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Abstract

We present a characterization of weak sharp local minimizers of
order one for a function f : Rn → R defined by f(x) := max{fi(x)|i =
1, ..., p}, where the functions fi are strictly differentiable. It is given
in terms of the gradients of fi and the Mordukhovich normal cone to
a given set on which f is constant. Then we apply this result to a
smooth nonlinear programming problem with constraints.
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1 Introduction

Weak sharp minima are some special types of possibly non-isolated min-
ima, where the objective function is constant on a given set of minimizers
and satisfies a certain “growth condition” outside this set. To give a pre-
cise definition (taken from [12]), let us consider the following mathematical
program:

min{f(x)|x ∈ C},(1)

where f : Rn → R := [−∞,+∞] and C is a nonempty subset of Rn.

Definition 1. Let ‖·‖ be the Euclidean norm on Rn. Suppose that f is
finite and constant on the set S ⊂ Rn, and let x̄ ∈ S ∩ C and m ≥ 1. For
x ∈ Rn, let

distm(x, S) := inf{‖y − x‖m |y ∈ S}.
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(a) We say that x̄ is a weak sharp minimizer of order m for (1) if there
exists β > 0 such that

f(x)− f(x̄) ≥ β distm(x, S) for all x ∈ C.

(b) For ε > 0, let B(x, ε) := {y ∈ Rn| ‖y − x‖ ≤ ε}. We say that x̄ is a
weak sharp local minimizer of order m for (1) if there exist β > 0 and
ε > 0 such that

f(x)− f(x̄) ≥ β distm(x, S) for all x ∈ C ∩B(x̄, ε).(2)

The notion of a weak sharp minimum (of order one) was studied by Burke
and Ferris in [3]. It is an extension of a sharp or strongly unique minimum
to include the possibility of a nonunique solution set. Weak sharp minima
of order m occur in many optimization problems and have important conse-
quences for the study of optimization algorithms and for sensitivity analysis
in nonlinear programming. Various characterizations of weak sharp mini-
mizers of order m (local or global) in nonconvex optimization were obtained
in [1] and [10] – [12].

In the unconstrained case, (C = Rn) we will refer to a weak sharp (local)
minimizer of order m for (1) as a weak sharp (local) minimizer of order m
for f .

It should be noted that a function possessing a weak sharp minimizer
of order m is a particular case of a well-conditioned function, the notion
which was studied in the general metric space context (see [5] and references
therein).

An outline of this paper is as follows: We begin in Section 2 by reviewing
the characterizations of weak sharp local minimizers of order m obtained in
[12] for the unconstrained case. We then point out certain difficulties which
arise in the process of practical application of these results. In Section 3, we
consider a special class of nonsmooth functions which are pointwise max-
ima of finite collections of strictly differentiable functions (see Definition 2
below). For this class, and for m = 1, we prove another characterization
of weak sharp local minimizers, which avoids some of the difficulties stated
before. We also show that this characterization cannot be easily reduced to
a simpler condition. Finally, in Section 4 we show how to apply the result
of Section 3 to a standard smooth nonlinear programming problem.

The following notation will be useful in the sequel: for a set S ⊂ Rn,
we denote the closure of S by clS, and the boundary of S by bdS. The
symbol 〈·, ·〉 denotes the usual inner product in Rn.
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Definition 2. A function f : Rn → R is strictly differentiable at a point x̄
if f(x̄) is finite and there is a vector ∇f(x̄) (called the gradient of f at x̄)
such that

lim
(x,y)→(x̄,x̄)

x6=y

f(x)− f(y)− 〈∇f(x̄), x− y〉
‖x− y‖ = 0.

For subdifferential characterizations of strict differentiability, see [6,
Theorem 9.18].

2 Review of results for the unconstrained case

The following concept of normal cone will play a major role in our optimality
conditions:

Definition 3. Let S ⊂ Rn be nonempty.
(a) For x ∈ Rn, call the subset

P (S, x) := {w ∈ clS| ‖x− w‖ = dist(x, S)}
the metric projection of x onto S.

(b) Let x̄ ∈ clS. The normal cone to S at x̄ is defined by

N(S, x̄) := {y|∃{yj} → y, {xj} → x̄, {tj} ⊂ (0, +∞), {sj} ⊂ Rn

with sj ∈ P (S, xj) and yj = (xj − sj)/tj}.
The normal cone N(S, x̄) is often called the Mordukhovich normal cone or
limiting proximal normal cone. In terms of N(S, x̄), we can obtain a general
characterization of weak sharp local minimality of order m.

Theorem 4 [12]. Let f : Rn → R be finite and constant on a closed set
S ⊂ Rn, and let x̄ ∈ S and m ≥ 1. The following conditions are equivalent:
(a) x̄ is a weak sharp local minimizer of order m for f ;
(b) for all y ∈ N(S, x̄) with ‖y‖ = 1 and for all sequences {xj}, {sj} such

that sj ∈ P (S, xj), xj → x̄, (xj − sj)/ ‖xj − sj‖ → y and

lim inf
j→∞

f(xj)− f(sj)
‖xj − sj‖m−1 ≤ 0,

we have
lim inf
j→∞

f(xj)− f(sj)
‖xj − sj‖m > 0;(3)
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(c) for all y ∈ N(S, x̄) with ‖y‖ = 1 and for all sequences {xj}, {sj} such
that sj ∈ P (S, xj), xj → x̄ and (xj − sj)/ ‖xj − sj‖ → y, inequality (3)
holds.

Theorem 4 gives very general characterizations of weak sharp local minima
of order m for f . However, conditions (b) and (c) are rather difficult for
practical use. More easily verifiable conditions can be developed in terms of
certain generalized directional derivatives of f .

Definition 5. Let S be a nonempty closed subset of Rn, and let f : Rn → R
be finite on bdS. For x ∈ bd S and y ∈ Rn, define

dm
S f(x; y) := lim inf

bd S3s→x
(t,v)→(0+,y)

f(s + tv)− f(s)
tm

.

(In particular, (x, y) is an allowable choice of (s, v).)

Definition 5 gives a sort of generalization of the directional derivative

dmf(x; y) := lim inf
(t,v)→(0+,y)

f(s + tv)− f(s)
tm

which was used in [7] to study strict local minima of order m. Observe that
when S = {x}, then dm

S f(x; y) reduces to dmf(x; y). It is not difficult to give
other examples where these two limits are equal (see [12] for details). In fact,
as we see below, this is a necessary requirement for the next characterization
to be valid.

Definition 6. The contingent cone to a set S ⊂ Rn at x ∈ S is defined by

K(S, x) := {y ∈ Rn|∃{tj} → 0+, ∃{yj} → y such that x + tjyj ∈ S,∀j}.

Theorem 7 [12]. Let f : Rn → R be finite and constant on a closed set
S ⊂ Rn, and let x̄ ∈ bd S. Suppose that

K(S, x̄) ∩N(S, x̄) = {0}(4)
and

dmf(x̄; y) = dm
S f(x̄; y) for all y ∈ N(S, x̄)\{0}.(5)

Then x̄ is a weak sharp local minimizer of order m for f if and only if

dmf(x̄; y) > 0 for all y ∈ N(S, x̄)\{0}.(6)



On weak sharp minima for a special class of ... 199

Condition (6) is much easier to verify than (b) or (c) of Theorem 4. Unfor-
tunately, this characterization is valid only when assumptions (4) and (5)
hold simultaneously. For m = 1, this is difficult to attain even for very
simple nonsmooth functions (see Example 8 below). It is shown in [12] that
(4) holds if S is convex and that (5) (with m = 1) holds if f is strictly
differentiable at x̄. However, the latter assumption is never satisfied if x̄ is
a weak sharp local minimizer of order one for f .

Example 8. Let f : R2 → R be defined by

f(x1, x2) := max{x1, x2,−x2}.

Then f attains a weak sharp minimum of order one at x̄ = (0, 0) with
S = {(x1, 0)|x1 ≤ 0}. We have K(S, x̄) = S and N(S, x̄) = {(y1, y2)|y1 ≥ 0},
hence (4) is satisfied. But (5) does not hold for y = (1, 0) since d1f(x̄; y) = 1,
while d1

Sf(x̄; y) = 0.

3 Finite maxima of differentiable functions

To be able to deal with such situations as in Example 8, we now derive
another characterization of weak sharp local minimizers of order one for
a special class of nonsmooth functions which are defined as finite maxima
of strictly differentiable functions. A similar class (under stronger differen-
tiability assumptions) was considered in [1], where necessary and sufficient
conditions for weak sharp minima of order two were obtained.

We consider the problem of minimizing the function

f(x) := max{fi(x)|i ∈ I},(7)

where I := {1, ..., p} is a finite index set and the functions fi : Rn → R,
i ∈ I, are strictly differentiable. For any x ∈ Rn, define I(x) := {i ∈
I|fi(x) = f(x)}.

Lemma 9. For each x ∈ Rn, there exists ε > 0 such that I(u) ⊂ I(x) for
all u ∈ B(x, ε).

Proof. Let x ∈ Rn. Since fi(x) < f(x) for all i ∈ I\I(x) and the functions
fi and f are continuous, there exists ε > 0 such that fi(u) < f(u) for
all i ∈ I\I(x) and u ∈ B(x, ε). This means that I\I(x) ⊂ I\I(u) for all
u ∈ B(x, ε), which gives the desired conclusion.
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Lemma 10 [4]. Let S be a nonempty subset of Rn and let x ∈ Rn, s ∈ S.
The following conditions are equivalent:

(a) s ∈ P (S, x);
(b) s ∈ P (S, s + λ(x− s)) for all λ ∈ [0, 1].

The following theorem characterizes weak sharp local minimizers of order
one for f .

Theorem 11. Suppose that f is constant on a closed subset S of Rn, and
let x̄ ∈ S. The following conditions are equivalent:

(a) x̄ is a weak sharp local minimizer of order one for f ;
(b) for each y ∈ N(S, x̄) with ‖y‖ = 1, there exists δ > 0 such that, for each

x ∈ B(x̄, δ)\S and s ∈ P (S, x) satisfying

∥∥∥∥
x− s

‖x− s‖ − y

∥∥∥∥ ≤ δ,(8)

there exists i ∈ I(s) such that 〈∇fi(x̄), y〉 > 0.

Proof. (b) =⇒ (a). Suppose that (b) holds. To prove (a), we will verify
condition (c) of Theorem 4 (for m = 1). Let y ∈ N(S, x̄) with ‖y‖ = 1 and
let δ be chosen according to (b). Take any sequences {xj}, {sj} such that
sj ∈ P (S, xj), xj → x̄ and

xj − sj

‖xj − sj‖ → y(9)

(note that (9) implies xj /∈ S). By the definition of P (S, xj), we have
‖xj − sj‖ ≤ ‖xj − x̄‖ which gives sj → x̄. For each j sufficiently large, we
have xj ∈ B(x̄, δ) and ∥∥∥∥∥

xj − sj

‖xj − sj‖ − y

∥∥∥∥∥ ≤ δ,

hence, by our assumption, there exists i(j) ∈ I(sj) such that 〈∇fi(j)(x̄), y〉 >
0. Since fi(j)(sj) = f(sj), we obtain

lim inf
j→∞

f(xj)− f(sj)
‖xj − sj‖ ≥ lim inf

j→∞
fi(j)(xj)− fi(j)(sj)

‖xj − sj‖ .(10)
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Now, observe that all I(sj) are subsets of the same finite set I. Therefore,
we can find a strictly increasing sequence {jk} of positive integers such that
the subsequence {i(jk)} is constant (i.e. i(jk) = i0 for all k) and

lim inf
j→∞

fi(j)(xj)− fi(j)(sj)
‖xj − sj‖ = lim

k→∞
fi0(xjk

)− fi0(sjk
)

‖xjk
− sjk

‖ .(11)

Using (9) – (11) and the strict differentiability of fi0 at x̄, we obtain

lim inf
j→∞

f(xj)− f(sj)
‖xj − sj‖

≥ lim
k→∞

fi0(xjk
)− fi0(sjk

)− 〈∇fi0(x̄), xjk
− sjk

〉
‖xjk

− sjk
‖

+ lim
k→∞

〈
∇fi0(x̄),

xjk
− sjk

‖xjk
− sjk

‖

〉

= lim
(x,s)→(x̄,x̄)

x6=s

fi0(x)− fi0(s)− 〈∇fi0(x̄), x− s〉
‖x− s‖ + 〈∇fi0(x̄), y〉

= 〈∇fi0(x̄), y〉 > 0,

(12)

which means that condition (c) of Theorem 4 is satisfied.
(a) =⇒ (b) (by contraposition). Suppose that (b) does not hold. Then

there exists y ∈ N(S, x̄) with ‖y‖ = 1 such that for each positive integer j,
there exist uj ∈ Rn\S and sj ∈ P (S, uj) satisfying the conditions

uj ∈ B(x̄, 1/j),(13)
∥∥∥∥∥

uj − sj

‖uj − sj‖ − y

∥∥∥∥∥ ≤
1
j

(14)

and

〈∇fi(x̄), y〉 ≤ 0 for all i ∈ I(sj).(15)

Applying Lemma 9 to each sj , we can find λj ∈ (0, 1] so small that, for xj

defined by xj := sj + λj(uj − sj), we have I(xj) ⊂ I(sj). Moreover, the
condition sj ∈ P (S, uj) implies sj ∈ P (S, xj) by Lemma 10. Since x̄ ∈ S
and sj ∈ P (S, uj) it follows that ‖uj − sj‖ ≤ ‖uj − x̄‖. Therefore

‖xj − x̄‖ = ‖sj + λj(uj − sj)− x̄‖
≤ ‖sj − uj‖+ ‖uj − x̄‖+ λj ‖uj − sj‖
= (1 + λj) ‖uj − sj‖+ ‖uj − x̄‖
≤ 3 ‖uj − x̄‖ ≤ 3/j,
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where the last inequality follows from (13). Thus xj → x̄, and by (14),

xj − sj

‖xj − sj‖ =
λj(uj − sj)
‖λj(uj − sj)‖ =

uj − sj

‖uj − sj‖
→

j→∞ y.(16)

For each j, we now choose an arbitrary i(j) ∈ I(xj). Then we also have
i(j) ∈ I(sj), and so

f(xj)− f(sj) = fi(j)(xj)− fi(j)(sj).(17)

As noted in the first part of this proof, we can find a strictly increasing
sequence {jk} such that i(jk) = i0 for all k, and equality (11) holds. Now,
using (11) and (15) – (17), we can repeat the argument of the first part,
replacing the first inequality in (12) by equality. This way we get

lim inf
j→∞

f(xj)− f(sj)
‖xj − sj‖ = 〈∇fi0(x̄), y〉 ≤ 0.

This inequality, together with (16) and the conditions xj → x̄, sj ∈ P (S, xj),
gives a contradiction with condition (c) of Theorem 4. Thus, x̄ is not a weak
sharp local minimizer of order one for f .

Example 12. Consider the function f defined in Example 8. We will show
that condition (b) of Theorem 11 is satisfied at x̄ = (0, 0). Using the notation
f1(x) := x1, f2(x) := x2, f3(x) := −x2, for all x = (x1, x2), we can compute
I(x̄) = {1, 2, 3} and I(s) = {2, 3} for all s ∈ S\{x̄}. Observe that, for each
x ∈ R2, there is a unique point s ∈ P (S, x) given by

s =

{
x̄ if x1 ≥ 0,

(x1, 0) if x1 < 0.
(18)

Now, take any y = (y1, y2) ∈ N(S, x̄) with ‖y‖ = 1. One of the following
situations must occur:
(i) y1 ≥ 0 and y2 > 0. Then 2 ∈ I(s) for all s ∈ S and 〈∇f2(x̄), y〉 =

y2 > 0.
(ii) y1 ≥ 0 and y2 < 0. Then 3 ∈ I(s) for all s ∈ S and 〈∇f3(x̄), y〉 =

−y2 > 0.
(iii) y = (1, 0). Then, for each x ∈ R2 and s ∈ P (S, x), if (x− s)/ ‖x− s‖ is

sufficiently close to y, we have x1 > 0, hence s = x̄ by (18). Therefore,
1 ∈ I(s) and 〈∇f1(x̄), y〉 = 1 > 0.
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The analysis of cases (i) – (iii) shows that the desired condition (b) is always
fulfilled.

The next example shows that (b) in Theorem 11 cannot be replaced by the
simpler condition

max{〈∇fi(x̄), y〉 |i ∈ I(x̄)} > 0 for all y ∈ N(S, x̄)\{0}.(19)

Example 13. Let f : R2 → R be defined by

f(x1, x2) := max{0, x3
1, x

3
2, x1 + x2}.

This function is constant (equal to 0) on the set S := {(x1, x2)|x1 ≤ 0,
x2 ≤ 0}. For x = (x1, x2), define f1(x) := 0, f2(x) := x3

1, f3(x) := x3
2,

f4(x) := x1 + x2. Observe that condition (19) holds at the point x̄ = (0, 0).
Indeed, we have I(x̄) = {1, 2, 3, 4}, N(S, x̄) = {(y1, y2)|y1 ≥ 0, y2 ≥ 0} and
∇f4(x̄) = (1, 1). Hence,

〈∇f4(x̄), (y1, y2)〉 = y1 + y2 > 0

for all (y1, y2) ∈ N(S, x̄)\{(0, 0)}.
However, x̄ is not a weak sharp local minimizer of order one for f . To

see this, consider a point x = (x1, x2) sufficiently close to x̄ and such that
x1 < 0, 0 < x2 < −x1. For such x, we have x3

2 > 0 > x1 + x2, and so
f(x) = f3(x) = x3

2. Suppose that (2) holds for some β > 0 (with C = R2);
then, for x as above, we have

f(x)− f(x̄) = x3
2 ≥ β dist(x, S) = βx2.

Dividing this inequality by x2, and taking the limit as x2 → 0+, we obtain
β ≤ 0 – a contradiction.

4 Smooth problems with constraints

In this section, we apply an argument similar to that of [1, Proposition 6]
to obtain a reformulation of Theorem 11 for the following constrained
nonlinear program:

min{f0(x)|x ∈ C},(20)

where

C := {x ∈ Rn|fi(x) ≤ 0, i = 1, ..., p; fi(x) = 0, i = p + 1, ..., q}.(21)
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To simplify the notation, let I := {1, ..., p} and J := {p+1, ..., q}. We assume
that the functions fi, i ∈ I ∪ J , are continuously differentiable on Rn.

Let S be a closed set of feasible points for (20) – (21) (i.e. S ⊂ C)
such that f0 is constant on S. Suppose that x̄ ∈ S and define I(x̄) := {i ∈
I|fi(x̄) = f(x̄)}. We will need the following constraint qualification to be
satisfied at the given point x̄:

(CQ) For each vector y = (y1, ..., yq) ∈ Rq such that yi = 0 for i ∈ I\I(x̄),
and yi ≥ 0 for i ∈ I(x̄), the following implication holds:

q∑

i=1

yi∇fi(x̄) = 0 =⇒ y = 0.

It can be verified that the well-known Mangasarian-Fromovitz constraint
qualification implies condition (CQ) (see Remark (c) on p. 306 of [8]).

In order to apply the results of Section 3, we define

f(x) := max{f0(x)− f0(x̄), fi(x), |fj(x)| |i ∈ I, j ∈ J}.(22)

Observe that f is constant (actually, equal to 0) on S. Moreover, it can be
represented as a finite maximum of smooth functions as follows:

f(x) := max{f0(x)− f0(x̄), fi(x), fj(x),−fj(x)|i ∈ I, j ∈ J}.(23)

The following proposition clarifies the relationship between weak sharp lo-
cal minima for the constrained problem (20) – (21) and the unconstrained
problem of minimizing f on Rn.

Proposition 14. Let x̄ ∈ S and suppose that condition (CQ) is satisfied
at x̄. The following conditions are equivalent:

(a) x̄ is a weak sharp local minimizer of order one for f , that is, there exist
β > 0 and ε > 0 such that

f(x) ≥ β dist(x, S) for all x ∈ B(x̄, ε).(24)

(b) x̄ is a weak sharp local minimizer of order one for (20) – (21), that is,
there exist β0 > 0 and ε0 > 0 such that

f0(x)− f0(x̄) ≥ β0 dist(x, S) for all x ∈ C ∩B(x̄, ε0).(25)
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Proof. (a) =⇒ (b): Suppose that (24) holds and let x ∈ C ∩B(x̄, ε). Since
x is feasible for (20) – (21), it follows from (22) that

f(x) ≤ max{f0(x)− f0(x̄), 0}.(26)

We claim that (26) can actually be replaced by a stronger condition

f(x) = f0(x)− f0(x̄).(27)

Indeed if x ∈ S, then f0(x) = f0(x̄) by the assumption that f0 is constant
on S. In this case, formula (22) and the feasibility of x imply f(x) = 0, and
so (27) holds. In the case when x /∈ S, we have dist(x, S) > 0. Hence, from
(24) and (26), we deduce f0(x)− f0(x̄) > 0. Using this inequality, (22) and
the feasibility of x, we obtain (27) again. Conditions (24) and (27) mean
that (25) holds for β0 := β and ε0 := ε.

(b) =⇒ (a): Suppose that (25) holds. Since f0 is continuously differen-
tiable we can find ε1 ∈ (0, ε0/2) such that f0 is Lipschitzian of rank L > 0
on B(x̄, ε1). It follows from [9, Theorem 1] (which is a specification of Bor-
wein’s regularity theorem [2, Theorem 3.2(a)]) that, under condition (CQ),
there exist K > 0 and ε2 ∈ (0, ε1) such that

dist(x,C) ≤ K max{f+
i (x), |fj(x)| |i ∈ I, j ∈ J}(28)

for all x ∈ B(x̄, ε2), where f+
i (x) := max{0, fi(x)}. To prove (24), we define

β := β0/(Kβ0 + KL + 1) and ε := ε2. Let x ∈ B(x̄, ε). We consider
separately two cases: (i) x ∈ C and (ii) x /∈ C.

Case (i). From (22) and (25) we get

f(x) ≥ f0(x)− f0(x̄) ≥ β0 dist(x, S) ≥ β dist(x, S).

Case (ii). Since C is closed and nonempty we have P (C, x) 6= ∅. Choose
any u ∈ P (C, x). Because x is not feasible, we have either fi(x) > 0 for
some i ∈ I or |fj(x)| > 0 for some j ∈ J . In both cases, the maximum in
(28) is a positive number which does not change if f+

i (x) are replaced by
fi(x) for all i ∈ I. Therefore, from (28) and (22) we deduce

‖x− u‖ = dist(x,C) ≤ K max{fi(x), |fj(x)| |i ∈ I, j ∈ J} ≤ Kf(x).(29)

We now verify that u ∈ B(x̄, ε0). Indeed, since u ∈ P (C, x) and x̄ ∈ C we
have ‖x− u‖ ≤ ‖x− x̄‖. Hence,

‖u− x̄‖ ≤ ‖u− x‖+ ‖x− x̄‖ ≤ 2 ‖x− x̄‖ ≤ 2ε ≤ ε0.
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This means that (25) may be applied for x = u:

f0(u)− f0(x̄) ≥ β0 dist(u, S).(30)

It is known that the function dist(·, S) is Lipschitzian of rank 1. Using suc-
cessively the Lipschitz condition for dist(·, S), inequality (30), the Lipschitz
condition for f0, and condition (29), we estimate

dist(x, S) ≤ ‖x− u‖+ dist(u, S) ≤ ‖u− x‖+ β−1
0 (f0(u)− f0(x̄))

≤ ‖u− x‖+ β−1
0 (f0(x) + L ‖u− x‖ − f0(x̄))

= (1 + β−1
0 L) ‖u− x‖+ β−1

0 (f0(x)− f0(x̄))

≤ (1 + β−1
0 L)Kf(x) + β−1

0 f(x) = β−1f(x),

which completes the proof of (24) in this case.

Using the representation of f given by (23), we can easily combine Theorem
11 with Proposition 14 to obtain the following result:

Theorem 15. Let S be a closed set of feasible points for (20) – (21) such
that f0 is constant on S. Suppose that (CQ) holds at a given point x̄ ∈ S.
Then the following conditions are equivalent:

(a) x̄ is a weak sharp local minimizer of order one for (20) – (21);
(b) for each y ∈ N(S, x̄) with ‖y‖ = 1, there exists δ > 0 such that, for each

x ∈ B(x̄, δ)\S and s ∈ P (S, x) satisfying

∥∥∥∥
x− s

‖x− s‖ − y

∥∥∥∥ ≤ δ,

we have either 〈∇fi(x̄), y〉 > 0 for some i ∈ {0} ∪ I(x̄) or 〈∇fj(x̄), y〉 6= 0
for some j ∈ J .
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