems of the form (3) try to conceive several demands:
a faily random generation, sparsity of the linear constraints, a possibility of
shape (conditioning) tuning, the simplicity of (analytical) generation, and
the existence of only one known solution point. A problem is constructed

Large-scale nonlinear programming algorithm ... 191

in several stages, described by complicated formulae; it takes nN , n, m,
W ∈ [1,∞), V ∈ [1,∞) X ∈ [1,∞) as parameters and basically consists of:
1. One nonlinear constraint g1 resulting in set N being an ellipsoid with

the maximum axes lengths ratio of V .
2. m linear inequality constraints:

(a) 2n−nN ones making only one point feasible. Their hyperplanes are
almost orthogonal to the gradient of the nonlinear constraint at the
feasible point (in order to make essential the constraints from the
next group).

(b) m−(2n−nN) ones - their hyperplanes were randomly generated (so
as to retain the feasibility of the solution point) and then 1/W times
dilated in the direction of the gradient of the nonlinear constraint.

3. Bounds.
Such a problem (actually – its sets N and L) is next dilated X times in the
direction of the first axis in order to additionally deteriorate its conditioning.

A part of the results is presented in Table 1. The observed quantities
are: Zp = Zp(i) = Z

(x̄j
N)

(i, i − p) – zigzagging of the fragment of p last

segments of the trajectory, ρ = ρ(i) = ‖x̄i − x̄i−1‖ – the step lengths (in
terms of RnN), d = d(i) – distance of (x?

N
>, x?

L
>)> (the solution of the

quadratic subproblem whose nN first coordinates form x̄i) from the solution
in terms of whole space Rn.

The experiments are commented in Section 9

9 Conclusions and further work

The first experiments on the algorithm seem rather promising. The algo-
rithm reaches a zigzagging lower than the theoretical

√
5 ≈ 2.236 while

a decrease in step lengths ρ during the 5 zigzagging-measurement steps is
low. In other experiments the algorithm seems not very much dependent
on tuning T . The size nN which is most important for the behavior of
the sequential projections loop can reach the rank of hundreds. The re-
maining sizes determine mainly the difficulty of the quadratic optimization
subproblem and their limits depend on the properties of the quadratic solver.
Some observed accuracy problems are natural in a decomposition scheme.
The admissible sets of these subproblems might have been very ”flat” (have
almost no interior), especially when the regularity is not linear and we are
close to the solution. However, the method was intended to quickly converge
into a neighborhood of the solution. Then one of the many methods of good

192 P. Bia loń

i no cuts g nonc g nonc + z cumm g cumm + z cumm

dN dN Z5 ρ d dN Z5 ρ dN Z5 ρ

0 13,31 13,31 68,598 19,01 13,31 68,598 13,31 68,598
1 12,57 12,26 3,030 17,94 12,26 3,030 12,26 3,030
2 12,37 11,52 1,411 16,24 11,51 1,411 11,52 1,411
3 12,26 11,12 1,154 15,33 11,11 1,153 11,10 1,155
4 12,19 11,03 0,682 14,09 10,56 1,007 10,35 1,222
5 12,13 10,20 1,596 13,72 10,28 0,831 9,83 1,008
6 12,08 10,13 1,93 0,722 13,09 9,83 1,64 0,857 9,31 1,57 0,961
7 12,04 9,97 2,45 1,052 12,02 9,24 1,70 0,930 8,29 1,63 1,471
8 12,00 9,91 3,03 0,595 11,86 8,93 1,67 0,650 7,90 1,57 0,811
9 11,97 9,59 2,67 1,149 11,49 8,44 1,71 0,752 7,46 1,60 0,761

10 11,93 9,53 3,92 0,650 10,97 8,08 1,60 0,645 7,12 1,60 0,776
11 11,91 9,39 3,44 0,980 10,08 7,70 1,56 0,629 6,53 1,55 0,922
12 11,88 9,34 4,54 0,554 9,62 7,38 1,59 0,566 6,16 1,60 0,667
13 11,85 9,10 3,33 1,039 9,09 7,01 1,51 0,577 5,82 1,63 0,674
14 11,83 9,05 4,36 0,590 8,82 6,68 1,52 0,554 5,46 1,68 0,703
15 11,80 8,90 3,50 0,964 8,03 6,35 1,50 0,507 5,03 1,64 0,742
16 11,78 8,85 4,80 0,540 7,60 6,03 1,49 0,549 4,69 1,77 0,723
17 11,76 8,72 4,01 0,788 7,07 5,70 1,48 0,475 4,40 1,81 0,661
18 11,74 8,68 4,09 0,505 6,91 5,46 1,57 0,557 4,16 1,83 0,521
19 11,72 8,42 2,91 1,088 6,65 5,13 1,57 0,516 3,73 1,72 0,639
20 11,70 8,36 5,10 0,582 6,45 4,91 1,67 0,425 3,51 1,77 0,428
21 11,69 8,27 4,32 0,710 5,75 4,73 1,71 0,403 3,22 1,82 0,573
22 11,67 8,24 4,42 0,460 5,34 4,40 1,75 0,495 2,87 1,65 0,631
23 11,65 8,09 3,62 0,804 5,04 4,17 1,62 0,380 2,46 1,55 0,545
24 11,64 8,05 3,87 0,509 4,66 3,97 1,68 0,390 2,13 1,57 0,460
25 11,62 7,87 3,16 0,907 4,50 3,75 1,68 0,356 1,90 1,56 0,394
26 11,61 7,83 5,41 0,504 4,31 3,47 1,54 0,421 1,71 1,56 0,391
27 11,59 7,64 3,54 0,894 4,07 3,32 1,62 0,274 1,47 1,47 0,377
28 11,58 7,59 4,17 0,502 3,81 3,03 1,56 0,464 1,35 1,52 0,224
29 11,56 7,49 4,08 0,712 3,49 2,84 1,54 0,292 1,11 1,65 0,383
30 11,55 7,46 4,05 0,447 3,64 2,84 1,50 0,002 0,92 1,65 0,292
31 11,53 7,31 3,51 0,744 3,37 2,79 1,95 0,381 0,90 1,64 0,115
32 11,52 7,28 4,60 0,453 2,46 2,21 1,53 0,804 0,55 1,56 0,473
33 11,51 7,16 3,32 0,812 2,39 2,10 1,57 0,254 0,38 1,51 0,243
34 11,50 7,12 5,59 0,453 2,20 1,97 1,83 0,336 0,31 1,51 0,095
35 11,48 6,93 3,41 0,867 2,21 1,82 1,88 0,277 0,09 1,38 0,239
36 11,47 6,89 4,56 0,475 1,96 1,65 1,65 0,279 0,08 1,29 0,030

Table 1. Algorithm course in initial stages for various cutting schemes. nN = 30,
n = 100, m = 1000, X = 5, V = 15, W = 25, T = 30, Modification – not applied.

asymptotic properties, like superlinear convergence, can overtake the opti-
mization. Relaxation of z-cuts by parallelly shifting their hyperplanes often
turned out to overcome the numerical problems.

The author is now conducting his works on equipping the algorithm
with an outer loop based on the level control [7] with upper bounds on Q
obtained by examining f(x̄i).

Large-scale nonlinear programming algorithm ... 193

Also, the author hopes for improving the theoretical zigzagging limit below
the square-root dependency. This would make cut cumulation a stronger
tool (in the worst-case sense) than the Fejér monotonicity. Moreover, the
inverse-quadratic efficiency (from Consequence 1 by linear regularity) would
be surpassed. The impossibility of exceeding such an efficiency, obtained in
[15] for subgradient methods in convex minimization is often cited in works
in which a cut cumulation is used [3, 9]. However, our problem differs from
that of Nemirovskii and Yudin.8

The way to realize the improvement in a finite-dimensional case consist
in strengthening the assumption (10) in Theorem 1 to the form

∀s, 1≤s≤n−1 ∀r,s<r≤n(xs − xs−1)>(xr − xs) ≥ 0,(28)

which is certainly fulfilled in the standard algorithm version, since any cre-
ated z-cut affects the generation of all the subsequent iterates, not only
xn. It is easy to show a sequence in Hilbert space l2 that fulfills both
(10) and (28) and reaches the square-root zigzagging: it is the sequence
x0 = (1, 0, 0, . . .)>, x1 = (1, 1, 0, 0, . . .)>, x2 = (1, 1, 1, 0, 0, . . .)>, It
is interesting that the author has constructed a sequence of points in R2

reaching the maximal zigzagging that satisfies (10). It seems to be a unique
sequence with these two properties and it turns out not to satisfy (28).

References

[1] A. Altman and J. Gondzio, Regularized Symmetric Indefinite Systems in In-
terior Point Methods for Linear and Quadratic Optimization, Optimization
Methods and Software 11-12 (2000), 275–302.

[2] H. Bauschke and J. Borwein, On projection algorithms for solving convex
feasibility problems, SIAM Review 38 (3) (1996), 367–426.

[3] A. Cegielski, A method of projection onto an acute cone with level control in
convex minimization, Math. Progr. 85 (1999), 469–490.

[4] A. Cegielski, Relaxation methods in Convex Optimization Problems, Higher
College of Engineering, Series Monographies, No. 67, Zielona Góra, Poland
(in Polish).

8Unlike them, we can have a quasiconvex goal function. We do not use Lipschiz con-
stants or the normalization assumption of Nemirovskii and Yudin; instead, we use the
regularity function. We measure the error differently. Unlike in the proof of the discussed
theoretical complexity – we consider a finite-dimensional case.

194 P. Bia loń

[5] R. Dylewski, Numerical behavior of the method of projection onto an acute cone
with level control in convex optimization, Discuss. Math. Differential Inclusions,
Control and Optimization 20 (2000), 147–158.

[6] S. Fl̊am and J. Zowe, Relaxed outer projections, weighted averages and convex
feasibility, BIT 30 (1990), 289–300.

[7] S. Kim, A. Hyunsil and C. Seong-Cheol, Variable target value subgradient
method, Math. Progr. 49 (1991), 356–369.

[8] K. Kiwiel, Monotone Gram matrices and deepest surrogate inequalities in ac-
celerated relaxation methods for convex feasibility problems, Linear Algebra
and its Applications 215 (1997), 27–33.

[9] K. Kiwiel, The efficiency of subgradient projection methods for convex opti-
mization, Part I: General level methods, SIAM Control Optim. 34 (2) (1996),
660–676.

[10] K. Kiwiel, Block-Iterative Surrogate Projection Methods for Convex Feasibility
Problems, Linear Algebra and its Applications 15 (1995), 225–259.

[11] T. Krȩglewski, J. Granat and A. Wierzbicki, IAC-DIDAS-N – A Dynamic
Interactive Decision Analysis and Support System for Multicriteria Analysis
of Nonlinear Models, v. 4.0, Collaborative Paper, CP-91-101, International
Institute for Applied Systems Analysis, Laxenburg, Austria, June 1991.

[12] C. Lemaréchal, A.S. Nemirovskii and Yu. Nesterov, New variants of bundle
methods, Math. Progr. 69 (1995), 111–147.

[13] B. ÃLopuch, Projection methods with an aggregation for convex feasibility prob-
lems, Doctoral thesis, Institute of Systems Research, Warsaw 1997 (in Polish).

[14] M. Makowski, LP-DIT data interchange tool for linear programming problems
(version 1.20), Working Paper, WP-94-36, International Institute for Applied
Systems Analysis, Laxenburg, Austria 1994.

[15] A.S. Nemirovskii and D. Yudin, Optimization Problem Complexity and
Method Efficiency, Nauka, Moscow 1979 (in Russian).

[16] T. Polyak, Minimization of unsmooth functionals, Zh. Vychiisl. Mat. Fiz. 9
(1969), 14–29 (in Russian).

[17] M. Shchepakin, On a modification of a class of algorithms for mathematical
programming, Zh. Vychisl. Mat. i Mat. Fiz. 19 (1979), 1387–1395 (in Russian).

[18] A. Wierzbicki, A Penalty Function Shifting Method in Constrained Static
Optimization and its Convergence Properties, Archiwum Automatyki i Tele-
mechaniki XVI (4) (1971), 396–416.

Received 17 November 1999
Revised 15 October 2000

