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Libor Jüttner1

Department of Mathematics Analysis
Faculty of Science, Palacký University
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Abstract

The problem of linearity of a multivalued derivative and conse-
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1. Introduction

More than one hundred years ago, the problem of finding a solution which
need not be periodic itself, but which has a periodic derivative was men-
tioned by H. Poincaré. Physically, such solutions can correspond, for ex-
ample, to a periodic velocity, a subsynchronous level of performance of the
motor, a “slalom orbit” of an electron beam [8] or a motion of particles
in a sinusoidal potential related to a free-electron laser [12]. So, one can
find many applications in astronomy, engineering, laser physics, quantum
physics, etc. For an extensive list of references and contributions concerning
this problem, see e.g. [1, 11].

1Supported by grant no. 311-03-005 of Palacký University, Olomouc.
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The multivalued approach can make further progress, especially in such a
case, when the explicitness of a process is lost. For example, in quantum
physics, according to the Heisenberg principle of uncertainty, the position of
particles can be detected only in a certain domain, but with the same proba-
bility. Hence, the multivalued approach seems to be much more appropriate
than the single-valued approximations.

On the other hand, several concepts of differentiability for multifunc-
tions have been considered by many authors from different points of view (see
e.g. [3, 5, 6, 9, 10]). This work investigates a suitable definition of derivo-
periodic multifunctions and leads to an analogous version of the following
well-known theorem for related derivo-periodic single-valued functions (see
[7], p. 235).

Theorem 1. The function ϕ ∈ C1(R,Rn) is derivo-periodic with period
T > 0 if and only if there exist a constant vector a ∈ Rn and a periodic
function ψ ∈ C1(R,Rn) with period T such that ϕ(t) ≡ at + ψ(t).

2. Differentiability of multifunctions

Let us recall the following considerations in [10]. Let F be a multivalued
map from a linear space X into a linear space Y. Assume that the following
linearity condition holds F (αx + βy) = αF (x) + βF (y), for any x, y ∈ X,
and α, β ∈ R. Then F is single-valued. In fact, for α = −β = 1 and x = y,
we have F (x) − F (x) = F (0). Since F (0) = 0, it follows that F (x) is a
singleton, for any x ∈ X.

Therefore, the definition of differentiability for single-valued maps can-
not be generalized to the multivalued case in a word by a word fashion.

The majority of approaches to the problem of differentiability of multi-
functions has common features. The mostly frequent ones are

(i) applying the usual differentiability in special spaces, especially in a real
normed linear space, whose elements are subsets of Y,

or

(ii) reducing the requirements on the differential, namely the multivalued
differential is required to be positively homogeneous, or using the tan-
gency concept, following the fact that the tangent space to the graph
of a function f : R → R, at any point (x, y) of its graph, is the line of
the slope f ′(x).
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Let B denote the unit ball B(0, 1) in a Banach space X and B(X)(Bc(X))
denote the family of all non-empty bounded, closed (bounded, closed,
convex) subsets of X. Let A denote the closure of A ⊂ X. Define

dH(M,N) := inf{t > 0 : M ⊂ N + tB, N ⊂ M + tB}

or, equivalently

dH(M, N) := max{ sup
x∈M

dist(x,N), sup
x∈N

dist(x,M)}.

Note that dH is the Hausdorff metric in the space B(X).

Definition 1. A multivalued map F : X ; Y is said to be upper semicon-
tinuous (u.s.c.) at x ∈ X if for every ε > 0, there exists δ > 0 such that
F (x + h) ⊂ F (x) + εB, when ‖h‖ < δ.

A multivalued map F : X ; Y is said to be lower semicontinuous
(l.s.c.) at x ∈ X if for any y ∈ F (x) and for any sequence of elements
xn ∈ X convergent to x, there exists a sequence of elements yn ∈ F (xn)
converging to y.

A multivalued map F : X ; Y is said to be positively homogeneous if
F (tx) = tF (x), t ≥ 0, x ∈ X.

Definition 2 ([6]). A multivalued map F : X ; Y is said to be differen-
tiable at x ∈ X if there exist a map Dx : X → Bc(Y ), which is u.c.s. and
positively homogeneous, and a number δ > 0 such that

dH(F (x + h), F (x) + Dx(h)) = o(h), when ‖h‖ ≤ δ.(1)

(Here o(h) denotes a nonnegative function such that limh→0 o(h)/‖h‖ = 0.)
Dx is called the (multivalued) differential of F at x.

In the sequel, we call this type of differential the De Blasi-like
differential.

Remark 1. The motivation of defining such a type of multivalued differ-
ential is based on the incrementary property. The differential is required
to be only u.s.c. and positively homogeneous (instead of continuous and
linear). If a multivalued differential exists, it is unique ([6]). On the other
hand, the class of multivalued mappings having such a differential at a point
x0 ∈ DomF (or even on some interval 〈a, b〉) is quite small in comparison
with other definitions.
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For this reason, the notion of such a differential can be weakened, for ex-
ample, to the upper differential ϕ of F at x, when ϕ is u.s.c. and positively
homogeneous and F (x + h) ⊂ F (x) + ϕ(h), for ‖h‖ < δ, δ > 0. This dif-
ferential is not unique. Denote by F the sets of all upper differentials of F
at x, note that F can be empty. If F is Lipschitzean, i.e. dH(F (x + h),
F (x)) ≤ L‖h‖, for small h, then F 6= ∅, and it leads to the Lasota-Straus
notion of a differential ∆x, defined by ∆x(h) = ∩ϕ∈Fϕ(h).

The Lasota-Straus differential is not the only possibility how to weaken
requirements laid to the differential introduced by (1), cf. [10]. In [9] the
presented multivalued differential (at a point) is not necessarily unique. The
above mentioned definitions of a differential extend the class of differentiable
multifunctions. For our reasons, the differential introduced in Definition 2
is convenient for the sake of lucidity.

Another definition of differentiability of multivalued maps can be found
in [5] as a usual derivative in a special space.

When X has reasonable properties, i.e. when X is reflexive, then there is
a real normed linear space B(X) (or for simplicity B) and isometric mapping
π : Bc → B, where Bc is metrized by dH , such that π(B) is a convex cone in
B and B is minimal.

Definition 3. A multivalued map F : X → Bc(X) is said to be π-
differentiable at x0 ∈ X if the mapping F̂ : X → B(X) is differentiable
at x0 ∈ X, i.e. there exists a continuous linear mapping F̂ ′(x0) : X → B
such that

F̂ (x)− F̂ (x0)− F̂ ′(x0)(x− x0) = o(‖x− x0‖).
This definition is not “real” multivalued definition of differentiability. For
this reason, Definition 3 is presented here for the sake of completeness and
we will not work with it.

The third possible approach is based on a property of tangency. In the single-
valued case the graph of the derivative at a point x0 is also a tangent space
to the graph at that point. So we can define the multivalued differential of a
multivalued map at (x, y) to be a multivalued map whose graph is a tangent
cone to the original graph at (x, y).

Definition 4. Let K be nonempty subset of a Hilbert space X. We define
the Bouligand (contingent) cone TK(x) to K at x as follows

v ∈ TK(x) if lim inf
h→0+

dK(x + hv)
h

= 0.
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Definition 5. Let F : X ; X be a multivalued map. Denote DF (x, y)
the multivalued map from X into X, whose graph is the contingent cone
Tgraph(F )(x, y) to the graph of F at (x, y). We shall say that DF (x, y) is the
contingent derivative of F at x ∈ X and y ∈ F (x).

Lemma 1 ([4]). Let F : X ; X be a multivalued map. v ∈ DF (x, y)(u)
holds if and only if there exist sequences of strictly positive numbers hn and
of elements un ∈ X, vn ∈ X satisfying limn→∞ hn = 0, limn→∞ un = u,
limn→∞ vn = v and y + hnvn ∈ F (x + hnun).

Remark 2. Contingent cones, and subsequently contingent deriva-
tives, are not the only possibilities how to define multivalued derivatives.
Other cones (for example Dubovitskij-Milijutin’s, adjacent, Clarke’s tangent
cones) can be considered and corresponding derivatives have to be treated
(see e.g. [4]).

3. Multivalued derivo-periodicity

Let us start with one of the possible definitions of a periodic multifunction.
This definition is the most convenient one for our purposes.

Definition 6. A multifunction F : R ; R is called periodic with period T
if F (t) ≡ F (t + T ), for all t ∈ R.

The following definition and theorem investigate the case concerning De
Blasi-like differentiable multifunctions (Definition 2).

Note that if there is a continuously differentiable function a : I → R and
an interval B ⊂ R, B is bounded such that F (x) = a(x) + B, ∀x ∈ I, it is
easy to compute that the differential Dx takes the form of Dx(h) = a′(x)h,
for all x ∈ I.

First, we recall the notion of Dini derivatives.

Definition 7. Let a(x) : R → R be a continuous function. The notation
D+a(x), D−a(x), D+a(x), D−a(x) will be used for the right and left, upper
and lower Dini derivatives of a(x)

D+a(x) = lim sup
h→0+

a(x+h)−a(x)
h , D+a(x) = lim inf

h→0+

a(x+h)−a(x)
h ,

D−a(x) = lim sup
h→0−

a(x+h)−a(x)
h , D−a(x) = lim inf

h→0−
a(x+h)−a(x)

h ,

respectively.
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Theorem 2. A multifunction F : R ; R is De Blasi-like differentiable on
an interval I, I ⊂ R, if and only if there exist a function a : I → R, a ∈ A,
where A denotes the set of all continuous functions

A = {a(x) | a(x) ∈ C(I), D+a(x) = D+a(x) = a′+(x) ∈ R,

D−a(x) = D−a(x) = a′−(x) ∈ R, ∀x ∈ I},

and an interval B ⊂ R, B is bounded, such that F (x) = a(x) + B ∀x ∈ I.

Proof. It follows immediately that if F (x) cannot be written in the form
of F (x) = a(x) + B, ∀x ∈ I, B is bounded, then F (x) is not De Blasi-like
differentiable on some interval I. (Note that if diam(F (x)) is not constant on
I, then F (x) is not De Blasi-like differentiable. Similarly, if F (x+ε)⊆/ F (x),
for ε > 0 small enough, and diam(F (x)) is constant, then F (x) is not De
Blasi-like differentiable, too.)

If a(x) : I → R is not continuous (at x ∈ I), such that Dx exists
satisfying condition (1), then Dx is not positively homogeneous and F (x) is
not De Blasi-like differentiable.

Let a(x) be continuous. Let D+, D+, D−, D− denote the Dini deriva-
tives of a(·) at x. Suppose that Dx exists, it is u.s.c., positively homo-
geneous and satisfies (1). Let D+ 6= D+, for example. Then there ex-
ist hn → 0+ such that D+ = limn→∞

a(x+hn)−a(x)
hn

and h′n → 0+ such

that D+ = limn→∞
a(x+h′n)−a(x)

h′n
. Since o(h) = dH(a(x + h) + B, a(x) +

B + Dx(h)) = dH(a(x) + hnD+ + o(hn) + B, a(x) + B + Dx(hn)) =
dH(a(x)+hnD+ +B, a(x)+B +Dx(hn))+o(hn), we have Dx(hn) = D+hn,
where {zn} ∈ o(hn), whenever limn→∞ zn

hn
= 0 for hn → 0, n →∞. Similarly,

Dx(h′n) = D+h′n.

Since Dx is positively homogeneous and since hn = h′n
hn
h′n

, we have

D+hn = Dx(hn) = Dx(h′n
hn

h′n
) =

hn

h′n
Dx(h′n) =

hn

h′n
D+h′n = D+hn,

which implies D+ = D+.

The cases D+ = D+ = ±∞ and D− = D− = ±∞ are not possible,
because then Dx(h), satisfying the assumptions in Definition 2, does not
exist (it can be shown, for example, that Dx(h) has an unbounded value
for h = 0).



On derivo-periodic multifunctions 87

If D+ = D+ = D+ ∈ R and D− = D− = D− ∈ R, then it immediately
follows that

Dx(h) =





(D+)h, h > 0,
(D−)h, h < 0,
0, h = 0.

Definition 8. Let F : R; R be a De Blasi-like differentiable multifunction.
We say that F is derivo-periodic with period T if the mapping D, defined
by D(x) = Dx, is T -periodic.

Theorem 3. Let F : R ; R be a De Blasi-like differentiable multifunction.
Then F is derivo-periodic with period T if and only if a(x) ∈ A satisfies

a′+(x) = a′+(x + T ) and a′−(x) = a′−(x + T ), for all x ∈ R,(2)

(i.e. a(x) is derivo-periodic with period T in case that a(x) is continuously
differentiable).

Proof. Let F be a T -derivo-periodic multifunction. Since F is differ-
entiable, we have F (x) = a(x) + B, a(x) satisfies (2). Since Dx(h) =
a′+(x)h, h ≥ 0 and Dx(h) = a′−(x)h, h < 0 is T -periodic (in x), we ob-
tain a′+(x)h = Dx(h) = Dx+T (h) = a′+(x + T )h, h ≥ 0, and similarly
for h < 0.

Let a(x), satisfying (2), be a T -derivo-periodic function. Since Dx(h) =
a′+(x)h = a′+(x + T )h = Dx+T (h), h ≥ 0, and similarly for h < 0, the
multifunction F (x) is derivo-periodic with period T.

The presented differential is a common single-valued function and the above
mentioned class of differentiable multifunctions is small. The usage of con-
tingent cones leads to another convenient definition of multifunctions derivo-
periodicity.

Definition 9. A multifunction F : R → R is called derivo-periodic
with period T if differential DF (t, x) is periodic (in t) with period T, i.e.
DF (t, x) = DF (t+T, y), for all (t, x) ∈ R×R, where y ∈ F (t+T ) is a value
corresponding to x (they both are boundary points, for example).

Remark 3. Note that the derivative of a multifunction is defined at any
point of its graph and not in a point, which belongs to the closure of the
graph and not to the graph. For this reason, different multivalued maps
having the same closure of their graphs, have different derivatives.
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Remark 4. As usual, the main difficulty arising when we are working with
a differential, is additivity of the differential. It is not difficult to find, for
example, u.s.c. and l.s.c. mappings, for which the linearity of differential
does not hold true, so additional conditions have to be fulfilled.

Continuous multifunctions with closed values are required in the follow-
ing. If the continuity assumption reduces only to a l.s.c. assumption or the
values can be open, then the definition of a contingent derivative leads to a
complicated behaviour of the mapping Ω : (x, y, u) ; DG(x, y)(u).

The additivity of the derivative at (x, y) ∈ graph(F +G) can be defined
by

D(F + G)(x, y)(u) = ∪z∈Z(x,y)
(DF (x, z)(u) + DG(x, y − z)(u)),(3)

where Z(x,y) is the set containing all points z ∈ R such that (x, z) ∈ graphF,
(x, y − z) ∈ graphG.

As an example, see marked points s in the following figure.

Figure 1

It is true that

DF (x, z)(u) =




∅, u < 0,
R, u = 0,
∅, u > 0,

and DG(x, y − z)(u) = R, for all u ∈ R, so

∪z∈Z(x,y)
(DF (x, z)(u) + DG(x, y − z)(u)) =




∅, u < 0,
R, u = 0,
∅, u > 0,

where the fact ∅+A = ∅ was used. This differs from the mapping D(F +G)
(x, y)(u) = R, for all u ∈ R.
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Theorem 4. (see [4]) Let F : R; R be an (arbitrary) multifunction and f :
R→ R be continuously differentiable at x ∈ R. Then, for all y ∈ (f +F )(x),
the equality

D(f + F )(x, y)(u) = f ′(x)(u) + DF (x, y − f(x))(u)

holds true.

Proof. “⊂” Letting v ∈ D(f + F )(x, y)(u), then there exist hn → 0+,
un → u and vn → v such that y + hnvn ∈ (f + F )(x + hnun). Since f is
continuously differentiable, f(x + hnun) = f(x) + hn(f ′(x)(un) + ε̃(hn)) =
f(x) + hn(f ′(x)(u) + f ′(x)(un − u) + ε̃(hn)) = f(x) + hn(f ′(x)(u) + ε(hn)),
where ε(hn) → 0. Then y− f(x)+hn(vn− f ′(x)(u)− ε(hn)) ∈ F (x+hnun).
This means v − f ′(x)(u) ∈ DF (x, y − f(x))(u).

“⊃” Letting v ∈ f ′(x)(u) + DF (x, y − f(x))(u), then v − f ′(x)(u) ∈
DF (x, y−f(x))(u). So, there exist wn → v−f ′(x)(u), un → u and hn → 0+
such that y − f(x) + hnwn ∈ F (x + hnun). Then, there exists ε(hn) → 0
such that wn + f ′(x)(u) + ε(hn) → v. From the definition of the continuous
differentiability f ′(x)(u) = 1

hn
(f(x + hnun) − f(x)) − ε(hn), and from the

condition imposed on wn, we have wn+ 1
hn

(f(x+hnun)−f(x)) → v. Defining
vn = wn + 1

hn
(f(x + hnun) − f(x)), then y − f(x) − hn

1
hn

(f(x + hnun) −
f(x)) + hnvn = y − f(x + hnun) + hnvn ∈ F (x + hnun). Consequently,
y +hnvn ∈ (f +F )(x+hnun) and v ∈ D(f +F )(x, y)(u), because hn → 0+,
un → u, vn → v.

Theorem 5. Let F : R ; R be a multifunction periodic with the period T.
Then DF (t, x) is T -periodic (in t), for all x ∈ F (t).

Proof. Let v ∈ DF (t, x)(u), then there exist vn → v, un → u and hn → 0+
such that x+hnvn ∈ F (t+hnun). Since F is T -periodic, we have x+hnvn ∈
F (t + T + hnun), so v ∈ DF (t + T, x), and the conclusion holds true.

The following theorem is our first result on derivo-periodicity of multivalued
functions, when contingent derivatives are used.

Theorem 6. Let F (x) = G(x) + ax, where a ∈ R and G(x) : R ; R is
T -periodic. Then F (x) is derivo-periodic with the period T and DF (x, y) =
a + DG(x, y − ax).

Proof. From the additivity of a multivalued derivative, proved for such
a class of multifunctions, we have DF (x, y) = a + DG(x, y − ax), where
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y ∈ G(x) + ax, and also DF (x + T, z) = a + DG(x + T, z− ax− aT ), where
z ∈ G(x+T )+ax+aT. Since G is T -periodic, we have z−aT ∈ G(x)+ax.
Since there is one to one correspondence between y and z = y + aT, and
because of the periodicity of DG(x, y), we obtain that, DF (x+T, y+aT ) =
DF (x+T, z) = a+DG(x+T, z−ax−aT ) = a+DG(x, y−ax) = DF (x, y).

The main disadvantage of this theorem is that the “linear” part is strictly
single-valued. The following theorem allows using some “zone” map, instead
of a linear function. As usual, some additional requirements need to be
fulfilled.

By a zone map we understand a multivalued mapping G : R ; R such
that G(x) = 〈a1(x), a2(x)〉, where a1, a2 ∈ A, a1(x) ≤ a2(x), for all x ∈ R.

Lemma 2. Let G : R ; R be a zone multifunction. If y ∈ intG(x), then
DG(x, y)(u) = R, for all u ∈ R. If y = a1(x) 6= a2(x), resp. y = a1(x) =
a2(x), then

DG(x, y)(u) =




〈a′1−(x)u,∞), u < 0,
〈0,∞), u = 0,
〈a′1+(x)u,∞), u > 0,

resp.

DG(x, y)(u) =




〈a′1−(x)u, a′2−(x)u〉, u < 0,
0, u = 0,
〈a′1+(x)u, a′2+(x)u〉, u > 0,

The proof requires only a simple computation and the result can be easily
extended for arbitrary continuous functions a1(x) and a2(x).

Theorem 7. Let F : R ; R be an (arbitrary) multifunction. Let G : R ; R
be a zone multifunction. Then

∪z∈Z(x,y)
(DF (x, z)(u) + DG(x, y − z)(u)) ⊂ D(F + G)(x, y)(u).(4)

Proof. Let z ∈ Z(x,y) be arbitrary and let v ∈ DF (x, z)(u), then there
exist hn → 0+, un → u and vn → v such that z + hnvn ∈ F (x + hnun).

Let w ∈ DG(x, y − z)(u).
If y − z ∈ intG(x), then ∀hn → 0+, ∀un → u and ∀wn → w it holds,

that y−z +hnwn ∈ G(x+hnun), for n large enough, and we are done, since
v + w ∈ D(F + G)(x, y)(u).
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If y− z ∈ ∂G(x) (y− z = a1(x), for example), then ∃hn → 0+,∃u′n → u and
∃wn → w such that y − z + hnwn ∈ G(x + hnu′n). It is easy to see that a
sequence hn → 0+ can be taken arbitrarily, since the left (a′1−(x)) and right
(a′1+(x)) derivatives exist (if also y− z = a2(x) the same holds true). So we
take the same sequence hn, as for v ∈ DF (x, z)(u).

Note that G(x+hnu′n) = G(x+hnun+hn(u′n−un)) and u′n−un → 0, for
n → ∞. Since G is continuous and corresponding derivatives are bounded,
we have G(x + hnun) ⊂ G(x + hnu′n) + B(0, o(hn)), where {zn} ∈ o(hn),
whenever limn→∞ zn

hn
= 0 for hn → 0, n →∞.

For that reason, there exists εn → 0, for n → ∞, such that y − z +
hn(wn + εn) ∈ G(x + hnun), and the conclusion follows immediately.

Definition 10. We say that a continuous multivalued map F (x) has a
smooth boundary if for every open connected interval C ⊂ R there exist an
open subset U ⊂ R and smooth functions bi : U → R, i = 1, . . . , n such that

∂ graphF |C = ∪n
i=1 graph bi.

The function bk, having at a point t a vertical tangent and, for example,
for t1 > t, having two values bk1(t1), bk2(t1) and, for t2 < t, empty set of
values, is allowed. To avoid such a situation some rotated coordinate systems
are appropriate. However, such a definition and the proof of the following
theorem can become confusing.

So note that the boundary of such a graph consists of smooth functions.

Theorem 8. Let F : R ; R be a closed continuous multi-valued map
with the smooth boundary. Let G : R ; R have the form of a zone map
G(x) = 〈a1(x), a2(x)〉, where a1, a2 ∈ A, a1(x) ≤ a2(x), for all x ∈ R. Then

D(F + G)(x, y)(u) = ∪z∈Z(x,y)
(DF (x, z)(u) + DG(x, y − z)(u)),

where Z(x,y) is the set containing all points z ∈ R such that (x, z) ∈ graphF,
(x, y − z) ∈ graphG.

The proof will be done, for simplicity, for continuously differentiable func-
tions a1(x), a2(x). For a1(x), a2(x) ∈ A, the proof is the same.

Proof. If y ∈ int(F + G)(x), then from the continuity assumptions, we
have (x, y) ∈ int graph(F + G) and D(F + G)(x, y)(u) = R, for all u ∈ R.
Now, three situations are possible. At first, there exists a point z ∈ Z(x,y),
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satisfying z ∈ intF (x) and y − z ∈ intG(x) (if one exists, infinitely many
such points exist). Then DF (x, z)(u) = R = DG(x, y− z)(u), for all u ∈ R,
and equality (3) holds true.

Or, there exists a point z ∈ Z(x,y) satisfying z ∈ ∂F (x) and y − z ∈
intG(x). Then DF (x, y)(u) 6= ∅, DG(x, y − z(u)) = R and equality (3)
holds true.

Or, if such a point z does not exist, then there exist two points z1, z2 ∈
R such that z1, z2 ∈ ∂F (x), and a1(x) = y − z1, a2(x) = y − z2. From
the assumptions we have (bi + a2)′(x) = 0 and (bj + a1)′(x) = 0, where
bi, bj are smooth functions according to Definition 10 above. Suppose, for
example, that z1 satisfy: if w ∈ F (x), w ∈ V, where V is a sufficiently
small neighbourhood of z1, then w ≤ z1, i.e. z1 is a “local maximum” of
the value F (x). Let us compute DF (x, z1). The tangent to the boundary of
F at a point (x, z1) has b′i(x) ∈ R as its directive. Then DF (x, z1)(u) =
(−∞, b′i(x)u〉, similarly DG(x, y−z1)(u) = (−∞, a′2(x)u〉, and since y−z1 is
a similar “maximum” of the value G(x), DF (x, z1)(u)+DG(x, y− z1)(u) =
(−∞, 0〉. The next point z2 can be treated similarly DF (x, z2)(u)+DG(x, y−
z2)(u) = 〈0,∞). And finally, equality (3) holds true.

The following figure gives us some information about this approach. If
the zone map is thicker (after collapsing points k1, k2 into one point k, which
is just the point y, in this proof), points l1, l2 will correspond to points z1, z2,
in the same part of the proof.

Figure 2. Illustration to the idea of the proof

If y ∈ ∂(F + G)(x), then there can exist two points z1, z2 ∈ Z, satisfying
similar properties, as mentioned in the past paragraph (see Figure 2 and
points y, z1, z2, y − z1, y − z2 for illustration). The difference from the
proof presented before is that (bi + a2)′(x), (bj + a1)′(x) can take arbitrary
values, also values ±∞ are now accepted. The procedure is similar. The
only difference arises, when (bi + a2)′(x) = ∞ holds, for example. Then
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the corresponding derivative takes the values D(F + G)(x, y)(u) = ∅, for
example, for u < 0 and D(F + G)(x, y)(u) = R for u ≥ 0 and the fact that
∅+ A = ∅, is used.

The last possibility is that there is exactly one point z ∈ Z and the
conclusion is immediate. In Figure 2, see, for example, points k1, l1, k1− l1,
(when the zone map is not thick).

Theorem 9. Let F (x) : R ; R be a T -periodic continuous set-valued map
with a smooth boundary. Let G : R; R, having the form of G(x) = a(x)+B,
be a zone map, where B is a closed connected subset of R and a(x) is a
smooth single-valued function, satisfying (2). Then (F + G)(x) is T -derivo-
periodic.

Proof. Since F is T -periodic, then DF (x + T, z) = DF (x, z), for every
z ∈ Z(x,y). For inner points y ∈ (F +G)(x) the conclusion follows easily. For
boundary points the proof follows.

Since G(x) = ax + B, then if B is not a singleton we have
DG(x, y + aT − z)(u) = (−∞, a′+(x + T )(u)〉 for n ≥ 0 and similarly,
DG(x, y + aT − z) = 〈a′+(x + T )(u),∞) for u < 0. Otherwise we obtain
DG(x, y + aT − z)(u) = {a′+(x + T )(u)} for u ≥ a and a similar formula
for u < 0. From condition (2) (i.e. from the T -derivo- periodicity of the
function a(x) = b(x)+cx, where b(x) is periodic and c ∈ R, for continuously
differentiable function), we know that a′±(x + T )(u) = a′±(x)(u). Note that
the point corresponding to (x, y) is (x + T, y + cT ).

Then, from (3), we have

D(F + G)(x + T, y + cT )(u)

= ∪z∈Z(x+T,y+cT )
(DF (x + T, z)(u) + DG(x + T, y + cT − z)(u))

= ∪z∈Z(x,y)
(DF (x, z)(u) + DG(x, y − z)(u)) = D(F + G)(x, y)(u).

Another definition of periodicity follows. Definition 6 and the following
Definition 6’ coincide for single-valued maps.

Definition 6’. A multifunction F : R ; R is called periodic with a period
T if F (t) ⊂ F (t + T ), for all t ∈ R.

The disadvantage of this definition is that the periodicity condition holds
only in a forward direction and not in the opposite, backward, direction.
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With respect to this definition, Theorem 3 holds true in the same meaning,
because the classes of differentiable multifunctions are identical. Theorem
5, and consequently Theorem 6 and Theorem 9, hold for a larger class of
maps. The proofs are similar, only convenient signs = are replaced by ⊂ .

Remark 5. Sometimes, the closed convex processes, i.e. multivalued map-
pings having closed convex cones as their graphs, are considered as a mul-
tivalued analogy of linear maps. For such maps the Open Mapping Theo-
rem and the Closed Graph Theorem hold, for example, (see [4]). For our
purposes, the derivative of such a map is not constant. The convenient
candidate is the above mentioned zone map (which is not a process).

Remark 6. The mapping (x, y, u) ∈ graphF × R ; DF (x, y)(u) is, under
some assumptions, l.s.c. The continuity of a multivalued derivative in nearly
impossible. Note that if there exist some inner points (x, y) ∈ int graphF,
then DF (x, y)(u) = R, for all u ∈ R. So, a modification of Theorem 8 for
l.s.c. maps is convenient, for example, for computing the second contingent
derivatives and studying second (or higher) order derivo-periodic multifunc-
tions.

The stated theorems (Theorem 6, Theorem 9) give us sufficient condi-
tions of derivo-periodicity of multifunctions (with nonconvex values). The
necessary conditions are weaker. For example, we have constructed u.s.c.
map plus a zone map, giving u.s.c. map such that the additivity condition of
a derivative holds true, and consequently the statement of Theorem 9 holds
true.

It seems that for a larger class than only for continuous functions F ,
Theorem 8 holds true. Precise statements and possible counterexamples will
be discussed elsewhere.
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1990.

[5] H.T. Banks and M.Q. Jacobs, A differential calculus for multifunctions,
J. Math. Anal. Appl. 29 (1970), 246–272.

[6] F.S. De Blasi, On the differentiability of multifunctions, Pacific J. Math. 66
(1) (1976), 67–81.

[7] M. Farkas, Periodic Motions, Springer, Berlin 1994.

[8] J.S. Cook, W.H. Louisell and W.H. Yocom, Stability of an electron beam on
a slalom orbit, J. Appl. Phys. 29 (1958), 583–587.

[9] G. Fournier and D. Violette, A fixed point theorem for a class of multi-valued
continuously differentiable maps, Anal. Polon. Math. 47 (1987), 381–402.

[10] M. Martelli and A. Vignoli, On differentiability of multi-valued maps, Bollet-
tino U.M.I. 10 (4) (1974), 701–712.

[11] J. Mawhin, From Tricomi’s equation for synchronous motors to the periodi-
cally forced pendulum, In Tricomi’s Ideas and Contemporary Applied Math-
ematics, Atti Conv. Lincei 147, Accad. Naz. Lincei (Roma), (1998), 251–269.

[12] P. Meystre, Free-electron Lasers, An Introduction, “Laser Physics (D.F.
Walls and J.D. Harvey, ed.)”, Academic Press, Sydney-New York-London-
Toronto-San Francisco 1980.

Received 9 June 2000


