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Abstract

In this paper we consider a class of distributed parameter systems
(partial differential equations) determined by strongly nonlinear oper-
ator valued measures in the setting of the Gelfand triple V ↪→ H ↪→ V ∗

with continuous and dense embeddings where H is a separable Hilbert
space and V is a reflexive Banach space with dual V ∗. The system is
given by

dx+A(dt, x) = f(t, x)γ(dt) +B(t)u(dt), x(0) = ξ, t ∈ I ≡ [0, T ]

where A is a strongly nonlinear operator valued measure mapping Σ×
V to V ∗ with Σ denoting the sigma algebra of subsets of the set I
and f is a nonlinear operator mapping I ×H to H , γ is a countably
additive bounded positive measure and the control u is a suitable vector
measure. We present existence, uniqueness and regularity properties of
weak solutions and then prove the existence of optimal controls (vector
valued measures) for a class of control problems.
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1. Introduction

In a series of papers [1, 2, 3, 4, 5, 9] we considered general evolution equations
on Banach spaces determined by operator valued measures and controlled
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by vector measures. We studied the questions of existence and regularity
properties of mild solutions of semilinear problems [1–3] and weak solutions
for strongly nonlinear parabolic and hyperbolic problems [4–6]. For semilin-
ear problems, the substantial theory of optimal controls has been developed
[1–3]. However, for the strongly nonlinear problems, determined by nonlin-
ear operator valued measures, no such control theory exists. The major goal
of this paper is to initiate such development.

A closely related topic, yet very distinct, is the subject of relaxed con-
trols. This has been studied extensively in the literature and well docu-
mented in the recent book of Fattorini [13] where the reader will find ex-
tensive references. These systems are governed by differential equations on
Banach spaces with controls which are probability measure valued functions,
while the systems considered in this paper are determined by operator val-
ued measures and controlled by vector measures. The first distinction is
in the structure of the system dynamics and the second is in the space of
controls used.

The rest of the paper is organized as follows: We present relevant nota-
tions and terminologies in Section 2. In Section 3, a brief review of recent
results on existence and regularity properties of weak solutions for strongly
nonlinear parabolic systems determined by nonlinear operator valued func-
tions and measures is presented. In Section 4, we consider control systems
and study the questions of existence of solutions and their continuous de-
pendence on controls. In Section 5, we study optimal control problems. The
paper is concluded with an example in Section 6.

2. Preliminaries

Function Spaces: Let H be a real separable Hilbert space with the scalar
product and norms denoted by (v, w) and |v| ≡

√

(v, v) respectively for
v, w ∈ H. Let V be a linear subspace of the Hilbert space H carrying the
structure of a Hilbert space with the scalar product denoted by (v, w) ≡
(v, w)V and norm denoted by ‖ v ‖V with V ∗ denoting its topological dual.
Identifying H with its own dual and assuming that V is dense in H, we have
the inclusion

V ↪→ H ↪→ V ∗

where the injections are continuous and dense. The duality pairing between
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v ∈ V and w ∈ V ∗ is denoted by

〈v, w〉 ≡ 〈v, w〉V,V ∗ ≡ 〈w, v〉V ∗,V .

In case w ∈ H, this reduces to the scalar product in H. We assume that
there exists a complete system of basis vectors {vi} ⊂ V which is orthogonal
in V and V ∗ and ortho-normal in H and that it spans all the three spaces
{V,H, V ∗} known as the Gelfand triple. For more details on these spaces
see [6, 7] and the references therein.

Let I ≡ [0, T ] be an interval with T < ∞ and let Σ ≡ σ(I) denote the
sigma algebra of subsets of the set I. Let B(I,H) denote the vector space
of bounded Σ measurable functions on I with values in H. Furnished with
the sup norm topology, this is a Banach space. Let µ be any countably
additive positive measure on Σ having bounded total variation on I. For
any of the spaces X ≡ {V,H, V ∗} and 1 ≤ p < ∞, we let Lp(µ,X) denote
the Lebesgue-Bochner space of measurable functions on I with values in X
satisfying

∫

I
‖ f(s) ‖p

X µ(ds) <∞.

Strictly speaking, this is the equivalence class of µ measurable X valued
functions whose X-norms are p − th power integrable. If µ is a Lebesgue
measure, we use the standard symbol Lp(I,X), 1 ≤ p <∞, and L∞(I,X) to
denote the standard Lebesgue-Bochner spaces. Furnished with the standard
norm topology, Lp(µ,X) is a Banach space. By Lp(µ) we denote the Banach
space of scalar valued p-th power µ integrable functions defined on the in-
terval I. By BV (I,X) we denote the vector space of functions, defined on I
and taking values from the Banach space X, having bounded total variation.
Furnished with total variation norm this is a Banach space.

Vector Measures: Let F be a Banach space and I ≡ [0, T ] a bounded in-
terval with Σ ≡ σ(I) the sigma algebra of subsets of the set I. Let Mc(Σ, F )
denote the space of countably additive bounded vector measures defined on
the sigma algebra Σ with values in the Banach space F. Let Mcbv(Σ, F ) be
a proper subspace of the space Mc(Σ, F ) consisting of countably additive
F -valued vector measures having bounded total variation (on I). This is
furnished with the topology induced by the total variation norm. That is,
for each ν ∈ Mcbv(Σ, F ), we write

|ν| ≡ |ν|(I) ≡ sup
π

(

∑

σ∈π

‖ ν(σ) ‖F

)

(1)
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where the supremum is taken over all partitions π of the interval I into
a finite number of disjoint members of Σ. With respect to this topology,
Mcbv(Σ, F ) is a Banach space. For any σ ∈ Σ, denote the variation of ν
on σ by |ν|(σ). Since ν is countably additive and bounded, this defines a
countably additive bounded positive measure on Σ [10, Proposition 9, p. 3].
In case F = R, the real line, we have the space of real valued signed measures
which we denote by Mc(Σ) and if they are nonnegative we use M+

c (Σ).
We introduce two other topologies which are used later. Let 1 ≤ q <∞,

π any finite partition of the interval I by disjoint members of Σ and ν ∈
Mc(Σ, F ). The vector measure ν is said to have q-variation if

sup
π

(

∑

σ∈π

‖ ν(σ) ‖q

)1/q

<∞

where the supremum is taken over all such partitions π. We denote this
vector space by BVq(Σ, F ). It is easy to verify that this is a Banach space
with respect to the norm topology

‖ ν ‖BVq(Σ,F )≡ sup
π

(

∑

σ∈π

‖ ν(σ) ‖q
F

)1/q

.(2)

Clearly, BV1(Σ, F ) ≡ Mcbv(Σ, F ).
The second topology is very much related to the preceding one and

is dependent on a given countably additive bounded nonnegative measure,
say γ. Let BVq(γ, F ) denote the class of vector measures µ ∈ Mc(Σ, F ) for
which

‖ µ ‖BVq(γ,F )≡ sup
π

{

∑

σ∈π

(

‖ µ(σ) ‖F

γ(σ)

)q

γ(σ)

}1/q

<∞,(3)

where we use the convention 0/0 = 0. With respect to this norm topology,
BVq(γ, F ) is a Banach space. Since γ is a countably additive bounded
positive measure and q ≥ 1, it is easy to verify that the embeddings

BVq(γ, F ) ↪→ BVq(Σ, F ), BVq(γ, F ) ↪→ Mcbv(Σ, F ),

are continuous.

Operator Valued Measures: Let E and F be any pair of Banach spaces
and L(E,F ) the space of bounded linear operators from E to F.
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A set function Φ mapping Σ × E to F is said to be an operator valued
measure if for each σ ∈ Σ, e ∈ E, Φ(σ, e) ∈ F and Φ(∅, e) = 0 the zero
operator. Here we are interested in countable additivity in the weak sense
only. That is, the operator Φ is said to be weakly countably additive if for
any family of disjoint sets σi ∈ Σ and any pair (e, f ∗) ∈ E × F ∗, we have

〈

Φ
(

⋃

σi, e
)

, f∗
〉

F,F ∗

=
∑

〈Φ(σi, e), f
∗〉F,F ∗.

If e −→ Φ(σ, e) is linear we may write Φ : Σ −→ L(E,F ). Further notations
will be introduced as and when required.

3. Nonlinear operator valued functions and measures

In this section, we review some recent results on systems governed by strongly
nonlinear parabolic equations determined by operator valued functions cou-
pled with scalar measures, and also operator valued measures. Consider the
system

dx+A(t, x)α(dt) = f(t)α(dt), x(0) = x0, t ∈ I,(4)

where A : I × V −→ V ∗ is an operator valued function, α is a countably
additive bounded positive measure and f is a V ∗ valued function. Without
further notice, we assume that V and V ∗ have the structure of separable re-
flexive Banach spaces with the embeddings V ↪→ H ↪→ V ∗ being continuous
and dense. Let

1 < q ≤ 2 ≤ p <∞ with 1/p+ 1/q = 1.

Throughout the paper we assume, unless otherwise stated, that the pair of
numbers {p, q} satisfy these assumptions.

Now we are prepared to consider the question of existence of solutions
for the system (4). We assume that the operator A satisfies the following
properties:

(B1): A(t, ·) : V −→ V ∗ is monotone and hemicontinuous for α-a.a t ∈ I;
and for every u, v ∈ V , t→ 〈A(t, u), v〉V ∗,V is continuous.

(B2): there exist a > 0, b ≥ 0 so that 〈A(t, v), v〉V ∗,V + b|v|2H ≥ a ‖ v ‖p
V for

α-a.a t ∈ I.
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(B3): there exist constants c1, c2 ≥ 0 so that |A(t, v)|V ∗ ≤ c1 + c2 ‖ v ‖
p/q
V

α-a.a. t ∈ I.

The result below was proved in a recent paper of the author.

Theorem 3.1. Consider the evolution equation (4) and suppose the assump-

tions (B1)–(B3) hold and f ∈ Lq(α, V
∗). Then for each x0 ∈ H, equation

(4) has a unique weak solution x ∈ L∞(I,H) ∩ Lp(α, V ) ∩BVq(α, V
∗).

Proof. See [4, Theorem 4.4].

Remark 3.2. In case α is the Lebesgue measure or it is absolutely contin-
uous with respect to the Lebesgue measure, we recover the classical result
[6, Theorem 4.1, p. 96].

Note that A is considered to be a nonlinear operator valued function
mapping I×V to V ∗. Recently this result has been further extended covering
nonlinear operator valued measures [5]. That is, A : Σ × V −→ V ∗ is an
operator valued set function. The system model considered is given by

dx+A(dt, x(t)) = f(t)γ(dt), t ∈ I, x(0) = x0.(5)

Basic assumptions used are as follows:

(C1): The map A : Σ×V −→ V ∗ is maximal monotone and hemicontinuous
in the second argument satisfying

〈A(σ, u) −A(σ, v), u − v〉V ∗,V ≥ 0,∀ σ ∈ Σ, and ∀ u, v ∈ V.

There exist two countably additive nonnegative measures γ, β ∈ M+
c (Σ)

having bounded variations on I with γ being positive; and two real numbers
c1 ≥ 0, c2 ≥ 0, such that

(C2): 〈A(σ, v), v〉V ∗,V + β(σ)|v|2H ≥ γ(σ) ‖ v ‖p
V ∀ σ ∈ Σ,

(C3): ‖ A(σ, v) ‖V ∗≤ γ(σ){c1 + c2 ‖ v ‖
p/q
V } ∀ σ ∈ Σ.

Note: We wish to point out that the measure γ is not assumed to be
nonatomic.

We are concerned with the question of existence of solutions for the
system (5). By a solution, we mean a weak solution as defined below. Let
C1

T (0, T ) denote the class of C1 functions on I ≡ [0, T ] vanishing at T.
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Definition 3.3. An element x ∈ L∞(I,H) ∩ B(I,H) ∩ Lp(γ, V ) is said to
be a weak solution of the problem (5) if for every v ∈ V and ϕ ∈ C 1

T (0, T ),
it satisfies the following identity

−(x0, ϕ(0)v) −

∫

I
(x(t), ϕ̇(t)v)dt +

∫

I
〈A(dt, x(t)), ϕ(t)v〉V ∗,V

=

∫

I
〈f(t), ϕ(t)v〉V ∗,V γ(dt).(6)

Now we present some recent results from [5] on the questions of existence of
solutions and their regularity properties.

Theorem 3.4. Suppose γ is a countably additive bounded positive measure

having finite variation on I and the operator valued measure A satisfies

the assumptions (C1)–(C3) and f ∈ Lq(γ, V
∗). Then for each x0 ∈ H, the

system (5) has a unique weak solution x ∈ L∞(I,H) ∩ B(I,H) ∩ Lp(γ, V )
and further x ∈ BVq(Σ, V

∗).

Proof. See [5, Theorem 5.3].

Remark 3.5. In the system model (5), the same measure γ(·) has been used
to represent both the external forces as well as the internal ones embodied
in the fundamental operator A. A more general representation is given by

dx(t) +A(dt, x(t)) = ν(dt), x(0) = x0, t ∈ I,(7)

where the operator valued measure A satisfies the assumptions (C1)–(C3)
involving the scalar measures γ, β; while ν is a V ∗-valued vector measure.
The following result shows that under some mild assumptions this general
model can be reduced to the one given by (5).

Corollary 3.6. Consider the system (7) and suppose the operator valued

measure A and the measures γ, β satisfy the assumptions of Theorem 3.4. Let

ν be a countably additive V ∗-valued vector measure having finite q-variation
on I and that it is γ continuous. Then for each x0 ∈ H, the system (7) has

a unique weak solution x ∈ B(I,H)∩Lp(γ, V ) and further x ∈ BVq(Σ, V
∗).

Proof. See [5, Corollary 5.6].

Remark 3.7. It would be interesting to consider a more general situation
where the measure ν is not γ continuous. It is not clear to the author if
such an extension is possible. This is an open problem.
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Theorem 3.4 was extended in reference [5] to cover systems of the form

dx(t) +A(dt, x(t)) = f(x(t))γ(dt), x(0) = x0, t ∈ I,(8)

where f is a suitable nonlinear map from V to V ∗ or from H to H.

Theorem 3.8. Suppose the operator valued measure A and the scalar mea-

sures γ, β satisfy the assumptions of Theorem 3.4. Let f : V −→ V ∗ be

continuous satisfying the polynomial growth

|〈f(v), v〉V ∗,V | ≤ K(1+ ‖ v ‖p
V )

for some K ∈ [0, 1). Further, suppose the corresponding Nemytski operator

F, given by F (x)(t) ≡ f(x(t)), t ∈ I, is continuous from Lp(γ, V ) to Lq(γ, V
∗)

with respect to the corresponding weak topologies. Then for each x0 ∈ H the

system (8) has at least one weak solution x ∈ B(I,H)∩L∞(I,H)∩Lp(γ, V ).

Proof. See [5, Theorem 6.1].

The assumption on weak-weak continuity of the Nemytski operator F, asso-
ciated with the map f, is rather strong. It can be relaxed if the nonlinear
operator f is more regular as stated in the following extension.

Theorem 3.9. Suppose the operator valued measure A and the scalar mea-

sures γ, β satisfy the assumptions of Theorem 3.4 and the injection V ↪→ H
is compact. Let f : H −→ H be continuous satisfying the growth condition,

|〈f(h), h〉H | ≤ K(1+ ‖ h ‖2
H),(9)

for a finite positive number K. Then for each x0 ∈ H the system (8) has at

least one weak solution x ∈ B(I,H) ∩ L∞(I,H) ∩ Lp(γ, V ). Further, if −f
is monotone the solution is unique.

Proof. See [5, Theorem 6.2].

4. Existence and continuous dependence of solutions

We consider the following control system

dx+A(dt, x) = f(x)γ(dt) +B(t)u(dt), t ∈ I, x(0) = ξ,(10)

where B is the control operator and the vector measure u(·) is the control.
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We wish to consider control problems of the form

J(u) ≡ Ψ(x, u) −→ inf .,(11)

where Ψ is a suitable cost functional, x is the (weak) solution (if one exists)
corresponding to the control u and the infimum is taken over the class of
admissible controls Uad which is a suitable subset of the space of vector
measures.

Now we introduce the class of admissible controls. Let F be a Banach
space with dual F ∗, γ ∈ M+

c (Σ), a countably additive bounded positive
measure having bounded total variation on I, and consider the Banach space
BVq(γ, F

∗). Let Uad ⊂ BVq(γ, F
∗) be a bounded set denoting the class of

admissible controls.

We need the following a-priori bounds.

Lemma 4.1. Suppose the operator valued measure A, the scalar measures

{γ, β}, and the operator f satisfy the assumptions of Theorem 3.9. Let B ∈
L∞(γ,L(F ∗, V ∗)) so that B∗ ∈ L∞(γ,L(V, F )) ⊂ L∞(γ,L(V, F ∗∗)). Let

x0 = ξ ∈ H and u ∈ Uad. Then if x is any solution of the system (10), it

must be an element of Lp(γ, V ) ∩ L∞(I,H) ∩B(I,H).

Proof. Let x be any solution of equation (10) corresponding to the initial
state x0 = ξ ∈ H and control u ∈ Uad. Scalar multiplying equation (10) by x
and then integrating by parts over the interval It ≡ [0, t], it is easy to verify
that for each t ∈ I,

(12)

|x(t)|2H + 2

∫ t

0
‖ x(s) ‖p

V γ(ds) ≤ |ξ|2H + 2

∫ t

0
|x(s)|2Hβ(ds)

+ 2

∫ t

0
(f(x(s)), x(s))Hγ(ds) + 2

∫ t

0
〈B∗(s)x(s), u(ds)〉F,F ∗ .

By virtue of our assumption with respect to the operator B there exists a
finite positive number b such that

γ − ess-sup {‖ B∗(t) ‖L(V,F ), t ∈ I} ≤ b.

Using this bound and the fact that u ∈ BVq(γ, F
∗), we have

(13)
∣

∣

∣

∫ t

0
〈B∗(s)x(s), u(ds)〉

∣

∣

∣
≤ b

(
∫ t

0
‖ x(s) ‖p

V γ(ds)

)1/p

‖ u ‖BVq(γt,F ∗)
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where by γt we mean the restriction of the measure γ to the interval It. By
virtue of Cauchy inequality it follows from this that for any ε > 0,

(14)

∣

∣

∣

∫ t

0
〈B∗(s)x(s), u(ds)〉

∣

∣

∣

≤ b(εp/p)

∫ t

0
‖ x(s) ‖p

V γ(ds) + b(ε−q/q) ‖ u ‖q
BVq(γt,F ∗) .

Clearly, it follows from the growth condition of f given by (9), that

∫ t

0
(f(x(s)), x(s))Hγ(ds) ≤ Kγ(It) +K

∫ t

0
|x(s)|2Hγ(ds).(15)

Since ε > 0 is arbitrary, one can choose ε = ε0 > 0 so that 2b(εp
0/p) = 1.

Using ε = ε0, it follows from the expressions (12), (14) and (15) that

|x(t)|2H +

∫ t

0
‖ x(s) ‖p

V γ(ds) ≤

(

|ξ|2H + 2Kγ(It) + 2b(εq
0/q) ‖ u ‖q

BVq(γt,F ∗)

)

+ 2

∫ t

0
|x(s)|2H(β(ds) +Kγ(ds))

(16) ≤

(

|ξ|2H + 2Kγ(I) + 2b(εq
0/q) ‖ u ‖q

BVq(γ,F ∗)

)

+ 2

∫ t

0
|x(s)|2H(β(ds) +Kγ(ds)).

By virtue of the generalized Gronwall inequality [Ahmed, 8], it follows from
(16) that

(17) |x(t)|2H ≤ C exp 2{β(I) +Kγ(I)} ≡ C̃ ∀ t ∈ I,

where

(18) C ≡
(

|ξ|2H + 2Kγ(I) + 2b(εq
0/q) ‖ u ‖q

BVq(γ,F ∗)

)

.

Since the measures β and γ are finite, C̃ < ∞ and hence x ∈ L∞(I,H).
More precisely, it follows from (17) that x ∈ B(I,H). Using these facts,
again it follows from (16) that

∫ t

0
‖ x(s) ‖p

V γ(ds) ≤ C + 2C̃{β(I) +Kγ(I)}, ∀ t ∈ I.(19)
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This shows that x ∈ Lp(γ, V ) as well and hence we have x ∈ Lp(γ, V ) ∩
L∞(I,H) ∩B(I,H). This completes the proof.

As a corollary of this lemma we have the following result.

Corollary 4.2. Suppose the assumptions of Lemma 4.1 hold and that the

set of admissible controls Uad is a bounded subset of BVq(γ, F
∗). Let x(u)

denote the weak solution of the system (10) corresponding to the control

u ∈ Uad. Then the solution set X ≡ {x(u) : u ∈ Uad} is a bounded subset of

B(I,H) ∩ L∞(I,H) ∩ Lp(γ, V ).

Proof. The proof follows immediately from the estimates (17), (18) and
(19) and boundedness of the set Uad.

Now we are prepared to consider the question of existence and regularity
properties of solutions of the control system (10).

Theorem 4.3. Suppose the operator valued measure A, the scalar measures

{γ, β} and the operator f satisfy the assumptions of Lemma 4.1 with the

injection V ↪→ H being compact. Let B ∈ L∞(γ,L(F ∗, V ∗)) so that B∗ ∈
L∞(γ,L(V, F )) ⊂ L∞(γ,L(V, F ∗∗)). Then for each x0 = ξ ∈ H and u ∈ Uad

the system (10) has at least one weak solution x ∈ B(I,H) ∩ L∞(I,H) ∩
Lp(γ, V ). The vector measure µx, given by the relation

µx(ψ) ≡

∫

I
〈ψ(t), µx(dt)〉V,V ∗ =

∫

I
〈ψ(t), dx(t)〉∀ ψ ∈ Lp(γ, V ),

is an element of BVq(γ, V
∗). Further, if −f is monotone, the solution is

unique.

Proof. Let {vi} be a complete basis for the Gelfand triple V ⊂ H ⊂ V ∗

so that they are orthogonal in V and V ∗, and orthonormal in H. The
proof is based on similar arguments as found in [5, Theorem 5.3 and The-
orem 6.2]. It is based on a-priori bounds, finite dimensional projection
to an increasing family of (finite dimensional) subspaces determined by
Xn ≡ lin.span {vi, 1 ≤ i ≤ n}, maximal monotonicity of the operator
valued measure A, Crandall-Liggett generation theorem for nonlinear semi-
groups corresponding to maximal monotone operators [6, Theorem 4.7, p.
120–121], and continuity of f and, most importantly, compact embedding
[7, Theorem 3.2, p. 911] of Mp,q ↪→ Lp(γ,H) where

(20) Mp,q ≡
{

x : x ∈ Lp(γ, V ) and µx ∈ BVq(Σ, V
∗)

}

.
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Now we use the finite dimensional projection of the system (10) to Xn and
denote the corresponding solutions (if they exist) by xn ≡

∑n
i=1 z

n
i vi giving

the family of finite dimensional systems,

〈dxn, vi〉+
〈

A
(

dt,

n
∑

j=1

zn
j vj

)

, vi

〉

=
(

f
(

n
∑

j=1

zn
j vj

)

, vi

)

γ(dt) + 〈B∗(t)vi, u(dt)〉,

(21) i = 1, 2, . . . , n; n ∈ N,

with the initial condition given by xn(0) ≡
∑n

i=1(ξ, vi)vi. Since the embed-
ding V ↪→ H is dense, it is clear that

xn(0)
s

−→ ξ in H.(22)

Define the maps

(23)
Gi(σ, z) ≡

〈

A
(

σ,

n
∑

j=1

zjvj

)

, vi

〉

V ∗,V
, fi(z) ≡

(

f
(

n
∑

j=1

zjvj

)

, vi

)

H
,

bi(t) ≡ B∗(t)vi, σ ∈ Σ, z ∈ Rn,

(24)
G(σ, z) ≡ col {Gi(σ, z), 1 ≤ i ≤ n}, f̃(z) ≡ col {fi(z), 1 ≤ i ≤ n},

b(t) ≡ col {bi(t), 1 ≤ i ≤ n}, σ ∈ Σ, z ∈ Rn.

Based on these notations, the system (21) takes the form,

(25)
dzn +G(dt, zn) = f̃(zn) + 〈b(t), u(dt)〉,

zn(0) = col {(ξ, vi), i = 1, 2, . . . , n}, n ∈ N.

For each n ∈ N, this is an n-dimensional system. Partition the interval I
into m disjoint subintervals giving I = ∪m−1

i=0 σi where σi ≡ (ti, ti+1], 0 ≤ i ≤
m−1, with t0 = 0, tm = T. Define the nonlinear operator valued set function
Ĝ(σ)z ≡ G(σ, z) from Rn to Rn. Since for each σ ∈ Σ, A(σ, ·) is maximal
monotone (from V to V ∗), Ĝ(σ) is maximal monotone on Rn. Hence the
range of the operator (I + Ĝ(σ)) is all of Rn, that is, R(I + Ĝ(σ)) = Rn.
Thus by use of the implicit difference scheme, one can construct the sequence
{zm(t), t ∈ I} by linear interpolation of the nodes given by

(26)
zm(ti+1) ≡ (I + Ĝ(σi))

−1
(

zm(ti) + f̃(zm(ti))γ(σi) + 〈b(ti), u(σi)〉
)

,

i = 0, 1, . . . ,m− 1.
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Then it follows from the Crandal-Ligget generation theorem for nonlinear
semigroups [6, Theorem 4.7, p. 120–121], that

zm(t) −→ z(t) uniformly on I

and that z solves equation (25). We denote this solution by z = zn solv-
ing the n-dimensional problem (25). Thus xn ≡

∑n
i=1 z

n
i vi solves equa-

tion (21). By virtue of the a-priori bounds given by Lemma 4.1, {xn} is
contained in a bounded subset of Lp(γ, V ) ∩ B(I,H) ∩ L∞(I,H). Hence
there exist a subsequence, relabeled as the original sequence, and an ele-
ment x ∈ Lp(γ, V ) ∩ L∞(I,H) ∩B(I,H) such that

xn
w∗

−→ x in L∞(I,H)(27)

xn
w

−→ x in Lp(γ, V ).(28)

Let C1
T [0, T ] denote the class of C1 functions vanishing at T. Multiplying

equation (21) by ϕ ∈ C1
T [0, T ] and integrating by parts we obtain

(29)

− (xn(0), ϕ(0)vi) −

∫

I
(xn(t), ϕ̇(t)vi)dt+

∫

I
〈A(dt, xn(t)), ϕ(t)vi〉

=

∫

I
(f(xn(t)), ϕ(t)vi)γ(dt) +

∫

I
〈B∗(t)ϕ(t)vi, u(dt)〉F,F ∗ .

Clearly, it follows from (22) and (27)that

(30)

− (xn(0), ϕ(0)vi) −

∫

I
(xn(t), ϕ̇(t)vi)dt

−→ −(ξ, ϕ(0)vi) −

∫

I
(x(t), ϕ̇(t)vi)dt.

The convergence of the third term on the left and the first term on the right
of equation (29) are nontrivial. Here we follow a similar approach as given
in [5, Theorem 5.3 and Theorem 6.2]. First, consider the third term on the
left. Define the sequence of vector measures,

an(σ) ≡

∫

σ
A(ds, xn(s)), σ ∈ Σ.(31)
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Clearly, it follows from the assumption (C3) and countable additivity of the
measure γ that for each v ∈ V and σ ∈ Σ,

〈an(σ), v〉V ∗,V ≡

∫

σ
〈A(ds, xn(s)), v〉V ∗,V

is well defined and the set function σ −→ 〈an(σ), v〉V ∗,V is countably addi-
tive. Thus {an} is a sequence of weakly countably additive V ∗ valued vector
measures and that it vanishes on γ null sets. Hence it follows from Pettis
theorem [12, Theorem 1V.10.1, p. 318] that it is countably additive and γ
continuous. These facts along with the a-priori bounds of {xn} (see Lemma
4.1) imply that {an} is contained in a bounded subset of Mc(Σ, V

∗), and
that

lim
γ(σ)→0

|an|(σ) = 0, uniformly in n ∈ N.(32)

Since V ∗ is a reflexive Banach space, it follows from this (boundedness
of the set {an}) that for each σ ∈ Σ, {an(σ), n ∈ N} is a relatively
weakly sequentially compact subset of V ∗. Recall that {V, V ∗} are reflexive
and hence they have the Radon-Nikodym property (RNP). Thus it follows
from the Bartle-Dunford-Schwartz compactness theorem for vector measures
[11, Theorem 5, p. 105] that there exists an a ∈ Mc(Σ, V

∗) such that, along
a subsequence if necessary, an −→ a weakly. Hence for the third term on
the left of the expression (29), we have

(33)

∫

I
〈A(dt, xn(t)), ϕ(t)vi〉 ≡

∫

I
〈an(dt), ϕ(t)vi〉 −→

∫

I
〈a(dt), ϕ(t)vi〉.

Now we use the monotonicity and hemicontinuity assumption (C1) to verify
that

(34) a(σ) =

∫

σ
A(ds, x(s)) ∀ σ ∈ Σ.

By assumption (C1) we have
∫

I
〈A(dt, y(t)) −A(dt, xn(t)), y(t) − xn(t)〉V ∗,V ≥ 0,

for all y ∈ Lp(γ, V ). By virtue of Mazur’s theorem we can construct a
sequence yn ∈ Lp(γ, V ) from the sequence {xn} so that yn converges strongly
to x in Lp(γ, V ). Again by virtue of A being monotone, we have

(35)

∫

I
〈A(dt, y(t)) −A(dt, yn(t)), y(t) − yn(t)〉V ∗,V ≥ 0.
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This inequality is valid for all n ∈ N and hence the limit must also satisfy
the inequality,

(36)

∫

I
〈A(dt, y(t)) − a(dt), y(t) − x(t)〉V ∗,V ≥ 0, ∀ y ∈ Lp(γ, V ).

For any θ > 0, and w ∈ Lp(γ, V ) arbitrary, take y = x+ θw. Using this y in
the above inequality we obtain,

(37)

∫

I
〈A(dt, x(t)+θw(t))−a(dt), θw(t)〉V ∗,V ≥ 0, ∀ θ > 0, w ∈ Lp(γ, V ).

Dividing by θ and letting θ ↓ 0 in the above expression, it follows from the
hemicontinuity of A in its second argument that

(38)

∫

I
〈A(dt, x(t)) − a(dt), w(t)〉V ∗,V ≥ 0, ∀ w ∈ Lp(γ, V ).

Since w ∈ Lp(γ, V ) is arbitrary, it follows from (38) that

a(σ) =

∫

σ
A(ds, x(s)),∀ σ ∈ Σ.

This justifies (34). Thus we conclude that along a subsequence, if necessary,

(39)

∫

I
〈A(dt, xn(t)), ϕ(t)vi〉 ≡

∫

I
〈an(dt), ϕ(t)vi〉 −→

∫

I
〈A(dt, x(t)), ϕ(t)vi〉.

It remains to verify that the first term on the right hand side of equation
(29) converges to the desired limit, that is,

∫

I
(f(xn(t)), ϕ(t)vi)γ(dt) −→

∫

I
(f(x(t)), ϕ(t)vi)γ(dt).(40)

Here we use the compact embedding theorem [7, Theorem 3.2, p. 911].
Define the sequence of V ∗ valued vector measure µxn

by

µxn
(ψ) ≡

∫

I
〈ψ(t), µxn

(dt)〉V,V ∗ ≡

∫

I
〈ψ(t), dxn(t)〉V,V ∗ , ψ ∈ Lp(γ, V ).

Since γ is a countably additive bounded positive measure and {xn} is con-
tained in a bounded subset of B(I,H)∩L∞(I,H)∩Lp(γ, V ), it follows from
straightforward computation, using equation (21) and the assumptions (C3)
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and boundedness of Uad as a subset of BVq(γ, F
∗), that {µxn

} ⊂ BVq(γ, V
∗).

Then it follows from the embedding BVq(γ, V
∗) ↪→ BVq(Σ, V

∗), as seen in
section 2, that {µxn

} ⊂ BVq(Σ, V
∗). Thus by definition of Mp,q (see (20))

we have {xn} ⊂ Mp,q. Since the embedding Mp,q ↪→ Lp(γ,H) is compact
we can extract a subsequence of the sequence {xn}, relabeled as {xn}, so
that xn

s
−→ x in Lp(γ,H). Hence there exists a subsequence of the sequence

{xn}, relabeled as {xn}, such that

xn(t)
s

−→ x(t) in H for γ − a.a t ∈ I.

By our assumption f : H −→ H is continuous and hence

f(xn(t))
s

−→ f(x(t)) in H for γ − a.a t ∈ I.

From the growth assumption for f (see equation (9)) and the fact that
{xn, x} satisfy the same bounds as stated in Corollary 4.2, {f(xn)} is dom-
inated by an element from Lp(γ,H). In fact, it is γ-essentially bounded in
H. Thus by the Lebesgue dominated convergence theorem,

f(xn(·))
s

−→ f(x(·)) in Lp(γ,H)

and consequently

(41)

∫

I
(f(xn(t)), ϕ(t)vi)Hγ(dt) −→

∫

I
(f(x(t)), ϕ(t)vi)γ(dt)

proving (40). Combining these results, in particular, (22), (30), (39) and
(41), we arrive at the following identity

(42)

− (ξ, ϕ(0)vi) −

∫

I
(x(t), ϕ̇vi)dt+

∫

I
〈A(dt, x(t)), ϕ(t)vi〉V ∗,V

=

∫

I
(f(x(t)), ϕ(t)vi)γ(dt) +

∫

I
〈B∗(t)ϕ(t)vi, u(dt)〉F,F ∗

for all ϕ ∈ C1
T (I) and for all i ∈ N. Since {vi} is a basis for V , this identity

holds for all v ∈ V. This shows that x is a weak solution of equation (10)
satisfying all the properties as stated. Uniqueness of the solution follows
from monotonicity of the operators A and −f . This completes the proof.

The following result is useful for proving the existence of optimal controls.



Optimal control of systems determined by ... 181

Corollary 4.4. Suppose the assumptions of Theorem 4.3 hold. Then the

control to solution map u −→ x is continuous in the sense that whenever

un
w∗

−→ uo in BVq(γ, F
∗), along a subsequence if necessary, xn

w∗

−→ xo in

L∞(I,H) and xn
w

−→ xo in Lp(γ, V ), where xo is the solution corresponding

to uo.

Proof. Let {un} ⊂ BVq(γ, F
∗) with {xn} being the corresponding se-

quence of weak solutions of the system equation (10). Then by definition,
for every v ∈ V and ϕ ∈ C1

T (I), the following identity holds

(43)

− (ξ, ϕ(0)v) −

∫

I
(xn(t), ϕ̇v)dt+

∫

I
〈A(dt, xn(t)), ϕ(t)v〉V ∗,V

=

∫

I
(f(xn(t)), ϕ(t)v)γ(dt) +

∫

I
〈B∗(t)ϕ(t)v, un(dt)〉F,F ∗ .

Suppose un
w∗

−→ uo and let xo be the weak solution of (10) corresponding

to the control uo. Since un
w∗

−→ uo, the set {un} is contained in a bounded
subset of BVq(γ, F

∗). Thus by virtue of the a-priori bounds (see Corollary
4.2) the corresponding sequence of solutions {xn} is contained in a bounded
subset of L∞(I,H) ∩ Lp(γ, V ) ∩B(I,H). Hence there exists a subsequence
of the sequence {xn}, relabeled as {xn}, and an element xo ∈ L∞(I,H) ∩
Lp(γ, V ) ∩B(I,H) such that

xn
w∗

−→ xo in L∞(I,H)(44)

xn
w

−→ xo in Lp(γ, V ).(45)

Then by virtue of the same arguments as in the proof of Theorem 4.3, along
a subsequence if necessary, we have

∫

I
(xn(t), ϕ̇(t)v)H −→

∫

I
(xo(t), ϕ̇(t)v)H(46)

∫

I
〈A(dt, xn(t)), ϕ(t)v〉V ∗,V −→

∫

I
〈A(dt, xo(t)), ϕ(t)v〉V ∗,V(47)

∫

I
(f(xn(t)), ϕ(t)v)Hγ(dt) −→

∫

I
(f(xo(t)), ϕ(t)v)Hγ(dt)(48)

for every v ∈ V and ϕ ∈ C1
T (I). Letting n −→ ∞ in (43), it follows from

(46)–(48) that



182 N.U. Ahmed

(49)

− (ξ, ϕ(0)v) −

∫

I
(xo(t), ϕ̇v)dt+

∫

I
〈A(dt, xo(t)), ϕ(t)v〉V ∗,V

=

∫

I
(f(xo(t)), ϕ(t)v)γ(dt) +

∫

I
〈B∗(t)ϕ(t)v, uo(dt)〉F,F ∗ .

This shows that xo is a weak solution of equation (10) corresponding to the
control uo. This completes the proof.

5. Existence of optimal controls

In this section, we wish to consider two typical control problems.

(50) P1 : J(u) = Φ
(

‖ x ‖Lp(γ,V )

)

+ ϕ(u) −→ inf,

where both Φ and ϕ are certain functions to be defined shortly. The infimum
is taken over the class of admissible controls Uad ⊂ BVq(γ, F

∗).

The second problem we consider is given by,

(51) P2 : J(u) ≡

∫

I
`(t, x(t))γ(dt) + L(x(T )) + ϕ(u) −→ inf,

where ` : I × H −→ R and L : H −→ R, and ϕ is a nonnegative function
mapping BVq(γ, F

∗) to the set of extended nonnegative real numbers R+ ≡
[0,∞]. More specific examples of ϕ are given later.

First we consider the problem (P1).

Theorem 5.1. Consider the system (10) with the cost functional given

by (50). Suppose Uad is a w∗ sequentially compact subset of BVq(γ, F
∗), the

assumptions of Theorem 4.2 hold, Φ is a nondecreasing lower semicontinuous

function from [0,∞] to R satisfying Φ(s) ≥ c > −∞ for all s ∈ [0,∞],
and the functional ϕ is w∗ lower semicontinuous on BVq(γ, F

∗). Then there

exists an optimal control.

Proof. Since Uad is weak star compact, it suffices to verify that J is weak
star lower semicontinuous on it and bounded away from −∞. Let {un} ⊂ Uad

and suppose un
w∗

−→ uo, and let {xn, xo} denote the corresponding (weak)
solutions of the system (10). Since Uad is bounded, it follows from Corollary
4.2 that {xn} is contained in a bounded subset of B(I,H) ∩ L∞(I,H) ∩
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Lp(γ, V ). Then by virtue of Corollary 4.4, along a subsequence if necessary,

xn
w

−→ xo in Lp(γ, V ) where xo is the solution corresponding to the control
uo. As an easy consequence of the Hahn-Banach theorem,

‖ xo ‖Lp(γ,V )≤ lim inf
n→∞

‖ xn ‖Lp(γ,V ) .

Since Φ is a nondecreasing lower semicontinuous function, it follows from
the above inequality that

Φ(‖ xo ‖Lp(γ,V )) ≤ lim inf
n→∞

Φ(‖ xn ‖Lp(γ,V )).

Combining this with the assumption that ϕ is weak star lower semicontin-
uous on BVq(γ, F

∗), we have

J(uo) ≤ lim inf
n→∞

J(un)

proving w∗ lower semicontinuity of J. Further, it follows from the lower
bound of Φ, that inf{J(u), u ∈ Uad} > −∞. Thus there exists an admissible
control at which J attains its infimum.

For the functional ϕ, one may like to choose ϕ(u) = g(‖ u ‖BVq(γ,F ∗)) where
g is a nonnegative, nondecreasing scalar function possibly lower semicon-
tinuous on [0,∞]. Physical motivation for such a choice is that the norm
functional in this case is a measure of oscillation of controls or, equivalently,
frequency of changes in control. Frequent changes in control are costly and
also undesirable from stability point of view and so must be contained.
Unfortunately, ϕ may not be w∗ lower semicontinuous even though g is
lower semicontinuous in its argument. This is because the norm functional
u −→‖ u ‖ ≡ N(u) is not always lower semicontinuous. However, by
virtue of the theory of lifting (see [11], p. 115), every element of BVq(γ, F

∗)
admits a weak star density. That is for each u ∈ BVq(γ, F

∗) there exists
an f ∈ Lw

q (γ, F ∗) such that du = fdγ, where Lw
q (γ, F ∗) denotes the class

of scalarly measurable functions whose scalar product with an element from
Lp(γ, F ) is measurable and Lebesgue integrable. In case both F and F ∗

satisfy RNP (Radon-Nikodym Property), f can be chosen from the strongly
measurable class Lq(γ, F

∗) and the norm is given by

N(u) =‖ f ‖Lq(γ,F ∗) .
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Thus u→ f is an isomorphism and BVq(γ, F
∗) and Lq(γ, F

∗) are isometri-
cally isomorphic. If F is reflexive, the dual of Lq(γ, F

∗) is precisely Lp(γ, F ).
In this case u −→ N(u) is weak star lower semicontinuous and consequently
we can have

ϕ(u) ≡ g(‖ u ‖BVq(γ,F ∗))

with any lower semicontinuous, nonnegative, nondecreasing function g.

Next we consider problem (P2). We prove the following result.

Theorem 5.2. Consider the system (10) with the cost functional given

by (51). Suppose Uad is a w∗ sequentially compact subset of BVq(γ, F
∗),

the assumptions of Theorem 4.3 hold, ` : I × H −→ R is measurable in

the first argument and lower semicontinuous in the second and there exist

h0, h1 ∈ L1(γ) such that

h0(t) ≤ `(t, ξ) ≤ h1(t) + c1|ξ|
p
H γ − a.a t ∈ I

and L : H −→ R is weakly lower semicontinuous and there exists a constant

c2 ∈ R such that L(ξ) ≥ c2 for all ξ ∈ H, and the functional ϕ is w∗ lower

semicontinuous on BVq(γ, F
∗). Then there exists an optimal control.

Proof. We rewrite J(u) as

(52) J(u) ≡

∫

I
`(t, x(t))γ(dt) + L(x(T )) + ϕ(u) ≡ J1(u) + ϕ(u),

where J1(u) denotes the sum of the first two terms of the objective func-
tional. Since ϕ is w∗ (weak star) lower semicontinuous, it suffices to verify
that J1 is weak star lower semicontinuous and bounded away from −∞.
The fact that J1(u) > −∞ follows from the lower bounds of ` and L as

stated in the theorem. We prove w∗-lower semicontinuity. Let un
w∗

−→ uo

in BVq(γ, F
∗) and let {xn, xo} ∈ L∞(I,H) ∩Lp(γ, V ) ∩B(I,H) denote the

corresponding sequence of (weak) solutions of the system (10). Then by
Corollary 4.4, there exists a subsequence, relabeled as the original sequence,
such that xn

w
−→ xo in Lp(γ, V ). Again, by virtue of the compact embedding,

Mp,q ↪→ Lp(γ,H), as stated in the proof of Theorem 4.3, we can extract a
subsequence of the sequence {xn}, relabeled as the original sequence, such
that xn

s
−→ xo in Lp(γ,H). Hence one can extract a subsequence of this
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sequence that converges pointwise to the same limit for γ almost all t ∈ I.
Since ` is lower semicontinuous in the second argument on H, we have

`(t, xo(t)) ≤ lim inf
n→∞

`(t, xn(t)), γ − a.a. t ∈ I.

Hence by extended Fatou’s lemma we have

(53)

∫

I
`(t, xo(t))γ(dt) ≤ lim inf

n→∞

∫

I
`(t, xn(t))γ(dt).

For the terminal cost, first note that by virtue of boundedness of the admis-
sible controls Uad, it follows from (18) and (17) that {xn(T )} is contained
in a bounded subset of H which is weakly relatively compact. Thus along
a subsequence, if necessary, it follows from weak lower semicontinuity of L
that we have

(54) L(xo(T )) ≤ lim inf
n→∞

L(xn(T )).

Clearly, using a common subsequence if necessary, it follows from (53) and
(54) that u → J1(u) is w∗ lower semicontinuous. Since by our assumption,
the map u −→ ϕ(u) is weak star lower semicontinuous, we conclude that
u −→ J(u) is w∗ lower semicontinuous. Hence due to w∗-sequential com-
pactness of the set Uad, J attains its infimum on it. This proves the existence
of an optimal control.

6. An example

A classical example of a strongly nonlinear parabolic problem representing
nonlinear diffusion (for example heat flow) with the homogeneous Dirichlet
boundary condition is given by

∂ψ(t, ξ)/∂t − div Φ(t,Oψ) + c(t, ξ)ψ = h(t, ξ), (t, ξ) ∈ I × Ω,

ψ(0, ξ) = φ(ξ), ξ ∈ Ω, ψ|∂Ω(t, ξ) = 0, ξ ∈ ∂Ω,

where Ω is a bounded open connected domain with smooth boundary ∂Ω.
We are interested in the measure version of this example including controls.
This occurs when the fundamental parameters are vector valued measures.
In that case the model is written as

∂ψ(t, ξ) − div Φ(dt,Oψ) + c(dt, ξ)ψ = div(b(t, ξ)u(dt, ξ)), (t, ξ) ∈ I × Ω,

ψ(0, ξ) = φ(ξ), ξ ∈ Ω, ψ|∂Ω(t, ξ) = 0, ξ ∈ ∂Ω,(55)



186 N.U. Ahmed

where c : Σ × Ω −→ R, and u : Σ × Ω −→ R are set functions in the
first argument defined on Σ ≡ σ(I) and measurable in the second, and
b : I × Ω −→ Rn is measurable. The operator Φ : Σ × Rn −→ Rn is a
set function with respect to the first argument and a point function in the
second argument and continuous from Rn to Rn satisfying the following
properties:

There exist two countably additive bounded nonnegative measures
γ(·), β(·) (not necessarily nonatomic) and nonnegative constants c1, c2 such
that

(1): (Φ(σ, ζ), ζ) + β(σ)|ζ|2 ≥ γ(σ)|ζ|p, for all σ ∈ Σ, ζ ∈ Rn

(2): |Φ(σ, ζ)| ≤ γ(σ){c1 + c2|ζ|
p−1}, for all σ ∈ Σ, ζ ∈ Rn

(3): (Φ(σ, ζ) − Φ(σ, η), ζ − η) ≥ 0, for all σ ∈ Σ, ζ, η ∈ Rn

(4): c(σ, ξ) ≥ β(σ) ∀ σ ∈ Σ, ξ ∈ Ω.

Let {p, q} be the conjugate pairs as defined in Section 4 and W 1,p
0 (Ω), p ≥ 2,

denote the standard Lp-Sobolev space with the dual W−1,q(Ω). For this ex-

ample, the appropriate vector spaces are V ≡W 1,p
0 (Ω) and V ∗ ≡W−1,q(Ω).

Since p ≥ 2 we can take H ≡ L2(Ω). Thus we have the required Gelfand
triple V ↪→ H ↪→ V ∗ with continuous, dense and compact embeddings. By
use of integration by parts, it is easy to verify that the operator A, subject
to the homogeneous Dirichlet boundary condition, defined by

A(σ, ψ) ≡ −div Φ(σ,Oψ) + c(σ, ·)ψ(56)

satisfies the following properties:

(a1): A : Σ × V −→ V ∗,

(a2): 〈A(σ,w), w〉V,V ∗ + 2β(σ)|w|2H ≥ γ(σ) ‖ w ‖p
V ,∀ w ∈ V, σ ∈ Σ,

(a3): there exists a nonnegative constant c, dependent on c1, c2 and the
Lebesgue measure of the set Ω, and the embedding constants V ↪→ H
such that

‖ A(σ,w) ‖V ∗≤ cγ(σ)
{

1+ ‖ w ‖
p/q
V

}

.

(a4): 〈A(σ,w) −A(σ, v), w − v〉V ∗,V ≥ 0 ∀ w, v ∈ V.

Further, the reader can verify that A is hemicontinuous from V to V ∗. Note
that the operator A defined above contains p-Laplacian as a special case.
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The control operator is defined as follows:

B(t)u(σ) ≡ div {b(t, ·)u(σ, ·)}, t ∈ I, σ ∈ Σ.

We assume that b : I × Ω −→ Rn, is bounded measurable and that

b̂ ≡ sup {|b(t, ξ)|Rn , (t, ξ) ∈ I × Ω} <∞,

and choose F ∗ ≡ Lq(Ω). It is clear from this choice that B(t) : F ∗ −→ V ∗

for all t ∈ I. Indeed, for any η ∈ V ≡ W 1,p
0 (Ω), it follows from integration

by parts that

〈B(t)u(σ), η〉V ∗,V =

∫

Ω
div(b(t, ξ)u(σ, ξ)) η(ξ)dξ

= −

∫

Ω
(b(t, ξ)u(σ, ξ),Oη)Rndξ.

From this it follows that

|〈B(t)u(σ), η〉V ∗,V | ≤ b̂ ‖ u(σ) ‖Lq(Ω)‖ η ‖
W 1,p

0
(Ω)

≡ b̂ ‖ u(σ) ‖Lq(Ω)‖ η ‖V , ∀ η ∈ V.

This verifies that

‖ B(t)u(σ) ‖V ∗≤ b̂ ‖ u(σ) ‖Lq(Ω) ∀ σ ∈ Σ.

Thus, introducing the vector valued function x(t) ≡ ψ(t, ·), the system given
by equation (55) can be formulated in the abstract form

dx+A(dt, x) = B(t)u(dt), x0 ≡ φ(·).(57)

Assuming that u ∈ BVq(γ, F
∗), the existence and regularity of solutions

of the system (57) and hence those of the homogeneous Dirichlet initial
boundary value problem (55) follow from Theorem 4.2.

An interesting control problem is: find a control from the set

Uad ≡ {u ∈ BVq(γ, F
∗) :‖ u ‖BVq(γ,F ∗)≤ r <∞}

that minimizes the functional

J(u) ≡

∫

I
|x(t) − xd(t)|

p
Hγ(dt)+ ‖ u ‖BVq(γ,F ∗),(58)
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where xd ∈ Lp(γ,H) is a given (desired) trajectory and x is the weak solu-
tion of (57) corresponding to the control u. By virtue of the theory of lift-
ing BVq(γ, F

∗) ∼= (Lp(γ, F ))∗ = Lw
q (γ, F ∗) where Lw

q (γ, F ∗) is the class of
scalarly measurable F ∗ valued functions whose scalar product with elements
from Lp(γ, F ) is Lebesgue integrable. Since for this example F ∗ = Lq(Ω),
1 < q <∞, it is a reflexive Banach space and hence it satisfies RNP( Radon-
Nikodym Property) and so Lw

q (γ, F ∗) = Lq(γ, F
∗). Further, each element of

BVq(γ, F
∗) admits a w∗ density in the sense that for each u ∈ BVq(γ, F

∗)
there exists a unique f ∈ Lq(γ, F

∗) such that du = fdγ. Thus the map
u −→ f is an isometric isomorphism and

‖ u ‖BVq(γ,F ∗)=‖ f ‖Lq(γ,F ∗) .

Hence the set Uad can be identified with the closed ball Br(Lq(γ, F
∗)) and the

BVq(γ, F
∗) norm is weak star lower semicontinuous. Clearly, this set is also

weakly compact and since compactness is preserved under isomorphism, Uad

is w∗-compact. Thus the cost functional (58) satisfies all the assumptions
of Theorem 5.2. Hence an optimal control exists.

Open Problems: An interesting problem that remains to be solved is the
development of necessary (and possibly sufficient) conditions of optimality.
This will certainly require some stronger regularity properties for the maps
v −→ A(σ, v) from V to V ∗ and f : H −→ H.
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