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Abstract

In this paper we establish an estimation for the rate of pointwise
convergence of the Chlodovsky-Kantorovich polynomials for functions
f locally integrable on the interval [0, 00). In particular, corresponding
estimation for functions f measurable and locally bounded on [0, c0)
is presented, too.
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1. INTRODUCTION

Let f be a function defined on the interval [0,00) and let N = {1,2...}.
The Bernstein-Chlodovsky polynomials C), f of the function f are defined as

=~ (kb x
(1) Cuf(x):=>_f (—”) P <—> for x€[0,b,], neN,

n bn,
k=0
where P, (t) := (})t*(1—¢)" " for t € [0,1] and (by,) is a positive increasing
sequence satisfying the properties
bn

(2) lim b, = oo, lim — =0.
n—oo n—oo N,



54 P. PYcH-TABERSKA

These polynomials were first introduced by I. Chlodovsky in 1937 as a gen-
eralization of the classical Bernstein polynomials

B, f(z) = Zf <§) P, k(2), 0<z<1,
k=0

of functions f defined on the interval [0,1] (see [5] or [8], Chap. II). The
well-known Chlodovsky theorem states that if

(3) lim sup |[f(¢)|exp (—aﬁ) =0  for every a>0,

n—00 0<t<p, bn

then lim, o Cpf(z) = f(x) at every point z of continuity of f. In 1960
J. Albrycht and J. Radecki [1] proved the Voronovskaya-type theorem for
operators (1). Some other approximation properties of the Chlodovsky poly-
nomials can be found e.g. in [3, 7].

For functions f Lebesgue-integrable on the interval [0, 1] the classical
Kantorovich polynomial of order n is defined as

B*f(x)‘—iB F(ac)Z(rH—l)iP (m)/mf(t)dt 0<z<1
n = dz n+1 = rart n,k % ) ~ =~ 1,

where F' is an indefinite integral of f. It is well known that lim,,_,., B} f(z) =
f(x) at any point x of (0,1) where f is the derivative of its indefinite integral
(see e.g. [8], Chap. II).

In this paper we consider the Kantorovich-type modification of the
Chlodovsky operators (1). Namely, assuming that f € Lj,.[0,00), that is f
is locally integrable on [0,00), and denoting

F(z) = /Ozf(t)dt for x>0,

we define the Chlodovsky-Kantorovich polynomial of degree n — 1 as

d
Kn_i1f(x):= @CRF@:)’ n e N.

It is easy to verify that

(k+1)bn

n—1
() Kurf@) =13 Paas (£> / Tfndt, 0<a<by,

b
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(see [3], Section 4).
In order to formulate our first result let us consider those points x €

(0,00) at which
1

5 lim —
(5) hli%h

h
/0 (Fla+ 1) — () dt =0

and let us introduce the pointwise characteristic

(6) wy(0; f) := sup
0<|h|<é

h
%/0 (Fx+4) - f2))dt|, >0,

Clearly, w,(d; f) is a non-decreasing function of § > 0 and lims_,o+ w,(J; f)
= 0 almost everywhere on [0, 00), that is at every point = € (0,00) at which
(5) is satisfied.

Theorem 1. Let f € Ljyc[0,00) and let at a fized point x € (0,00) condition
(5) be fulfilled. Then, for all integers n such that b, > 2x, \/n/b, > 3, we
have

[Kn—1f(x) = f(2)]

2@\ (0T s (a
< ¢(q) <1+T (g) ;k wm(ﬁ7f>

L) (b—”)rﬂ 7))

a” n

where q,r are arbitrary positive integers, c(q) and c(r) are positive numbers
depending only on the indicated parameter q and r, respectively, ¢,(x) =
z(1—35)+ o and [n/by] denotes the greatest integer not greater than n/bs,.

Taking into acount fundamental assumptions (2) and choosing in Theorem
1, g =3, r =2 we easily get

Corollary 1. If f € Lj,.[0,00) and if
bn

lim |f(t)|dt exp <—abﬁ) = for every a >0,

n—oo 0 n
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then

lim K,_1f(z) = f(x) almost everywhere on [0, 00).

Now, let us consider the subclass M;,.[0,00) consisting of all measurable
functions f locally bounded on [0, 00). In this case

wz (03 f) < 0se(fi12(0)) = sup |f(u) = f(v),

u,vElL ()

where 0 < § <z, I,(0) := [x — 0,z + J].

Theorem 2. Let f € Mj,.[0,00) and let at a fixed point x € (0,00) the one-
sided limits f(xz+), f(x—) exist. Then, for all integers n such that b,, > 2z,

V/n/b, >3, we have

Kna f(2) — 3 (Fab) + ()]

4=t [n/bn)

< olq) <1+ @ﬁfq(ﬂc)) (%ﬂ) kzl k"2 osc <g:v§Ix (\%))

Z . nT
’ \/% Mt e (-5 )
b b,
TR M|f($+)—f(x_)|,

where M (bn; f) = supo<y<p,, [f ()], on(z) =2 (1 - %) + 5

ft)— flz+) if t>uz,
(7) 9z(t) =< 0 if t=ux,
fit) = flz—) if 0<t<ux,

q is an arbitrary positive integer, c(q) is a positive constant depending only
on q and c s a positive absolute constant.
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The function g, is continuous at xz. Hence lims_,oy 0sc(gs; I(0)) = 0. Con-
sequently, Theorem 2 yields the following

Corollary 2. If f € Mi,.[0,00) and if at a fixed point x € (0,00) the limits
f(z+), f(x—) exist, then under the Chlodovsky assumption (3), we have

(f (@4) + f(z—)).

DO | —

(8) RILH;O Ky i1f(x)=

Remark. In particular, let us consider the class BVg[0,00) of functions
of bounded variation in the Young sense on the interval [0,00) (for the
definition see e.g. [4, 10]). If f € BV3[0,00), then M(b,; f) < M (M =
const.). The estimation given in Theorem 2 and the relation (8) hold true
at every point x € (0, 00).

2. AUXILIARY RESULTS

We now present certain results which will be used in the proof of our main
theorems. For this, let us introduce the notation: given any fixed x € [0, b,,]
and any non-negative integer g, we will write

k=0
d x
P X).

Moreover, we will use the notation ¢;(p), j = 1,2,..., for positive constants,
not necessarily the same at each occurrence, depending only on the indicated
parameter p.

n

ltingl (@) =)

k=0

kby,

— -z

Lemma 1. Let n € N, z € [0,by,].

O a0 =1 @) =0, mmale) = e (1= ).

(ii) If s€ N, n > 2, then

inas(@) < e1(s) (%”)x <1 _ %) (ac(l =k %”)8_1.
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(iii) If g€ N, ¢ > 2, n > 2, then

q 1,1

el <ea) (%) 0 (1= 2) (o (1- £) 4 22)’

Proof. Formulas (i) follow by easy calculation. Suppose s > 1 and put
y :=x/b,. Then y € [0, 1] and

) = (%) Sk - )Py ()

n
k=0

Applying the known represetation formula for the above sum (see [6], Lemma
3.6 with ¢ = —1) we obtain

2s S
Nan —< > 2/8]8 nyl_ )

where (3; s are real numbers independent of y and bounded uniformly in n.
Now, let us observe that for y € [0, 1] or y € [1 — 1, 1] one has ny(1 —y) <
"Tfl < 1 and

> Bis(ny(1 = )| < ny(1 -y Zw
j=1

Ifye[2,1—1] then (ny(1 - y) ! < -2 <2and

?J))j < (ny(l—y Z‘5J5’ ny(l - )) -

S

< (ny(1—9)* > 2°718;4].

J=1

Consequently, for all y € [0,1] (that is for all = € [0,b,]) we have

2s
) < er(s) (%) a1 =) (L1 = )

with

S
)2 27716l
j=1
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Inequality (ii) follows by taking y = x/b,. The same estimation holds true
for |pin q|(z) with even ¢ (¢ = 2s). If ¢ is odd (¢ = 2s + 1), then

=
I

(:un,Q (x))

by Cauchy-Schwarz inequality, and the proof is complete. [ |

|tnql () < (pin,a5(2))

Lemma 2. If n€ N, 0 <z < by, then

E (1 - E) Kn—lf(l")

(9) kbn

22(——x> "’“(bi)/on_mf(xﬂ)dt'

Proof. By (4) and by partial summation, we find that

(k-‘rl)bn

Ko1f(2) = —Z - k< ) / Ftydt =

n x
= —Pyn | — t)dt
bn bt (bn> 0 f( )
kbn

B () e () [

Putting y = x/b,, and observing that

y(1— ) (Pacroor () — Pacr i(y) = (ﬁ - y> Puxly)

n
for k=1,2,...,n—2 and
y(I —y)n Py 10-1(y) = yPom—1(y) = n(1 = y) Pun(y),

we easily get

kbp,

b£ (1 - bi) Kn—lf(x) - bﬁ (% - b£> Pn,k <b£> On f(t)dt
n n n 0 n n
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Now, it is enough to recall that

< [ kby, z
> <7 - x) P (E) = pna(z) =
k=0

(Lemma 1 (i)). Consequently,

1= @) = 5 3 (=) P () [ st

n
and the proof is complete. [ |

Note that a corresponding representation like in the formula (9) for the
classical Kantorovich polynomials is given in [2].

Lemma 3. If 0 < <z < b, then

T nd?
2 na(g) sren(22)

\kb—"—z\Z(S
n

for alln € N such that b, > 33;”—1.

The proof of Lemma 3 runs as in [1] and is based on the known Chlodovsky
inequality ([8], Theorem 1.5.3)):

Z P, i(t) < 2exp (—zQ) ,
|k—nt|>2z+/nt(1-t)

provided that 0 < ¢ < 1,0 < z < 3,/nt(1 —¢).

Lemma 4. Let 0 < x < b, and let n > 2.
(i) If 0<k<n-—1, then

T 1 b, | by,
Pnfl,k(a) < % \/; m
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(i)
S Pk (%) _ % < 0.82\/5\/%,/%.

E<k<n
mn

Proof. Estimation (i) follows from the result by X.M. Zeng [11] (Theo-
rem 1): if 0 < k <n and y € (0,1), then

1 1
Pralv) = 2 Vny(1—y)

Inequality (ii) is an immediate consequence of the Berry-Esséen Theorem:

1 0.82
E P Sl
n,k(y) 2 < ny(l — y>’

k
nY

O<y<l1

(see e.g., [12], Lemma 2).

3. PROOFS OF THEOREMS

Proof of Theorem 1. In view of Lemma 1 (i) one can write

@ <1 _ 3) @) = %unmm

bn, b,
kbn

" [ kb, T
:b% > <7—x) Pk (%)/0 dtf(x).

oy -y (%o pu (2) [T et - spa
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where A and (2 are the sets of indices k € {0,1,...,n} such that ]% —z| <=z
and % — x > z, respectively.

For the sake of brevity let us introduce the notation: d, = +/b,/n,
m = [\/n/by], wz(3; f) = we(6). Consider the sum ), , and divide the set
A in the following manner: A = U;n:() Aj, where A; are the sets of indices k
such that

Kb

n

0<

x‘<mdn if j=0,

kb
jxdn<‘—n—x <(G+Dad, if j=1,2,...,m—1,
n

kb
mxdn<‘—n—x <z if j=m.
n

In view of definition (6),

D

keA

m—1
< Z Tn,j(x)wa;((j + l)xdn) + Tn,m(x)wa:(x)y
=0

where

n 1
. < =

for j =1,2,...,m. Hence Lemma 1 (iii) yields

c1(q) x
Ty () < jlq(xq) E <1 — E) @%/2(x)
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where @, () = (1 — %) + Qnﬂ. Consequently,

<z (1 _ 1)(1 N Ms@“(w)) mzl wy((j + Dady) | ws()

~ b, by, x4 " : 54 md
keA j=1
Clearly,
w (4 + 1)xd,) mdn 4y, ()
AN el LV S 3qd%_1/ z dt
= J4 2d, 1
m2 €T
< 3qd%_1/ V3) I 3w, <—> ds
1 vs) Vs
m?—1
T
< a@d Y VD ()
2 i
. @ w2
wy(x wy(x
x z < < 39091
(m =1y mi = =) wy(x) < 39dE  w,(x)
Hence
q/2 m2—1
x x on () 1 q-3 x
< —(1-— )1+ ——= | d! k el —= -
%_cg<q>bn< b)( + ) : l;(f) we (2

(11)
Now, let us consider the sum ), o in formula (10). Given any positive
integer r, we have

n kb,, r+2 T
S < g |2 a R () 150
keQ ke "
n kb,, r+l T bn
b | e p () [ @l

IN

a2l (@) | £ ()

n b . 1/2
g [ O G aa(w) (ZPW <b_>> |

ke
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Applying Lemmas 1 and 3 we then get

<2 (1-7) (%)”2 Gl (@)

ke r
r_ 1
eq(r) o x bp\2 2 bn /2 bn nx
—(1-=) (= — t)|dt —— ).
P (1) (%) s e [ o e (- g
This gives the desired conclusion when combined with (10) and (11). ]

Proof of Theorem 2. Let f € M,.[0,00) and let the limits f(z+), f(z—)
exist at a fixed point « > 0. Consider the function g, defined by (7). It is
easily seen that

- LI o S 1)
+ () - LTI 5,0,

where sgn, (t) = sgn(t — x), 0,(t) = 1 if t = x, 0,(¢t) = 0 otherwise (see e.g.
[9]). Hence

flzt) + f(z—)

Kn—lf(m) - 2
- fl@+) — flz—)
r+) — flx—
= Kp—19:() + 5 Kp—1sgn,(z).
The function g, is continuous at = and g,(x) = 0. So, K,_19.(z) =

K1 gz(x) — g2 (x) can be estimated as in the proof of Theorem 1. Namely,
using formula (10) in which f is replaced by g, and observing that

Wy (05 92) < 0sc(gy; [:(0)) for 0<d<z

we get the estimation for |Zke A| as in (11) with w, (ﬁ) replaced by
osc (gx; 1, (i>> Indeed, we estimate the sum » _, , as follows:

VE

2n kb, 2 T

E < — : E — = —
> b%M(bnaf)k€Q< n .’E) Pn,k <bn>’

ke




RATES OF CONVERGENCE OF CHLODOVSKY-KANTOROVICH ... 65

where M (byn; f) = supg<i<yp, |f(t)]. Next, the Cauchy-Schwarz inequality
and Lemmas 1, 3 lead to

Z < 2M(bn7f) e ))1/2 <2exp (_%>>1/2

kEQ "

<o <1_%> ﬁs@}ﬂ( M <bn,f>exp( ;f)

where c¢ is an absolute positive constant. Consequently,

’Kn 19z(w ’ <
( A ) ) !
1+ <—n> (VEk)T > osc <gx;Ix (—))
= vk
e\ st oL (x bn,f)eXp( gbx)

where ¢ is arbitrary positive integer, ¢(q) is a positive constant depending
only on ¢ and c is an absolute constant.

Now it is enough to estimate the term K,,_isgn,(z). Choose the integer
I such that z € [Lb,, H1b,). Tt is clear that

Knlsgnz($)zzpn1k( > ZPnlk( )

k>l k<l

n T l b,
—P,_ — —b, ——2
+E, (b) ( Lyt )

I+1
2y P, M( >—1+2Pn1,l<b£>bﬁ<%bn—x>.

k>1
1 x
+ 2]anl,l <_>
bn,

(i) -

k>l

Therefore,

| K1 sgn,(z)] < 2
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by Lemma 4. Combining the above estimations for |K,_1g,(x)| and
| Kp—1sgn,(z)| with (12) we obtain the desired conclusion. Thus the proof
of Theorem 2 is complete. [ |
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