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Abstract

In this paper we establish an estimation for the rate of pointwise
convergence of the Chlodovsky-Kantorovich polynomials for functions
f locally integrable on the interval [0,∞). In particular, corresponding
estimation for functions f measurable and locally bounded on [0,∞)
is presented, too.
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1. Introduction

Let f be a function defined on the interval [0,∞) and let N = {1, 2 . . .}.
The Bernstein-Chlodovsky polynomials Cnf of the function f are defined as

Cnf(x) :=
n
∑

k=0

f

(

kbn

n

)

Pn,k

(

x

bn

)

for x ∈ [0, bn], n ∈ N,(1)

where Pn,k(t) :=
(

n
k

)

tk(1−t)n−k for t ∈ [0, 1] and (bn) is a positive increasing
sequence satisfying the properties

lim
n→∞

bn = ∞, lim
n→∞

bn

n
= 0.(2)
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These polynomials were first introduced by I. Chlodovsky in 1937 as a gen-
eralization of the classical Bernstein polynomials

Bnf(x) :=

n
∑

k=0

f

(

k

n

)

Pn,k(x), 0 ≤ x ≤ 1,

of functions f defined on the interval [0, 1] (see [5] or [8], Chap. II). The
well-known Chlodovsky theorem states that if

lim
n→∞

sup
0≤t≤bn

|f(t)| exp

(

−α
n

bn

)

= 0 for every α > 0,(3)

then limn→∞ Cnf(x) = f(x) at every point x of continuity of f . In 1960
J. Albrycht and J. Radecki [1] proved the Voronovskaya-type theorem for
operators (1). Some other approximation properties of the Chlodovsky poly-
nomials can be found e.g. in [3, 7].

For functions f Lebesgue-integrable on the interval [0, 1] the classical
Kantorovich polynomial of order n is defined as

B?
nf(x) :=

d

dx
Bn+1F (x) ≡ (n + 1)

n
∑

k=0

Pn,k(x)

∫ k+1
n+1

k
n+1

f(t)dt, 0 ≤ x ≤ 1,

where F is an indefinite integral of f . It is well known that limn→∞ B?
nf(x) =

f(x) at any point x of (0, 1) where f is the derivative of its indefinite integral
(see e.g. [8], Chap. II).

In this paper we consider the Kantorovich-type modification of the
Chlodovsky operators (1). Namely, assuming that f ∈ Lloc[0,∞), that is f
is locally integrable on [0,∞), and denoting

F (x) =

∫ x

0
f(t)dt for x > 0,

we define the Chlodovsky-Kantorovich polynomial of degree n − 1 as

Kn−1f(x) :=
d

dx
CnF (x), n ∈ N.

It is easy to verify that

Kn−1f(x) =
n

bn

n−1
∑

k=0

Pn−1,k

(

x

bn

)
∫

(k+1)bn
n

kbn
n

f(t)dt, 0 ≤ x ≤ bn,(4)
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(see [3], Section 4).
In order to formulate our first result let us consider those points x ∈

(0,∞) at which

lim
h→0

1

h

∫ h

0
(f(x + t) − f(x)) dt = 0(5)

and let us introduce the pointwise characteristic

wx(δ; f) := sup
0<|h|≤δ

∣

∣

∣

∣

1

h

∫ h

0
(f(x + t) − f(x)) dt

∣

∣

∣

∣

, δ > 0.(6)

Clearly, wx(δ; f) is a non-decreasing function of δ > 0 and limδ→0+ wx(δ; f)
= 0 almost everywhere on [0,∞), that is at every point x ∈ (0,∞) at which
(5) is satisfied.

Theorem 1. Let f ∈ Lloc[0,∞) and let at a fixed point x ∈ (0,∞) condition

(5) be fulfilled. Then, for all integers n such that bn > 2x,
√

n/bn ≥ 3, we

have

|Kn−1f(x) − f(x)|

≤ c(q)

(

1 +
ϕ

q/2
n (x)

xq

)

(

bn

n

)
q−1
2

[n/bn]
∑

k=1

k
q−3
2 wx

(

x√
k
; f

)

+
c(r)

xr
ϕr/2

n (x)

(

bn

n

)r/2

|f(x)|

+
c(r)

xr

√

bn

x(bn − x)
ϕr/2

n (x)

(

bn

n

)
r−1
2
∫ bn

0
|f(t)|dt exp

(

− nx

8bn

)

,

where q, r are arbitrary positive integers, c(q) and c(r) are positive numbers

depending only on the indicated parameter q and r, respectively, ϕn(x) =
x(1− x

bn
)+ bn

n and [n/bn] denotes the greatest integer not greater than n/bn.

Taking into acount fundamental assumptions (2) and choosing in Theorem
1, q = 3, r = 2 we easily get

Corollary 1. If f ∈ Lloc[0,∞) and if

lim
n→∞

∫ bn

0
|f(t)|dt exp

(

−α
n

bn

)

= 0 for every α > 0,
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then

lim
n→∞

Kn−1f(x) = f(x) almost everywhere on [0,∞).

Now, let us consider the subclass Mloc[0,∞) consisting of all measurable
functions f locally bounded on [0,∞). In this case

wx(δ; f) ≤ osc(f ; Ix(δ)) ≡ sup
u,v∈Ix(δ)

|f(u) − f(v)|,

where 0 ≤ δ ≤ x, Ix(δ) := [x − δ, x + δ].

Theorem 2. Let f ∈ Mloc[0,∞) and let at a fixed point x ∈ (0,∞) the one-

sided limits f(x+), f(x−) exist. Then, for all integers n such that bn > 2x,
√

n/bn ≥ 3, we have

|Kn−1f(x) − 1

2
(f(x+) + f(x−)) |

≤ c(q)

(

1 +
ϕ

q/2
n (x)

xq

)

(

bn

n

)
q−1
2

[n/bn]
∑

k=1

k
q−3
2 osc

(

gx; Ix

(

x√
k

))

+ c

√

bn

x(bn − x)
ϕ1/2

n (x)M(bn; f) exp

(

− nx

8bn

)

+ 2

√

bn

n

√

bn

x(bn − x)
|f(x+) − f(x−)|,

where M(bn; f) = sup0≤t≤bn
|f(t)|, ϕn(x) = x

(

1 − x
bn

)

+ bn

n ,

gx(t) :=











f(t) − f(x+) if t > x,

0 if t = x,

f(t) − f(x−) if 0 ≤ t < x,

(7)

q is an arbitrary positive integer, c(q) is a positive constant depending only

on q and c is a positive absolute constant.
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The function gx is continuous at x. Hence limδ→0+ osc(gx; Ix(δ)) = 0. Con-
sequently, Theorem 2 yields the following

Corollary 2. If f ∈ Mloc[0,∞) and if at a fixed point x ∈ (0,∞) the limits

f(x+), f(x−) exist, then under the Chlodovsky assumption (3), we have

lim
n→∞

Kn−1f(x) =
1

2
(f(x+) + f(x−)) .(8)

Remark. In particular, let us consider the class BVΦ[0,∞) of functions
of bounded variation in the Young sense on the interval [0,∞) (for the
definition see e.g. [4, 10]). If f ∈ BVΦ[0,∞), then M(bn; f) ≤ M (M =
const.). The estimation given in Theorem 2 and the relation (8) hold true
at every point x ∈ (0,∞).

2. Auxiliary results

We now present certain results which will be used in the proof of our main
theorems. For this, let us introduce the notation: given any fixed x ∈ [0, bn]
and any non-negative integer q, we will write

µn,q(x) :=

n
∑

k=0

(

kbn

n
− x

)q

Pn,k

(

x

bn

)

,

|µn,q|(x) :=
n
∑

k=0

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

q

Pn,k

(

x

bn

)

.

Moreover, we will use the notation cj(p), j = 1, 2, . . . , for positive constants,
not necessarily the same at each occurrence, depending only on the indicated
parameter p.

Lemma 1. Let n ∈ N , x ∈ [0, bn].

(i) µn,0(x) = 1, µn,1(x) = 0, µn,2(x) =
bn

n
x

(

1 − x

bn

)

.

(ii) If s ∈ N , n ≥ 2, then

µn,2s(x) ≤ c1(s)

(

bn

n

)s

x

(

1 − x

bn

)(

x(1 − x

bn
) +

bn

n

)s−1

.
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(iii) If q ∈ N , q ≥ 2, n ≥ 2, then

|µn,q|(x) ≤ c2(q)

(

bn

n

)
q

2

x

(

1 − x

bn

)(

x

(

1 − x

bn

)

+
bn

n

)
q

2
−1

.

Proof. Formulas (i) follow by easy calculation. Suppose s > 1 and put
y := x/bn. Then y ∈ [0, 1] and

µn,2s(x) =

(

bn

n

)2s n
∑

k=0

(k − ny)2sPn,k(y).

Applying the known represetation formula for the above sum (see [6], Lemma
3.6 with c = −1) we obtain

µn,2s(x) =

(

bn

n

)2s s
∑

j=1

βj,s (ny(1 − y))j ,

where βj,s are real numbers independent of y and bounded uniformly in n.
Now, let us observe that for y ∈ [0, 1

n ] or y ∈ [1 − 1
n , 1] one has ny(1 − y) ≤

n−1
n < 1 and

∣

∣

∣

∣

s
∑

j=1

βj,s(ny(1 − y))j

∣

∣

∣

∣

≤ ny(1 − y)

s
∑

j=1

|βj,s|.

If y ∈
[

1
n , 1 − 1

n

]

then (ny(1 − y))−1 ≤ n
n−1 ≤ 2 and

∣

∣

∣

∣

s
∑

j=1

βj,s(ny(1 − y))j

∣

∣

∣

∣

≤ (ny(1 − y))s
s
∑

j=1

|βj,s| (ny(1 − y))j−s

≤ (ny(1 − y))s
s
∑

j=1

2s−j|βj,s|.

Consequently, for all y ∈ [0, 1] (that is for all x ∈ [0, bn]) we have

µn,2s(x) ≤ c1(s)

(

bn

n

)2s

ny(1 − y) (1 + ny(1 − y))s−1

with

c1(s) ≥
s
∑

j=1

2s−j|βj,s|.
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Inequality (ii) follows by taking y = x/bn. The same estimation holds true
for |µn,q|(x) with even q (q = 2s). If q is odd (q = 2s + 1), then

|µn,q|(x) ≤ (µn,4s(x))
1
2 (µn,2(x))

1
2

by Cauchy-Schwarz inequality, and the proof is complete.

Lemma 2. If n ∈ N, 0 < x < bn, then

x

bn

(

1 − x

bn

)

Kn−1f(x)

=
n

b2
n

n
∑

k=0

(

kbn

n
− x

)

Pn,k

(

x

bn

)∫ kbn
n

−x

0
f(x + t)dt.

(9)

Proof. By (4) and by partial summation, we find that

Kn−1f(x) =
n

bn

n−1
∑

k=0

Pn−1,k

(

x

bn

)∫
(k+1)

n
bn

kbn
n

f(t)dt =

=
n

bn
Pn−1,n−1

(

x

bn

)∫ bn

0
f(t)dt

+
n

bn

n−1
∑

k=1

(

Pn−1,k−1

(

x

bn

)

− Pn−1,k

(

x

bn

))∫ kbn
n

0
f(t)dt.

Putting y = x/bn and observing that

y(1 − y) (Pn−1,k−1(y) − Pn−1,k(y)) =

(

k

n
− y

)

Pn,k(y)

for k = 1, 2, . . . , n − 2 and

y(1 − y)nPn−1,n−1(y) = yPn,n−1(y) = n(1 − y)Pn,n(y),

we easily get

x

bn

(

1 − x

bn

)

Kn−1f(x) =
n

bn

n
∑

k=0

(

k

n
− x

bn

)

Pn,k

(

x

bn

)
∫ kbn

n

0
f(t)dt.
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Now, it is enough to recall that

n
∑

k=0

(

kbn

n
− x

)

Pn,k

(

x

bn

)

= µn,1(x) = 0

(Lemma 1 (i)). Consequently,

x

bn
(1 − x

bn
)Kn−1f(x) =

n

b2
n

n
∑

k=0

(

kbn

n
− x

)

Pn,k

(

x

bn

)∫ kbn
n

x
f(t)dt

and the proof is complete.

Note that a corresponding representation like in the formula (9) for the
classical Kantorovich polynomials is given in [2].

Lemma 3. If 0 < δ ≤ x < bn then

∑

| kbn
n

−x|≥δ

Pn,k

(

x

bn

)

≤ 2 exp

(

− nδ2

4xbn

)

for all n ∈ N such that bn ≥ 3x2

3x−δ .

The proof of Lemma 3 runs as in [1] and is based on the known Chlodovsky
inequality ([8], Theorem 1.5.3)):

∑

|k−nt|≥2z
√

nt(1−t)

Pn,k(t) ≤ 2 exp
(

−z2
)

,

provided that 0 ≤ t ≤ 1, 0 ≤ z ≤ 3
2

√

nt(1 − t).

Lemma 4. Let 0 < x < bn and let n ≥ 2.

(i) If 0 ≤ k ≤ n − 1, then

Pn−1,k(
x

bn
) ≤ 1√

e

√

bn

n

√

bn

x(bn − x)
.
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(ii)
∣

∣

∣

∣

∣

∣

∑

nx
bn

<k≤n

Pn−1,k

(

x

bn

)

− 1

2

∣

∣

∣

∣

∣

∣

≤ 0.82
√

2

√

bn

n

√

bn

x(bn − x)
.

Proof. Estimation (i) follows from the result by X.M. Zeng [11] (Theo-
rem 1): if 0 ≤ k ≤ n and y ∈ (0, 1), then

Pn,k(y) ≤ 1√
2e

1
√

ny(1 − y)
.

Inequality (ii) is an immediate consequence of the Berry-Esséen Theorem:

∣

∣

∣

∣

∣

∣

∣

∑

k
n

>y

Pn,k(y) − 1

2

∣

∣

∣

∣

∣

∣

∣

<
0.82

√

ny(1 − y)
, 0 < y < 1

(see e.g., [12], Lemma 2).

3. Proofs of theorems

Proof of Theorem 1. In view of Lemma 1 (i) one can write

x

bn

(

1 − x

bn

)

f(x) =
n

b2
n

µn,2(x)f(x)

=
n

b2
n

n
∑

k=0

(

kbn

n
− x

)

Pn,k

(

x

bn

)∫ kbn
n

−x

0
dtf(x).

The above identity and the representation (9) lead to

x

bn

(

1 − x

bn

)

(Kn−1f(x) − f(x))

=
n

b2
n

n
∑

k=0

(

kbn

n
− x

)

Pn,k

(

x

bn

)
∫ kbn

n
−x

0
(f(x + t) − f(x)) dt

≡
∑

k∈Λ

+
∑

k∈Ω

,

(10)
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where Λ and Ω are the sets of indices k ∈ {0, 1, . . . , n} such that | kbn

n −x| ≤ x

and kbn

n − x > x, respectively.

For the sake of brevity let us introduce the notation: dn =
√

bn/n,
m = [

√

n/bn], wx(δ; f) = wx(δ). Consider the sum
∑

k∈Λ and divide the set
Λ in the following manner: Λ =

⋃m
j=0 Λj , where Λj are the sets of indices k

such that

0 ≤
∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

≤ xdn if j = 0,

jxdn <

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

≤ (j + 1)xdn if j = 1, 2, . . . ,m − 1,

mxdn <

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

≤ x if j = m.

In view of definition (6),

∣

∣

∣

∣

∣

∑

k∈Λ

∣

∣

∣

∣

∣

≤
m−1
∑

j=0

Tn,j(x)wx((j + 1)xdn) + Tn,m(x)wx(x),

where

Tn,j(x) :=
n

b2
n

∑

k∈Λj

(

kbn

n
− x

)2

Pn,k

(

x

bn

)

.

From Lemma 1 (i) one has

Tn,0(x) ≤ n

b2
n

µn,2(x) =
x

bn

(

1 − x

bn

)

.

Next, given any positive integer q, we have

Tn,j(x) ≤ n

b2
n

1

(jxdn)q

n
∑

k=0

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

q+2

Pn,k

(

x

bn

)

for j = 1, 2, . . . ,m. Hence Lemma 1 (iii) yields

Tn,j(x) ≤ c1(q)

jqxq

x

bn

(

1 − x

bn

)

ϕq/2
n (x)
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where ϕn(x) = x
(

1 − x
bn

)

+ bn

n . Consequently,

∣

∣

∣

∣

∣

∑

k∈Λ

∣

∣

∣

∣

∣

≤ x

bn

(

1 − x

bn

)(

1 +
c1(q)

xq
ϕq/2

n (x)

)





m−1
∑

j=1

wx((j + 1)xdn)

jq
+

wx(x)

mq



.

Clearly,

m−2
∑

j=1

wx((j + 1)xdn)

jq
≤ 3qdq−1

n

∫ mdn

2dn

wx(xt)

tq
dt

≤ 3qdq−1
n

∫ m2

1
(
√

s)q−3wx

(

x√
s

)

ds

≤ c2(q)d
q−1
n

m2−1
∑

k=1

(
√

k + 1)q−3wx

(

x√
k

)

and
wx(x)

(m − 1)q
+

wx(x)

mq
≤ 2

(m − 1)q
wx(x) ≤ 3qdq−1

n wx(x).

Hence

∣

∣

∣

∣

∣

∑

k∈Λ

∣

∣

∣

∣

∣

≤ c3(q)
x

bn

(

1 − x

bn

)

(

1 +
ϕ

q/2
n (x)

xq

)

dq−1
n

m2−1
∑

k=1

(√
k
)q−3

wx

(

x√
k

)

.

(11)

Now, let us consider the sum
∑

k∈Ω in formula (10). Given any positive
integer r, we have

∣

∣

∣

∣

∣

∑

k∈Ω

∣

∣

∣

∣

∣

≤ n

b2
nxr

∑

k∈Ω

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

r+2

Pn,k

(

x

bn

)

|f(x)|

+
n

b2
nxr

∑

k∈Ω

∣

∣

∣

∣

kbn

n
− x

∣

∣

∣

∣

r+1

Pn,k

(

x

bn

)
∫ bn

0
|f(t)|dt

≤ n

b2
nxr

|µn,r+2|(x) |f(x)|

+
n

b2
nxr

∫ bn

0
|f(t)|dt (µn,2r+2(x))1/2

(

∑

k∈Ω

Pn,k

(

x

bn

)

)1/2

.
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Applying Lemmas 1 and 3 we then get
∣

∣

∣

∣

∣

∑

k∈Ω

∣

∣

∣

∣

∣

≤ c4(r)

xr

x

bn

(

1 − x

bn

)(

bn

n

)r/2

ϕr/2
n (x)|f(x)|

+
c4(r)

xr

x

bn

(

1 − x

bn

)(

bn

n

)
r
2
− 1

2

√

bn

x(bn − x)
ϕr/2

n (x)

∫ bn

0
|f(t)|dt exp

(

− nx

8bn

)

.

This gives the desired conclusion when combined with (10) and (11).

Proof of Theorem 2. Let f ∈ Mloc[0,∞) and let the limits f(x+), f(x−)
exist at a fixed point x > 0. Consider the function gx defined by (7). It is
easily seen that

f(t) − f(x+) + f(x−)

2
= gx(t) +

f(x+) − f(x−)

2
sgnx(t)

+

(

f(x) − f(x+) + f(x−)

2

)

δx(t),

where sgnx(t) = sgn(t − x), δx(t) = 1 if t = x, δx(t) = 0 otherwise (see e.g.
[9]). Hence

Kn−1f(x) − f(x+) + f(x−)

2

= Kn−1 gx(x) +
f(x+) − f(x−)

2
Kn−1 sgnx(x).

(12)

The function gx is continuous at x and gx(x) = 0. So, Kn−1 gx(x) =
Kn−1 gx(x)− gx(x) can be estimated as in the proof of Theorem 1. Namely,
using formula (10) in which f is replaced by gx and observing that

wx(δ; gx) ≤ osc (gx; Ix(δ)) for 0 < δ ≤ x

we get the estimation for
∣

∣

∑

k∈Λ

∣

∣ as in (11) with wx

(

x√
k

)

replaced by

osc
(

gx; Ix

(

x√
k

))

. Indeed, we estimate the sum
∑

k∈Ω as follows:

∣

∣

∣

∣

∣

∑

k∈Ω

∣

∣

∣

∣

∣

≤ 2n

b2
n

M(bn; f)
∑

k∈Ω

(

kbn

n
− x

)2

Pn,k

(

x

bn

)

,
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where M(bn; f) = sup0≤t≤bn
|f(t)|. Next, the Cauchy-Schwarz inequality

and Lemmas 1, 3 lead to
∣

∣

∣

∣

∣

∑

k∈Ω

∣

∣

∣

∣

∣

≤ 2M(bn; f)
n

b2
n

(µn,4(x))1/2

(

2 exp

(

− nx

4bn

))1/2

≤ c
x

bn

(

1 − x

bn

)

√

bn

x(bn − x)
ϕ1/2

n (x)M(bn; f) exp

(

− nx

8bn

)

,

where c is an absolute positive constant. Consequently,

|Kn−1gx(x)| ≤

≤ c(q)

(

1 +
ϕ

q/2
n (x)

xq

)

(

bn

n

)
q−1
2

[n/bn]
∑

k=1

(
√

k)q−3osc

(

gx; Ix

(

x√
k

))

+ c

√

bn

x(bn − x)
ϕ1/2

n (x)M(bn; f) exp

(

− nx

8bn

)

,

where q is arbitrary positive integer, c(q) is a positive constant depending
only on q and c is an absolute constant.

Now it is enough to estimate the term Kn−1sgnx(x). Choose the integer
l such that x ∈ [ l

nbn, l+1
n bn). It is clear that

Kn−1sgnx(x) =
∑

k>l

Pn−1,k

(

x

bn

)

−
∑

k<l

Pn−1,k

(

x

bn

)

+
n

bn
Pn−1,l

(

x

bn

)(

2
l

n
bn +

bn

n
− 2x

)

= 2
∑

k>l

Pn−1,k

(

x

bn

)

− 1 + 2Pn−1,l

(

x

bn

)

n

bn

(

l + 1

n
bn − x

)

.

Therefore,

|Kn−1 sgnx(x)| ≤ 2

∣

∣

∣

∣

∣

∑

k>l

Pn−1,k

(

x

bn

)

− 1

2

∣

∣

∣

∣

∣

+ 2Pn−1,l

(

x

bn

)

≤ 4

√

bn

n

√

bn

x(bn − x)
,
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by Lemma 4. Combining the above estimations for |Kn−1gx(x)| and
|Kn−1sgnx(x)| with (12) we obtain the desired conclusion. Thus the proof
of Theorem 2 is complete.

References

[1] J. Albrycht and J. Radecki, On a generalization of the theorem of

Voronovskaya, Zeszyty Naukowe UAM, Zeszyt 2, Poznań (1960), 1–7.
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