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Abstract

The problem of finding a gain matrix of the state-feedback of 2D
linear system such that the closed-loop system is positive and asymp-
totically stable is formulated and solved. Necessary and sufficient con-
ditions for the solvability of the problem are established. It is shown
that the problem can be reduced to suitable linear programming prob-
lem. The proposed approach can be extended to 2D linear system
described by the 2D Roesser model.
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1. Introduction

The most popular models of two-dimensional (2D) linear systems are the
models introduced by Roesser [25], Fornasini-Marchesini [8, 9] and Kurek
[24]. The models have been extended for positive systems in [21, 27, 22, 14].
An overview of 2D linear systems theory is given in [1, 2, 10, 11, 13], and
some recent results in positive systems have been given in monographs [6,
14]. Reachability and minimum energy control of positive 2D systems with
one delay in states have been considered in [22]. The choice of the Lya-
punov functions for positive 2D Roesser model has been investigated in [20].
The internal stability and asymptotic behavior of 2D positive systems have
been investigated by Valcher in [27]. The stability of 2D positive systems
described by the Roesser model and synthesis of state-feedback controllers
have been considered in the paper [12]. The asymptotic stability of positive
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1D and 2D linear systems has been investigated in [4, 15–18, 26] and the
stability of fractional systems with delays in [3]. The concept of practical
stability of positive fractional discrete-time linear systems has been intro-
duced in [19].

In this paper it will be shown that the problem of finding a gain ma-
trix of the state-feedback such that the closed-loop system is positive and
asymptotically stable can be reduced to suitable linear programming prob-
lem. The paper is organized as follows. In Section 2 the basic definitions
and theorem concerning the 2D general model and Roesser model are re-
called. The main result of the paper is presented in Section 3. Necessary
and sufficient conditions for the solvability of the problem are established
and a procedure for computation of the gain matrix is given and illustrated
by a numerical example. Concluding remarks are given in Section 4.

The following notation will be used.
Let R

n×m be the set of real matrices with n rows and m columns and
R

n = R
n×1. The set of real n × m matrices with nonnegative entries will

be denoted by R
n×m
+ and R

n
+ = R

n×1

+ . A matrix A = [aij ] = R
n×m
+

(a vector x = [xi] = R
n
+) will be called strictly positive and denoted by

A > 0 if aij > 0 for i = 1, 2, . . . , n, j = 1, 2, . . . ,m (by x > 0 if xi > 0 for
i = 1, 2, . . . , n). The set of nonnegative integers will be denoted by Z+.

2. Positive 2D systems

Consider the general model of 2D linear systems

(1a) xi+1,j+1 = A0xi,j +A1xi+1,j +A2xi,j+1 +B0ui,j +B1ui+1,j +B2ui,j+1

(1b) yi,j = Cxi,j + Dui,j i, j ∈ Z+ ,

where xi,j ∈ R
n, ui,j ∈ R

m, yi,j ∈ R
p are the state, input and output vectors

at the point (i, j) and Ak ∈ R
n×n, Bk ∈ R

n×m, k = 0, 1, 2, C ∈ R
p×n,

D ∈ R
p×m. Boundary conditions for (1a) have the form

(2) xi,0 ∈ R
n
, i ∈ Z+ and x0,j ∈ R

n
, j ∈ Z+ .

The model (1) is called (internally) positive if xi,j ∈ R
n
+ and yi,j ∈ R

p
+,

i, j ∈ Z+ for all boundary conditions xi,0 ∈ R
n
+, i ∈ Z+, x0,j ∈ R

n
+, j ∈ Z+

and every input sequence ui,j ∈ R
m
+ , i, j ∈ Z+.
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Theorem 1 [14]. The system (1) is positive if and only if

(3) Ak ∈ R
n×m
+ , Bk ∈ R

n×m
+ , k = 0, 1, 2, C ∈ R

p×n
+ , D ∈ R

p×m
+ .

Substituting in (1a) B1 = B2 = 0 and B0 = 0, we obtain the first Fornasini-
Marchesini model (FF-MM) and substituting in (1a) A0 = 0 and B0 = 0
we obtain the second Fornasini-Marchesini model (SF-MM). The Roesser
model of 2D linear systems has the form

(4a)

[

xh
i+1,j

xv
i,j+1

]

=

[

A11 A12

A21 A22

] [

xh
i,j

xv
i,j

]

+

[

B11

B22

]

ui,j

(4b) yi,j = [C1 C2]

[

xh
i,j

xv
i,j

]

+ Dui,j, i, j ∈ Z+

where xh
i,j ∈ R

n1 and xv
i,j ∈ R

n2 are the horizontal and vertical state vectors
at the point (i, j), ui,j ∈ R

m and yi,j ∈ R
p are the input and output vectors

and Akl ∈ R
nk×nl , k, l = 1, 2, B11 ∈ R

n1×m, B22 ∈ R
n2×m, C1 ∈ R

p×n1 ,
C2 ∈ R

p×n2 , D ∈ R
p×m. Boundary conditions for (4a) have the form

(5) xh
0,j ∈ R

n1 , j ∈ Z+ and xv
i,0 ∈ R

n2 , i ∈ Z+ .

The model (4) is called (internally) positive Roesser model if xh
i,j ∈ R

n1

+ ,
xv

i,j ∈ R
n2

+ , and yi,j ∈ R
p
+, i, j ∈ Z+ for any nonnegative boundary condi-

tions

(6) xh
0,j ∈ R

n1

+ , j ∈ Z+ and xv
i,0 ∈ R

n2

+ , i ∈ Z+

and all input sequences ui,j ∈ R
m
+ , i, j ∈ Z+.

Theorem 2 [14]. The system Roesser model is positive if and only if

(7)

[

A11 A12

A21 A22

]

∈ R
n×n
+ ,

[

B11

B22

]

∈ R
n×m
+ , [C1 C2] ∈ R

p×n
+ ,

D ∈ R
p×m
+ , n = n1 + n2 .
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Defining

(8)

xi,j =

[

xh
i,j

xv
i,j

]

, A1 =

[

0 0
A21 A22

]

, A2 =

[

A11 A12

0 0

]

,

B1 =

[

0

B22

]

, B2 =

[

B11

0

]

we may write the Roesser model in the form of SF-MM

(9) xi+1,j+1 = A1xi+1,j + A2xi,j+1 + B1ui+1,j + B2ui,j+1 .

The positive general model (1a) is called asymptotically stable if for any
bounded boundary conditions xi,0 ∈ R

n
+, i ∈ Z+, x0,j ∈ R

n
+, j ∈ Z+ and

zero inputs ui,j = 0, i, j ∈ Z+ the following condition holds

(10) lim
i,j→∞

xi,j = 0 for all xi,0 ∈ R
n
+, x0,j ∈ R

n
+, i, j ∈ Z+ .

Theorem 3. The positive general model (1) is asymptotically stable if and

only if there exists a strictly positive vector λ such that

(11) (A0 + A1 + A2 − In)λ < 0.

Proof is given in [16, 18].

3. Main result

Consider the general 2D model (1) with not necessarily nonnegative matrices
A0, A1 and A2. We are looking for a gain matrix K ∈ R

m×n of the state-
feedback

(12) uij = Kxij

such that the closed-loop system

(13) xi+1,j+1 = (A0 + B0K)xij + (A1 + B1K)xi+1,j + (A2 + B2K)xi,j+1

is positive and asymptotically stable.
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Theorem 4. The closed-loop system (13) is positive and asymptotically

stable if and only if there exist a strictly positive vector

(14) λ =







λ1

...

λn






(λk > 0, k = 1, . . . , n)

and n real vectors

(15) dk ∈ R
m

, k = 1, . . . , n, d =

n
∑

k=1

dk

such that

(16a) at
ij + bt

idj ≥ 0 for t = 0, 1, 2 and 1 ≤ i ≤ n, 1 ≤ j ≤ n

(16b) (A0 + A1 + A2 − In)λ + (B0 + B1 + B2)d < 0,

where

(16c)
At =

[

at
ij

]

∈ R
n×n

, Bt =







bt
1

...

bt
n






∈ R

n×m
,

t = 0, 1, 2; 1 ≤ i ≤ n, 1 ≤ j ≤ n .

The gain matrix K has the form

(17) K =

[

d1

λ1

, . . . ,
dn

λn

]

∈ R
m×n

.

Proof. First we shall show that the closed-loop system (13) is positive if
and only if (16a) holds. Using (16c) and (17) for (i, j) entry of the matrix
(At + BtK) we have

(At + BtK)ij = at
ij + bt

i

dj

λj

= (at
ijλj + bt

idj)
1

λj

≥ 0

since (16a) holds. Hence

(18) At = At + BtK ∈ R
n×n
+ for t = 0, 1, 2
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if and only if (16a) is satisfied.

Note that

(19) (B0 + B1 + B2)d = (B0 + B1 + B2)Kλ

since

Kλ

[

d1

λ1

, . . . ,
dn

λn

]







λ1

...
λn






=

n
∑

k=1

dk = d .

If (16b) holds then using (19) we obtain

(20)
(A0 + A1 + A2 − In)λ + (B0 + B1 + B2)d

= (A0 + B0K + A1 + B1K + A2 + B2K − In)λ < 0 .

By Theorem 3 the positive closed-loop system (13) is asymptotically stable
if and only if the conditions of Theorem 4 are satisfied.

Note that the problem of finding gain matrix K of the state-feedback (12)
such that the closed-loop system is positive and asymptotically stable has
been reduced to linear programming problem. Therefore, the problem can
be solved by using the well-known linear programming methods [5, 7].

Using the matrices

(21) D = [d1 . . . dn] ∈ R
m×n

, Λ = diag [λ1, . . . , λn]

we can write the gain matrix (17) in the form

(22) K = DΛ−1.

Substitution of (22) into (18) and postmultiplication by Λ yields

(23) Ât = AtΛ + BtD ∈ R
n×n
+ for t = 0, 1, 2 .

Note that the inequality (20) can be rewritten as

(24) [(A0 + A1 + A2)Λ + (B0 + B1 + B2)D]1n < Λ1n
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since for 1n = [1 . . . 1]T ∈ R
n

(25) Λ1n = λ and D1n = d .

Substitution of (22) in (18) yields the relationship

(26) At = ÂtΛ
−1, t = 0, 1, 2 .

To solve the problem the following procedure can be used

Procedure

Step 1. Choose a diagonal matrix Λ with strictly positive diagonal entries
and a real matrix D defined by (21) satisfying the conditions (23) and (24).

Step 2. Using the formula (22) find the gain matrix K.

Remark. If the 2D general model is unstable and there exist a diagonal
matrix Λ ∈ R

n×n
+ with strictly positive diagonal entries and a nonnegative

matrix D ∈ R
n×m
+ satisfying the conditions (23) and (24) then the model

can be stabilized by positive gain matrix K = DΛ−1 ∈ R
m×n
+ .

Example 1. Let the unstable positive 2D general model (1) with the ma-
trices

A0 =

[

0.4 0.7

0.2 0.3

]

, A1 =

[

0.3 0.5

0.4 0.9

]

, A2 =

[

0.2 0.3

0.3 0.4

]

,

B0 =

[

0.6

0.3

]

, B1 =

[

0.5

0.8

]

, B2 =

[

0.3

0.4

]

be given.
Find a gain matrix K ∈ R

1×2 such that the closed-loop system is posi-
tive and asymptotically stable.

Using Procedure we obtain the following.

Step 1. We choose

Λ =

[

2 0

0 2

]

, D = [−1 − 2]
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and we check the conditions (23)

Â0 = A0Λ + B0D =

[

0.4 0.7

0.2 0.3

][

2 0

0 2

]

+

[

0.6

0.3

]

[−1 − 2] =

[

0.2 0.2

0.1 0

]

Â1 = A1Λ + B1D =

[

0.3 0.5

0.4 0.9

][

2 0

0 2

]

+

[

0.5

0.8

]

[−1 − 2] =

[

0.1 0

0 0.2

]

Â2 = A2Λ + B2D =

[

0.2 0.3

0.3 0.4

][

2 0

0 2

]

+

[

0.3

0.4

]

[−1 − 2] =

[

0.1 0

0.2 0

]

and the condition (24)

[(A0 + A1 + A2)Λ + (B0 + B1 + B2)D]1n =

=

{[

0.9 1.5

0.9 1.6

][

2 0

0 2

]

+

[

1.4

1.5

]

[ − 1 − 2]

}[

1

1

]

=

[

0.6

0.5

]

< Λ1n =

[

2

2

]

.

Therefore, the conditions are satisfied.

Step 2. Using (22) we obtain the gain matrix of the form

K = DΛ−1 = [−0.5 − 1] .

The closed-loop system is positive since the matrices

A0 = A0 + B0K = Â0Λ−1 =

[

0.1 0.1
0.05 0

]

,

A1 = A1 + B1K = Â1Λ−1 =

[

0.05 0
0 0.1

]

,

A2 = A2 + B2K = Â2Λ−1 =

[

0.05 0
0.1 0

]

have nonnegative entries.

The closed-loop system is asymptotically stable since the condition (24)
holds.
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4. Concluding remarks

The problem of finding a gain matrix of the state-feedback of 2D general
model such that the closed-loop system is positive and asymptotically stable
has been addressed. Necessary and sufficient conditions for the solvability of
the problem have been established. It has been shown that the problem can
be reduced to corresponding linear programming problem and can be solved
using the well-known methods. A procedure for computation of the gain
matrix has been proposed and illustrated by a numerical example. These
considerations can be easily extended for 2D linear system with delay in
state vector. An extension for 2D linear fractional systems is also possible.

This work was supported by Ministry of Science and Higher Education in

Poland under work No. NN514 1939 33.
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