
Discussiones Mathematicae 19
Differential Inclusions, Control and Optimization 29 (2009 ) 19–42

FOURIER-LIKE METHODS FOR EQUATIONS

WITH SEPARABLE VARIABLES

Danuta Przeworska-Rolewicz

Institute of Mathematics

Polish Academy of Sciences
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Abstract

It is well known that a power of a right invertible operator is again
right invertible, as well as a polynomial in a right invertible opera-
tor under appropriate assumptions. However, a linear combination
of right invertible operators (in particular, their sum and/or differ-
ence) in general is not right invertible. It will be shown how to solve
equations with linear combinations of right invertible operators in com-
mutative algebras using properties of logarithmic and antilogarithmic
mappings. The used method is, in a sense, a kind of the variables
separation method. We shall obtain also an analogue of the classical
Fourier method for partial differential equations. Note that the results
concerning the Fourier method are proved under weaker assumptions
than these obtained in [6] (cf. also [7, 8, 11]).
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1. Preliminaries. Basic notions of Algebraic Analysis

We recall here the following notions and theorems (without proofs; cf.
[7, 8]). Denote by N, N0, R, C, Z, Q the sets of positive integers, nonnega-
tive integers, reals, complexes, integers and rational numbers, respectively,
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and by F any field of scalars. If F is a field of numbers, then is denoted by
F[t] the set of all polynomials in t with coefficients in F.

Let X be a linear space (in general, without any topology) over a field
F of scalars of the characteristic zero.

• L(X) is the set of all linear operators with domains and ranges in X;

• dom A is the domain of an A ∈ L(X);

• ker A = {x ∈ dom A : Ax = 0} is the kernel of an A ∈ L(X);

• L0(X) = {A ∈ L(X) : dom A = X};

• I(X) is the set of all invertible elements in X.

An operator D ∈ L(X) is said to be right invertible if there is an operator
R ∈ L0(X) such that RX ⊂ dom D and DR = I, where I denotes the
identity operator. The operator R is called a right inverse of D. By R(X)
we denote the set of all right invertible operators in L(X). Let D ∈ R(X).
Let RD ⊂ L0(X) be the set of all right inverses for D, i.e., DR = I whenever
R ∈ RD. We have dom D = RX ⊕ kerD, independently of the choice of
an R ∈ RD. Elements of kerD are said to be constants, since by definition,
Dz = 0 if and only if z ∈ ker D. The kernel of D is said to be the space

of constants. We should point out that, in general, constants are different
than scalars, since they are elements of the space X. If two right inverses
commute with each other, then they are equal.

Clearly, if kerD 6= {0}, then the operator D is right invertible, but
not invertible. Here the invertibility of an operator A ∈ L(X) means that
the equation Ax = y has a unique solution for every y ∈ X. An element
y ∈ dom D is said to be a primitive for an x ∈ X if y = Rx for an R ∈ RD.
Indeed, by definition, x = DRx = Dy. Again, by definition, all x ∈ X have
primitives. Let

FD = {F ∈ L0(X) : F 2 = F ;FX = ker D and ∃R∈RD
FR = 0}.

Any F ∈ FD is said to be an initial operator for D corresponding to R. One
can prove that any projection F ′ onto ker D is an initial operator for D
corresponding to a right inverse R′ = R − F ′R independently of the choice
of an R ∈ RD.

If two initial operators commute with each other, then they are equal.
Thus this theory is essentially noncommutative. An operator F is initial
for D if and only if there is an R ∈ RD such that

(1.1) F = I − RD on dom D.
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It is enough to know one right inverse in order to determine all right inverses
and all initial operators. Note that a superposition of a finite number of right
invertible operators is again a right invertible operator.

The equation Dx = y (y ∈ X) has the general solution x = Ry + z,
where R ∈ RD is arbitrarily fixed and z ∈ ker D is arbitrary. However, if
we take an initial condition: Fx = x0, where F ∈ FD and x0 ∈ kerD, then
this equation has a unique solution x = Rx + x0.

If T ∈ L(X) belongs to the set Λ(X) of all left invertible operators,
then ker T = {0}. If D is invertible, i.e., D ∈ I(X) = R(X) ∩ Λ(X), then
FD = {0} and RD = {D−1}.

If P (t) ∈ F[t] then all solutions of the equation P (D)x = y, y ∈ X, can
be obtained by a decomposition of the rational function 1/P (t) into vulgar
fractions. Write

vFA = {λ ∈ F \ {0} : I − λA is invertible} for A ∈ L(X).

Clearly, λ ∈ vFA if and only if 1/λ is a regular value of A. Let V (X) be the
set of all Volterra operators, i.e.,

V (X) = {A ∈ L0(X) : A − λI is invertible for all λ ∈ F \ {0}}.

Then A ∈ V (X) if and only if vFA = F \ {0}.
If X is an algebra over F with a D ∈ L(X) such that x, y ∈ dom D

implies xy, yx ∈ dom D, then we say that X is a D-algebra and we write
D ∈ A(X). If X is a commutative algebra then A(X) is denoted by A(X).
Let D ∈ A(X) and

(1.2) fD(x, y) = D(xy) − cD[xDy + (Dx)y] for x, y ∈ dom D,

where cD is a scalar dependent on D only. Clearly, fD is a bilinear (i.e.,
linear in each variable) form which is symmetric when X is commutative,
i.e. when D ∈ A(X). This form is called a non-Leibniz component (cf. [7]).
If D ∈ A(X) then the product rule in X can be written as follows:

D(xy) = cD[xDy + (Dx)y] + fD(x, y) for x, y ∈ dom D.

If D ∈ A(X) and if D satisfies the Leibniz condition:

(1.3) D(xy) = xDy + (Dx)y for x, y ∈ dom D,
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then X is said to be a Leibniz algebra. It means that in Leibniz algebras
cD = 1 and fD = 0. The Leibniz condition implies that xy ∈ dom D
whenever x, y ∈ dom D, i.e., Leibniz algebras are D-algebras. If X is a
Leibniz algebra with unit e then e ∈ ker D, i.e., D is not left invertible. The
set of commutative Leibniz D-algebras X with a D ∈ R(X) and with unit
e ∈ dom D is denoted by L(D). Clearly, if X ∈ L(D) then e ∈ ker D.

Non-Leibniz components for powers of D ∈ A(X) are determined by
recurrence formulae (cf. [7, 8]).

Suppose that D ∈ A(X) and λ 6= 0 is an arbitrarily fixed scalar. Then
λD ∈ A(X) and cλD = cD, fλD = λfD.

If D1, D2 ∈ A(X), the superposition D = D1D2 exists and D1D2 ∈
A(X), then

(1.4) cD1D2
= cD1

cD2
and for x, y ∈ dom D = dom D1 ∩ D2

fD1D2
(x, y) = fD1

(x, y) + D1fD2
(x, y) + +cD1

cD2
[(D1x)D2y + (D2x)D1y].

For higher powers of D in Leibniz algebras, by an easy induction from For-
mulae (1.4) and the Leibniz condition, we obtain the Leibniz formula:

(1.5) Dn(xy) =

n∑

k=0

(
n

k

)
(Dkx)Dn−ky for x, y ∈ dom Dn (n ∈ N).

Let X ∈ A(X). We denote by M(X) the set of all multiplicative mappings
(not necessarily linear) with domains and ranges in X:

M(X) = {A : A(xy) = (Ax)(Ay) whenever x, y ∈ dom A ⊂ X}.

Suppose that X ∈ A(X) and D ∈ R(X). An initial operator F for D is
said to be almost averaging if F (zx) = zFx whenever z ∈ ker D, x ∈ X.
Clearly, every multiplicative operator F ∈ FD is almost averaging for
F (zx) = (Fz)(Fx) = zFx if z ∈ ker D, x ∈ X, but not conversely (cf.
[7]). If X is a D-algebra such that dim ker D=1 and e ∈ ker D then all
initial operators for D are almost averaging.

Suppose that D ∈ A(X). Let a multifunction Ω : dom D −→ 2dom D

be defined as follows:

Ωu = {x ∈ dom D : Du = uDx} for u ∈ dom D \ {0}.
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The equation

Du = uDx for (u, x) ∈ graph Ω

is said to be the basic equation. Clearly,

Ω−1x = {u ∈ dom D : Du = uDx} for x ∈ dom D.

The multifunction Ω is well-defined and dom Ω ⊃ ker D \ {0}.
Suppose that (u, x) ∈ graph Ω, L is a selector of Ω and E is a selector

of Ω−1. By definitions, Lu ∈ dom Ω−1, Ex ∈ dom Ω and the following
equations are satisfied:

Du = uDLu, DEx = (Ex)Dx.

Any invertible selector L of Ω is said to be a logarithmic mapping and its
inverse E = L−1 is said to be an antilogarithmic mapping. By G[Ω] we
denote the set of all pairs (L,E), where L is an invertible selector of Ω
and E = L−1. For any (u, x) ∈ dom Ω and (L,E) ∈ G[Ω] elements Lu,
Ex are said to be logarithm of u and antilogarithm of x, respectively. The
multifunction Ω is examined in [8] (also for noncommutative algebras).

Clearly, by definition, for all (L,E) ∈ G[Ω], (u, x) ∈ graph Ω we have

(1.6) ELu = u, LEx = x; DEx = (Ex)Dx, Du = uDLu.

A logarithm of zero is not defined. If (L,E) ∈ G[Ω] then L(ker D \ {0}) ⊂
ker D, E(ker D) ⊂ ker D. In particular, E(0) ∈ ker D.

If D ∈ R(X) then logarithms and antilogarithms are uniquely deter-
mined up to a constant. Moreover, if F ∈ FD then FE = EF , FL = LF
(cf. [15]).

Let D ∈ A(X) and let (L,E) ∈ G[Ω]. A logarithmic mapping L is said
to be of the exponential type if L(uv) = Lu + Lv for u, v ∈ dom Ω. If L is
of the exponential type then E(x + y) = (Ex)(Ey) for x, y ∈ dom Ω−1. We
have proved that a logarithmic mapping L is of the exponential type if and
only if X is a Leibniz commutative algebra (cf. [8]). Moreover, Le = 0, i.e.,
E(0) = e. In Leibniz commutative algebras with D ∈ R(X) a necessary and
sufficient conditions for u ∈ dom Ω is that u ∈ I(X) (cf. [8]).

By Lg(D) we denote the class of these commutative algebras with D ∈
R(X) and with unit e ∈ dom Ω for which there exist invertible selectors
of Ω, i.e., there exist (L,E) ∈ G[Ω]. By L(D) we denote the class of these
commutative Leibniz algebras with unit e ∈ dom Ω for which there exist
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invertible selectors of Ω. By these definitions, X ∈ Lg(D) is a Leibniz
algebra if and only if X ∈ L(D) and D ∈ R(X). This class we shall denote
by L(D). It means that L(D) is the class of these commutative Leibniz
algebras with D ∈ R(X) and with unit e ∈ dom Ω for which there exist
invertible selectors of Ω, i.e., there exist (L,E) ∈ G[Ω].

In the same manner we define logarithmic and antilogarithmic mappings
of higher order. Namely, let n ∈ N be arbitrarily fixed. Suppose that
D ∈ A(X). Let a multifunction Ωn : dom Dn −→ 2dom Dn

be defined as
follows:

(1.7) Ωnu = {x ∈ dom Dn : Dnu = uDnx} for u ∈ dom Dn.

Any invertible selector Ln of Ωn is said to be a logarithmic mapping of the

order n and its inverse En = L−1
n is said to be an antilogarithmic mapping

of the order n. By G[Ωn] we denote the set of all pairs (Ln, En), where Ln

is an invertible selector of Ωn and En = L−1
n . For any (u, x) ∈ dom Ωn and

(Ln, En) ∈ G[Ωn] elements Lnu, Enx are said to be logarithm of the order n
of u and antilogarithm of the order n of x, respectively. The multifunctions
Ωn and relations between them are examined in [8]. Clearly, if X ∈ Lg(D)
then X ∈ Lg(Dn) for all n ∈ N.

If ker D = {0}, then either X is not a Leibniz algebra or X has no unit
(cf. [8]). Thus, by our definition, if X ∈ L(D), then kerD 6= {0}, i.e., the
operator D is right invertible but not invertible.

2. Linear combinations of right invertible operators

We begin with

Proposition 2.1. Suppose that n, r1, . . . , rn ∈ N,

(2.1) X ∈
n⋂

j=1

L(Dj),

D =

n∑

j=1

αjD
rj

j , αj ∈ X (j = 1, . . . , n), dom D =

n⋂

j=1

dom D
rj

j 6= ∅,

(2.2)

(L
(j)
rj , E

(j)
rj ) ∈ G[Ω

(j)
rj ], where Ω

(j)
rj is induced by D

rj

j (j = 1, . . . , n),
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(2.3) x =

n∏

k=1

uk, where uk ∈ ker Dk ∩ I(X) (k = 1, . . . , n).

Then

(2.4) Dx = ax, where a =

n∑

j=1

αjaj,

(2.5) aj = D
rj

j L(j)
rj

ũj and ũj =
n∏

k=1, k 6=j

uk (j = 1, . . . , n),

i.e., ũj, uj ũj = x ∈ I(X) (j = 1, . . . , n).

Proof. Since, by our assumptions, the operators D1,. . . ,Dn satisfy the
Leibniz condition and D1u1 = ... Dnun = 0, from the Leibniz Formula (1.5)
we get

Dm
j x = Dm

j

( n∏

k=1

uk

)
=

m∑

l=0

(
m

l

)
(Dl

juj)(D
m−l
j ũj) = ujD

m
j ũj

for j = 1, . . . , n. Thus

Dx =

( n∑

j=1

αjD
rj

j

) n∏

k=1

uk

=

n∑

j=1

αjujD
rj

j

n∏

k=1, k 6=j

uk

=

( n∏

k=1

uk

) n∑

j=1

αj

( n∏

k=1, k 6=j

u−1
k

)
D

rj

j

( n∏

k=1, k 6=j

uk

)

= x

n∑

j=1

αj ũ
−1
j D

rj

j ũj = x

n∑

j=1

αjD
rj

j L(j)
rj

ũj = x

n∑

j=1

αjaj = xa.

Proposition 2.2. Suppose that all assumptions of Proposition 2.1 are satis-

fied. Then there are Rj ∈ RDj
such that R

rj

j aj ∈ dom (Ω
(j)
rj )−1 (j = 1, . . . , n)

and

(2.6) ũj = E(j)
rj

(R
rj

j aj) (j = 1, . . . , n).
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Proof. By our assumptions, aj = D
rj

j L
(j)
rj ũj for j = 1, . . . , n. Hence there

are Rj ∈ RDj
such that L

(j)
rj ũj = R

rj

j aj (cf. [8]), i.e., ũj = E
(j)
rj L

(j)
rj ũj =

E
(j)
rj (R

rj

j aj).

Proposition 2.3. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and r1 = . . . = rn = 1. Then the operator D defined by (2.2) satisfies

the Leibniz condition.

Proof. Let x, y ∈ dom D. Clearly, x, y ∈ dom D whenever
x, y ∈

⋂n
j=1 dom Dj . Since D1, . . . , Dn satisfy the Leibniz condition, we get

D(xy) =
n∑

j=1

αjDj(xy) =
n∑

j=1

αj(xDjy + yDjx) =

= x
n∑

j=1

αjDjy + y
n∑

j=1

αjDjx = xDy + yDx.

Proposition 2.4. Suppose that all assumptions of Proposition 2.1 are sat-

isfied. Let

(2.7) Un =

{ n∏

k=1

uk : uk ∈ kerDk ∩ I(X) (k = 1, . . . , n)

}
(n ∈ N).

Then selectors L of the multifunction Ω induced by D satisfy the equality

DLx = a for x ∈ Un.

Proof. By Equation (2.4), we have Dx = ax, where x ∈ I(X). Thus, by
definition, DLx = x−1Dx = a for any selector L of Ω.

Propositions 2.3 and 2.4 imply

Corollary 2.1. Suppose that all assumptions of Proposition 2.1 are satis-

fied. If r1 = . . . = rn = 1 and Un ∈ Lg(D), then Un ∈ L(D).

Proposition 2.5. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and a = 0. Then there are Rj ∈ RDj
such that R

rj

j aj ∈ dom (Ω
(j)
rj )−1

(j = 1, . . . , n) and

(2.8) x =
1

n

n∑

j=1

uj ũj =
1

n

n∑

j=1

ujE
(j)
rj

(R
rj

j aj) ∈ kerD,
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where uj ∈ kerDj ∩ I(X) (j = 1, . . . , n).

Proof. By our assumptions and Proposition 2.1, Dx = ax = 0 and x =
uj ũj (j = 1, . . . , n). Hence x = 1

n

∑n
j=1 ujũj . This, and Proposition 2.2

together imply (2.8).

Proposition 2.6. Suppose that all assumptions of Proposition 2.1 are sat-

isfied and a ∈ I(X). Then the equation

(2.9) Dx = y, y ∈ X

has a solution

(2.10) x = y

( n∑

j=1

αjD
rj

j L(j)
rj

ũj

)−1

.

Proof. By our assumptions, ax = Dx = y. Since a ∈ I(X), we get
x = a−1y. Propositions 2.1 and 2.2 together imply that

x = a−1y = y

( n∑

j=1

αjaj

)−1

= y

( n∑

j=1

αjD
rj

j L(j)
rj

ũj

)−1

.

Corollary 2.2. Suppose that all assumptions of Proposition 2.1 are sat-
isfied, r1 = . . . = rn = 1 and a ∈ I(X). Then the equation (2.9) has a
solution

(2.11) x = y

( n∑

j=1

αjDj

n∑

k=1, k 6=j

L
(j)
1 uk

)−1

.

Proof. Proposition 2.6 and the Leibniz condition together imply that

x = y

( n∑

j=1

αjDjL
(j)
1

n∏

k=1, k 6=j

uk

)−1

= y

( n∑

j=1

αjDj

n∑

k=1, k 6=j

L
(j)
1 uk

)−1

.

Some more generalized approaches to problems with linear combinations of
right invertible operators of order one on vectors fields and magnifolds have
been given by Virsik [17] and Multarzyński [3, 4].
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3. Trigonometric elements and mappings

We shall show now an approach to the trigonometric identity in Leibniz D-
algebras with unit e (but not necessarily with logarithms). Clearly, without
additional assumptions we cannot expect too much.

Proposition 3.1. Suppose that X ∈ L(D), x ∈ dom D2 and x, Dx are not

zero divisors. If x2 + (Dx)2 = e, then

(3.1) αx + βDx ∈ ker (D2 + I) whenever α, β ∈ F.

Proof. Let y = −Dx. Then Dy = −D2x and

0=De=D[x2+(Dx)2] = 2xDx+2(Dx)D2x = 2(Dx)(x+D2x) = 2y(x−Dy).

Since y = −Dx is not a zero divisor, we have x − 2y = 0. Hence Dy = x
and y = −Dx = −D2y, which implies y ∈ ker (D2 + I). On the other hand,
x = Dy = −D2x, which implies x ∈ ker (D2 + I).

Proposition 3.2. Suppose that all assumptions of Proposition 3.1 are sat-

isfied. If Condition (3.1) holds for x and Dx and u = x2 + (Dx)2, then

u ∈ kerD.

Proof. Let u = x2 + (Dx)2. Then Du = 2xDx+2(Dx)D2x = 2(Dx)(x +
Dx) = 2(Dx)(D2 + I)x = 0, which implies u ∈ kerD.

Corollary 3.1. Suppose that all assumptions of Proposition 3.1 are sat-

isfied, Condition (3.1) holds for x and Dx, F ∈ FD ∩ M(X), Fx = e,
FDx = 0 and u = x2 + (Dx)2. Then u = e, i.e., x2 + (Dx) = e.

Proof. Since F is a multiplicative initial operator and Fx = e, FDx = 0,
we find u = F [x2 + (Dx)2] = (Fx)2 + (FDx)2 = e2 + 0 = e.

Proposition 3.3. Suppose that all assumptions of Proposition 3.1 and

Condition (3.1) are satisfied, F ∈ FD ∩M(X) and Fx = e. Then FDx = 0.

Proof. By our assumptions, e = Fe = F [x2 + (Dx)2]=(Fx)2 + (FDx)2 =
e + (FDx)2, which implies (FDx)2 = 0. Hence FDx = 0.
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Proposition 3.4. Suppose that all assumptions of Proposition 3.1 are sat-

isfied. If x± ∈ ker (D ± iI) and x = 1
2(x+ + x−), y = 1

2i
(x+ − x−), then

(i) x, y ∈ ker (D2 + I), Dx = −y, Dy = x and 1
2(x ± y) ∈ ker (D2 ∓ iI);

(ii) x2 + y2 = x+x− ∈ ker D.

Proof. Points (i) is proved by checking. In order to prove (ii), observe
that, by the Leibniz condition and our assumptions,

D(x+x−) = x+Dx− + x−Dx+ = ix+x− − ix+x− = 0.

Observe that x± are eigenvectors of the operator D corresponding to the
eigenvalues ∓i, respectively.

Here and in the sequel we assume that F is an algebraically closed field
of scalars. For instance, F = C. The following results are slightly stronger
(with some proofs slightly simpler than in [7]):

Definition 3.1. Let X be a linear space over F. If λ ∈ F is an eigenvalue
of an operator D ∈ R(X), then every eigenvector xλ corresponding to λ is
said to be an exponential element (shortly: an exponential). �

This means that xλ is an exponential if and only if xλ 6= 0 and xλ ∈
ker(D − λI).

Proposition 3.5. Let X be a linear space (over F). Suppose that D ∈
R(X). If 0 6= xλ ∈ ker(I − λR) for an R ∈ RD and a λ ∈ F, then xλ ∈
ker(D − λI), i.e., xλ is an exponential.

Proof. By our assumption, (D−λI)xλ=(D−λDR)xλ = D(I −λR)xλ=0.

By an easy induction we get

Proposition 3.6. Suppose that X is a linear space (over F), D ∈ R(X) and

{λn} ⊂ F is a sequence of eigenvalues such that λi 6= λj for i 6= j. Then for

an arbitrary n ∈ N the exponentials xλ1
, . . . , xλn

are linearly independent.

Proposition 3.7. Suppose that X is a linear space (over F), D ∈ R(X),
F is an initial operator for D corresponding to an R ∈ RD and xλ is an

exponential. Then xλ is an eigenvector for R corresponding to the eigenvalue

1/λ if and only if Fxλ = 0, i.e., if R is not a Volterra operator.
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Proof. Sufficiency. Since Dxλ = λxλ and Fxλ = 0, we get xλ = xλ −
Fxλ = (I −F )xλ = RDxλ = λRxλ. Hence xλ ∈ ker(I − λR). Since xλ 6= 0,
we conclude that xλ is an eigenvector for R corresponding to 1/λ.

Necessity. Suppose that 1/λ is an eigenvalue of R and the corresponding
eigenvector xλ is an exponential. Then Fxλ = (I −RD)xλ = (I − λR)xλ =
−λ(R − 1

λ
I)xλ = 0.

Theorem 3.1. Suppose that X is a linear space (over F), D ∈ R(X),
ker D 6= {0}, R ∈ RD and λ ∈ vFR. Then

(i) λ is an eigenvalue of D and the corresponding exponential is

(3.2) xλ = eλ(z), where eλ = (I − λR)−1, z ∈ ker D;

whenever eλ = (I −λR)−1 exists, is said to be an exponential operator;

(ii) the dimension of the eigenspace Xλ corresponding to the eigenvalue λ
is equal to the dimension of the space of constants, i.e., dim Xλ =
dimker D 6= 0;

(iii) if λ 6= 0, then there exist non-trivial exponentials: eλ(z) 6= 0;

(iv) exponentials are uniquely determined by their initial values, i.e., if F
is an initial operator for D corresponding to R, then F [eλ(z)] = z;

(v) if R is a Volterra operator, then every λ ∈ F is an eigenvalue of D,

i.e., for every λ ∈ F there exist exponentials.

Proof. (i) By definition, (I − λR)eλ(z) = (I − λR)(I − λR)−1z = z,
where z ∈ ker D. Thus eλ(z) = z + λReλ(z), which implies Deλ(z) =
Dz + λDReλ(z)=λeλ(z).

(ii) Since by our assumptions, the operator eλ = I−λR is invertible, dim
Xλ=dim {eλ(z) : z ∈ kerD}=dim {(I − λR)−1z : kerD}=dim ker D 6= 0.

(iii) If λ 6= 0 and eλ(z) = (I − λR)−1z = 0 then z = (I − λR)eλ(z) = 0,
This contradicts our assumption that kerD 6= {0}.

(iv) By definitions and (i), we have Feλ(z) = (I −RD)eλ(z) = (I −λR)
eλ(z) = z.

(v) If R ∈ V (X) then vFR = F \ {0}. Clearly, for λ = 0 the operator
I −λR is also invertible. Hence, by (i), every scalar λ is an eigenvalue of D.

Definition 3.2. Let F = C. Suppose that X is a linear space (over C,
D ∈ R(X), kerD 6= {0} and R ∈ RD ∩ V (X). Then the operators
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(3.3) cλ =
1

2
(eλi + e−λi), sλ =

1

2i
(eλi − e−λi) (λ ∈ R)

are said to be cosine and sine operators, respectively (or: trigonometric

operators). Elements cλ(z), sλ(z), where z ∈ ker D, are said to be cosine

and sine elements, respectively (or: trigonometric elements). �

Theorem 3.2. Suppose that all assumptions of Definition 3.2 are satisfied.

Then

(3.4) cλ = (I + λ2R2)−1, sλ = λR(I + λ2R2)−1 (λ ∈ R)

(3.5) Dcλ = −λsλ, Dsλ = λcλ (λ ∈ R)

(3.6) c0(z) = z, s0(z) = 0, F sλ(z) = 0 for z ∈ kerD, λ ∈ R.

Moreover, whenever z ∈ kerD, λ ∈ R, the element cλ(z) is even with respect

to λ and the element sλ is odd with respect to λ.

Proof. By the first Formula of (3.4), for λ ∈ R we get

cλ =
1

2

[
(I − λiR)−1 + (I + λiR)−1

]

=
1

2
(I − λiR)−1(I + λiR)−1(I + λiR + I − λiR)

=
1

2
(I + λ2R2)−12I = (I + λ2R2)−1.

A similar proof for sλ. By definitions, if λ ∈ R, then

Dcλ =
1

2
D(eλi + e−λi) =

1

2
(λieλi + λie−λi)

=
1

2
λi(eλi + e−λi) = −

λ

2i
(eλi + e−λi) = −λsλ.

Since DR = I, we have Dsλ = λDR(I + λ2R2)−1 = λ(I + λ2R2)−1 = λcλ.
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Let z ∈ ker D. Let λ = 0. Then c0(z) = z, s0(z) = 0. Since FR = 0, for
every λ ∈ R we have Fsλ(z) = λFR(I + λ2R2)−1 = 0. Let z ∈ kerD. Then

c−λ(z) = [I + (−λ)2R2)−1](z) = (I + λ2R2)−1z = cλ(z);

s−λ(z) = −λR[I + (−λ)2R2)−1](z) = −λR(I + λ2R2)−1z = −sλ(z).

Consider now trigonometric elements in algebras. It is easy to verify

Proposition 3.6. Suppose that D ∈ A(X) ∩ R(X), ker D 6= {0} and

R ∈ RD ∩ V (X). Then

(3.6) [cλ(z)]2 + [sλ(z)]2 = eλi(z)e−λi(z) for all z ∈ ker D, λ ∈ R.

(3.7) D[eλi(z)e−λi(z)] = cDz+fD(eλi(z), e−λiz) for all z ∈ ker D, λ ∈ R.

Corollary 3.2. Suppose that X is a Leibniz D-algebra, ker D 6= {0} and

R ∈ RD ∩ V (X). Then

(3.8) D[eλi(z)e−λi(z)] = z for all z ∈ ker D, λ ∈ R,

Proof. Since X is a Leibniz D-algebra, we have cD=1 and fD = 0. Hence
Formulae (3.6) and (3.7) imply (3.8).

An immediate consequence of Corollary 3.2 is

Corollary 3.3. Suppose that X is a Leibniz D-algebra, ker D 6= {0} and

R ∈ RD ∩ V (X). Then the Trigonometric Identity holds, i.e.,

(3.9) [cλ(z)]2 + [sλ(z)]2 = z for all z ∈ kerD, λ ∈ R.

Proposition 3.7 (cf. [8]). Suppose that X ∈ Lg(D), λg = Re ∈ dom Ω−1

for every R ∈ RD and λ ∈ vFR. Then there are (L,E) ∈ G[Ω] such that

E(λg) = (I − λR)−1z = eλz ∈ ker(D − λI) for all z ∈ ker D.

Proof. Let R ∈ RD be fixed. Elements of the form u = eλz = (I−λR)−1z
are well-defined for all z ∈ ker D and (D − λI)u = D(I − λR)u = Dz = 0.
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Moreover, Du = λu = uλe = uλDRe = uD(λg), which implies that λg ∈
dom Ω−1 and there are (L,E) ∈ G[Ω] such that eλ = u = E(λg).

Definition 3.3 (cf. [8]). Suppose that F = C, X ∈ Lg(D) and E1 =
dom Ω−1 is symmetric, i.e., −x ∈ E1 whenever x ∈ E1. Let (L,E) ∈ G[Ω].
Write

(3.10) Cx =
1

2
[E(ix)+E(−ix)], Sx =

1

2i
[E(ix)−E(−ix)] for ix ∈ E1.

The mappings C and S are said to be cosine and sine mappings or trigono-

metric mappings. Elements Cx and Sx are said to be cosine and sine

elements or trigonometric elements. �

Clearly, trigonometric mappings and elements have such properties as the
classical cosine and sine functions. Namely, we have (proofs can be found
in [8]):

Proposition 3.8 (cf. [8]). Suppose that all assumptions of Definition 3.3
are satisfied. Let (L,E) ∈ G[Ω]. Then trigonometric mappings C and S are

well-defined for all ix ∈ E1 and have the following properties:

(i) The de Moivre formulae hold:

E(ix) = Cx + iSx, E(−ix) = Cx − iSx for ix ∈ E1.

In particular, if X is a commutative Leibniz algebra then

(3.11) (Cx + iSx)n = C(nx) + iS(nx) for ix ∈ E1 and n ∈ N;

(ii) C and S are even and odd functions of their argument, respectively, i.e.,

C(−x) = Cx, S(−x) = −Sx for ix ∈ E1 and C(0) = z ∈ ker D \ {0},
S(0) = 0. In particular, for all ix ∈ E1

(3.12) (Cx)2 + (Sx)2 =
1

2
[E(ix)E(−ix) + E(ix)E(ix)].

(iii) The mappings C ′, S′ defined as follows: C ′x = C(x+z), S ′x = S(x+z)
for ix ∈ E0, z ∈ ker D also satisfy assertions (i)–(ii).

(iv) For all ix ∈ dom Ω−1
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(3.13) (Cx)2 + (Sx)2 = E(ix)(E(−ix);

(3.14) DCx = −(Sx)Dx, DSx = (Cx)Dx.

Corollary 3.4 (cf. [8]). Suppose that all assumptions of Proposition 3.8 are

satisfied and X is a Leibniz D-algebra with unit e. Then the Trigonometric

Identity holds, i.e.,

(3.15) (Cx)2 + (Sx)2 = e whenever ix ∈ E1.

The following question arises: Do non-Leibniz algebras with the Trigono-
metric Identity (3.15) exist? The answer to this question is negative, i.e.,
non-Leibniz algebras with the Trigonometric Identity (3.15) do not exist (cf.
[11]). In other words: The Leibniz condition is necessary and sufficient for
the Trigonometric Identity to hold.

In order to apply trigonometric mappings, we shall make use of the
following condition:

[C]n F = C, n ∈ N is arbitrarily fixed, X ∈ Lg(Dn), Ω1 = Ω
and dom Ω−1

n is symmetric, i.e., −x ∈ dom Ωn whenever x ∈ dom Ωn.

Suppose now that Condition [C]2 holds and X ∈ L(D). Suppose that
λ ∈ C, R ∈ RD, g = Re and λig ∈ dom Ω1. If (L1, E1) ∈ G[Ω1] and
(L2, E2) ∈ G[Ω2] then

(3.16)

ker(D2 + λ2I) = {z1E(λig) + z2E(−λig) : z1, z2 ∈ kerD}

= {zC(λg) + z̃S(λg) : z, z̃ ∈ ker D}

= {(z′′g + z′)E2(
λ2g2

2
) : z′, z′′ ∈ kerD}.

The assumption that λi,−λi ∈ vCR ensures that λig,−λig ∈ dom Ω−1
1 . In

this case, −λ2 ∈ vCR2.
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4. Fourier-like problems for right invertible operators

We will apply properties of trigonomeric mappings and elements in order to
find non-trivial solutions of some homogeneous initial and boundary value
problems for difference of two right invertible operators (of the first and
second order).

Proposition 4.1. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1∩ ker D2

= Ce = {λe}λ∈C. Suppose that x = uv, where u ∈ ker D2, v ∈ ker D1.

Then

(4.1) (D2 − D2
1)x = u(D2 + λ2I)v − v(D2

1 + λ2I)v for all λ ∈ C {0}.

Proof. By our assumptions, D2u = 0, D1v = 0 and both operators D1,
D2 satisfy the Leibniz condition. This and Leibniz Formula (1.5) together
imply that

(D2 − D2
1)x = (D2 − D2

1)(uv) = D2(uv) − D2
1(uv)

= uD2v + vD2u − uD2
1v − 2(D1u)(D1v) − vD2

1u = uD2v − vD2
1u

= u(D2v + λ2v) − λ2uv − vD1u = u(D2 + λ2I)v − v(D2
1 + λ2I)u.

Proposition 4.1 immediately implies

Corollary 4.1. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1∩ ker D2 =
Ce = {λe}λ∈C. Suppose that x = uv, where u ∈ ker D2, v ∈ ker D1. Then

(D2 − D2
1)x = 0 if and only if u(D2 + λ2I)v − v(D2

1 + λ2I)v = 0 for all

λ ∈ C {0}.

Corollary 4.2. Let X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1∩ ker D2 =
Ce = {λe}λ∈C and x = uv, where u ∈ ker D2, v ∈ ker D1. Then

(D2 − D2
1)x = 0 if and only if u ∈ I(ker D2), v ∈ I(ker D1) and there

is a λ ∈ C \ {0} such that

(4.2) u−1D2
1u = vD2v = −λ2e.

Proof. Equalities (4.2) hold if and only if (D2
1+λ2I)u = 0, (D2+λ2I)v = 0.

This, and Corollary 4.1 together imply that (D2 − D2
1)x = 0 if and only if

Equalities (4.2) hold.
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Theorem 4.1. Suppose that X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1 ∩
ker D2 = Ce = {λe}λ∈C and almost averaging F0, F1 ∈ FD1

, F2 ∈ FD2

correspond to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively. Suppose, moreover,

that x = uv, where u ∈ I(ker D2), v ∈ I(ker D1) and there is a λ ∈
vCR0 such that Equalities (4.2) hold and a u such that F1u=0. Then the

homogeneous initial value problem

(4.3) (D2 − D2
1)x = 0,

with the homogeneous boundary condition

(4.4) F0x = 0, F1x = 0

and with the homogeneous initial condition

(4.5) F2x = 0

is ill posed, since it has a non-trivial solution x = uv, where v is an eigen-

vector of R2 corresponding to the eigenvalue -λ2.

Proof. By Corollary 4.3, elements u, v are invertible by our assumption,
hence they are not zero divisors and x = uv is a non-trivial solution of the
equation (D2 − D2

1)x = 0. Since λ ∈ vCR0, Equalities (4.2) imply that v ∈
ker (D2 +λ2I) = ker D2(I +λ2I)R2, i.e., v = −λ−2R2, u ∈ ker (D2

1 +λ2I).
Since F0R0 = 0, we have F0u = 0. Since u ∈ ker D2, v ∈ ker D1 and initial
operators F0, F1, F2 are almost averaging, we find F0x = F0(uv) = vF0u = 0,
F1(uv) = vF1u = 0, F2x = F2(uv) = uF2v = u(−λ−2)F2R2v = 0 (for
F2R2 = 0).

Theorems 4.1 and 3.2 together imply

Corollary 4.3. Suppose that X ∈ L(Di), ker Di 6= {0}, i = 1, 2, ker D1 ∩
ker D2 = Ce = {λe}λ∈C and almost averaging F0, F1 ∈ FD1

, F2 ∈ FD2
cor-

respond to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively. Suppose, moreover, that

x = uv, where u ∈ I(ker D2), v ∈ I(ker D1) and there are a λ ∈ vCR0 such

that Equalities (4.2) hold and a z0 ∈ ker D1 such that F1u = F1sλ(z0) = 0.
Then the initial value problem (4.3)–(4.5) is ill posed and its non-trivial so-

lution is x = uv, where u = sλ(z0), sλ = λR0(λ
2I + R2

0), F1u = 0 for a

z0 ∈ ker D1, v is an eigenvector of R2 corresponding to the eigenvalue-λ2.
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Theorem 4.2. Suppose that X ∈ L(D1)∩L (D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

S(1) is a sine mapping induced by E
(1)
1 , F0, F1, F2 are almost averaging initial

operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively, g1 = R0e,

there exists a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1, S(1)(λg1) ∈

ker D2 and F1S
(1)(λg1) = 0. Then the initial value problem (4.3)–(4.5) is ill-

posed and its non-trivial solution is x = uv, where u = S (1)(λg1) ∈ ker D2,

v ∈ kerD1 is an eigenvector of R2 corresponding to the eigenvalue −λ2, i.e.,

0 6= v ∈ ker(I + λ2R2).

Proof. Let x = uv. Then, by our assumptions, (D2 + λ2I)v = D2(I +
λ2R2)v = 0. Since both operators D1 and D2 satisfy the Leibniz condition
and u ∈ kerD2, we can apply Corollary 4.1 in a similar way, as before. Since

F0, F1, F2 are almost averaging and F0E
(j)
1 (±iλg1) = e (cf. [8]), we find

F0x = F0(uv) = vF0u = vF0S
(1)(λg1) = v

1

2i
F0

[
E(1)(iλg1) − E(1)(−iλg1)

]

=
1

2i
v

[
F0E

(1)(iλg1) − F0E
(1)(−iλg1)

]
=

1

2i
v(e − e) = 0;

F1x = F1(uv) = vF1u = vF1S
(1)(λg1) = 0;

F2x = F2(uv) = uF2v = uF2(−λ2R2v) = −λ2uF2R2v = 0.

Theorem 4.3. Suppose that X ∈ L(D1)∩L (D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

C(1) is a cosine mapping induced by E
(1)
1 , F0, F1, F2 are almost averaging

initial operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

, respectively,

g1 = R0e, there exist a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1,

C(1)(λg1) ∈ ker D2 and F0C
(1)(λg1) = 0. Then the initial value problem

(4.3), (4.4),

(4.6) F1Dx = 0

is ill-posed and its non-trivial solution is x = uv, where u = C (1)(λg1) ∈
ker D2, v is an eigenvector of R2 corresponding to the eigenvalue −λ2, i.e.,

0 6= v ∈ ker(I + λ2R2).



38 D. Przeworska-Rolewicz

Proof. Let x = uv. Then, by our assumptions, u ∈ kerD2, DC(1)(λg1) =
−λS(1)(λg1). Thus, in a similar manner as in the proof of Theorem 4.1, we
prove that (D2 − D2

1)x = 0, F0x = 0, F2x = 0. Condition F1x = 0 follows
from the fact that (as before) F1 is almost averaging, hence F1x = vF1u =
vF1C

(1)(λg1)=
1
λ
vF1DS(1)(λ) = 0.

Corollary 4.4. Suppose that all assumptions of Theorem 4.2 are satisfied

and F1 = F0, hence also R1 = R0. Then equation (4.3) has a non-trivial

solution x = uv, where u = C (1)(λg1) ∈ kerD2, v is an eigenvector of R2

corresponding to the eigenvalue −λ2. This solution satisfies the homogeneous

initial conditions

(4.7) F0x = 0, F0Dx = 0, F2x = 0.

Hence the problem (4.3), (4.7) is ill-posed.

Theorem 4.4. Suppose that X ∈ L(D1)∩L (D2). Condition [C]2 is satisfied

with respect to the multifunction Ω
(2)
1 induced by D2, (L

(2)
1 , E

(2)
1 ) ∈ G[Ω

(2)
1 ],

S(2), C(2) are sine and cosine mappings induced by E
(2)
1 , F0, F1, F2 are al-

most averaging initial operators corresponding to R0, R1 ∈ RD1
, R2 ∈ RD2

,

respectively, g2 = R2e, there exist a λ such that iλ ∈ vCR2, −λ2g2 ∈

dom (Ω
(2)
1 )−1, z0, z1 ∈ ker D1, z2 ∈ kerD2 ∩ I(X) and

(4.8) u = z0S
(2)(λg2) + z1C

(2)(λg2) ∈ I(X).

If v = z2E
(2)
1 (−λ2g2) ∈ kerD1 then x = uv ∈ I(X) is a non-trivial solution

of Equation (4.3).

Proof. By the Leibniz condition, v = z2E
(2)
1 (−λ2g2) ∈ I(X). Then

(D2 + λ2I)v = D2[z2E
(2)
1 (−λ2g2) + λ2v]

= −λ2z2E
(2)
1 (−λg2)D2R2e + λ2v = −λ2v + λ2v = 0.

By Formulae (3.16), u ∈ ker(D2
2 +λ2I). In a similar manner, as in the proof

of Corollary 4.1, we get

(D1 − D2
2)x = (D1 − D2

2)(uv) = uD2v − vD2
1u = u(−λ2v) − u(−λ2v) = 0.
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Theorem 4.5. Suppose that X ∈ L(D1)∩L (D2), Condition [C]2 is satisfied

with respect to the multifunctions Ω
(i)
1 induced by Di, (L

(i)
1 , E

(i)
1 ) ∈ G[Ω

(i)
1 ],

S(i) are sine mappings induced by E
(i)
1 (i = 1, 2), F0, F1, F2, F3 are almost

averaging initial operators corresponding to R0, R1 ∈ RD1
, R2, R3 ∈ RD2

,

respectively, g1 = R0e, g2 = R2e, there exist a λ such that iλ ∈ vCR0 ∩

vCR2, iλgi ∈ dom (Ω
(i)
1 )−1, S(i)(λgi) ∈ kerDj (j 6= i; i, j = 1, 2) and

F1S
(1)(λg1) = 0, F3S

(2)S(λg2) = 0. Then the equation

(4.9) (D2
1 − D2

2)x = 0

has a non-trivial solution x = uv, where u = S (1)(λg1) ∈ ker D2, v =
S(2)(λg2) ∈ ker D1. This solution satisfies the homogeneous boundary con-

ditions

(4.10) F0x = 0, F1x = 0, F2x = 0, F3x = 0.

Hence the problem (4.9)–(4.10) is ill-posed.

Proof. Let x = uv. By definition, D2
1u = −λ2u, D2

2v = −λ2v. Hence, in
a similar way, as in the proof of Corollary 4.1, we find

(D2
1 − D2

2)x = (D1
2 − D2

2)(uv) = vD2
1u − uD2

2v = −λ2uv + λ2uv = 0.

By our assumptions, F1u = 0, F3v = 0 and u ∈ ker D2, v ∈ kerD1.
Since F1 and F3 are almost averaging, we get F1x = F1(uv) = vF1u = 0,
F3x = F3(uv) = uF3v = 0. As in the proof of Theorem 4.1, we find F0x =
F0(uv) = vF0u = vF0S

(1)(λg1) = 0. Similarly, F2x = F2(uv) = uF2v =
F2S

(2)(λg2) = 0.

Theorem 4.6. Suppose that X ∈ L(D1)∩L (D2), Condition [C]2 is satisfied

with respect to the multifunction Ω
(1)
1 induced by D1, (L

(1)
1 , E

(1)
1 ) ∈ G[Ω

(1)
1 ],

S(1) is a sine mapping induced by E
(1)
1 , F0, F1, F2, F3 are almost averaging

initial operators corresponding to R0, R1 ∈ RD1
, R2, R3 ∈ RD2

, respectively,

g1 = R0e, there exists a λ such that iλ ∈ vCR0, iλg1 ∈ dom (Ω
(1)
1 )−1, u =

S(1)(λg1) ∈ ker D2, F1S
(1)(λg1) = 0 and 0 6= v ∈ ker D1 is an eigenvector

of the operator R2R3 corresponding to the eigenvalue −λ2. Then Equation

(4.9) has a non-trivial solution x = uv which satisfies the homogeneous

mixed boundary conditions

(4.11) F0x = 0, F1x = 0, F2x = 0, F3D2x = 0.
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Hence the problem (4.9), (4.11) is ill-posed.

Proof. Following the proofs of Theorems 4.1 and 4.2, we prove that x = uv
and F0x = F1x = 0. By our assumptions, D2u = 0, F2R2 = 0, F3R3 = 0,
v = −λ2R2R3, hence D2v = −λ2R3v. Since F2 and F3 are almost averaging,
we get

F2x = F2(uv) = uF2v = −λ2uF2R2R3v = 0,

F3D2x = F3D2(uv) = F3(uD2v + vD2u)

= F3(uD2v) = uF3D2v = −λ2uF3R3v = 0.

Corollary 4.5. Suppose that all assumptions of Theorem 4.5 are satisfied

and F3 = F2, hence R3 = R2. Then Equation (4.9) has a non-trivial solution

x = uv, where 0 6= v ∈ kerD1 is an eigenvector of the operator R2
2 corre-

sponding to the eigenvalue −λ2. This solution satisfies the homogeneous

boundary conditions

(4.12) F0x = 0, F1x = 0

and the homogeneous initial conditions

(4.13) F2x = 0, F2D2x = 0.

Hence the problem (4.9), (4.12), (4.13) is ill-posed.

We should point out that we do not assume any right inverse under consid-
eration to be a Volterra operator.

Under appropriate assumptions the Sylvester inertia law holds in alge-
bras with logarithms (cf. [14]). We therefore can say that Equation (4.3)
is parabolic-like and Equation (4.9) is hyperbolic-like whenever X is an alge-
bra with logarithms. Indeed, these equations have forms (D2 − D2

1)x = 0,
(D2

2 −D1
2)x = 0 of the classical canonic parabolic and hyperbolic equations,

respectively (cf. [5]).
Clearly, a linear combination of solutions x

λn
of any problem consid-

ered above corresponding to the eigenvalues λn, is again a solution of that
problem. Even more. Consider Equation (4.3). If we are given λj ∈ vCR2

such that λj 6= λk for j 6= k (j, k = 1, . . . , n; n ∈ N) then the correspond-
ing eigenvectors vλj

(j = 1, . . . , n) are linearly independent and a linear
combination

x =

n∑

j=1

αjxλj
=

n∑

j=1

αjuλj
vλj

,
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where αj ∈ C, xλ = uλj
vλj

, uλj
∈ ker (D2

1 + λ2
j ) (j = 1, . . . , n), is again

a solution of Equation (4.3). A similar conclusion can be obtained for
Equation (4.9).

Throughout the paper we have assumed several times that F1u=0, where
u was a sine element. However, under appropriate assumptions (X is a
complete linear space over C, D is closed) in a complex extension of X,
exponentials, sine and cosine elements are 2πe-periodic:

E[i(x + 2πe)] = E(ix), C(x + 2πe) = Cx, S(x + 2πe) = Sx,

whenever these elements are well-defined (cf. [8], Chapter 9). If it is the
case, we conclude that

F1u = F1S(λg) = F1S(λg + 2πe) = F1S(λg) = S(0) = 0,

whenever g = Re, R ∈ RD, λ ∈ vCR.
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