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Abstract

We show the existence result of viable solutions to the second-order
differential inclusion

ẍ(t) ∈ F (t, x(t), ẋ(t)),

x(0) = x0, ẋ(0) = y0, x(t) ∈ K on [0, T ],

where K is a closed subset of a separable Banach space E and F (·, ·, ·)
is a closed multifunction, integrably bounded, measurable with respect
to the first argument and Lipschitz continuous with respect to the third
argument.
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1. Introduction

The aim of this paper is to establish the existence of local solutions of the
second-order viability problem:











ẍ(t) ∈ F (t, x(t), ẋ(t)) a.e.;

(x(0), ẋ(0)) = (x0, y0);

(x(t), ẋ(t)) ∈ K × Ω;

(1.1)

where K (resp. Ω) is a closed subset (resp. an open subset) of a separable
Banach space E and F : [0, 1] × K ×Ω → 2E is a measurable multifunction
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with respect to the first argument and Lipschitz continuous with respect to
the third argument.

Second-order viability problem was first introduced by Cornet and Had-
dad [5]. The purpose was to study a problem of type:











ẍ(t) ∈ Q(x(t), ẋ(t)) a.e;

(x(0), ẋ(0)) = (x0, y0);

(x(t), ẋ(t)) ∈ Gr(TK), K ⊂ R
n;

(1.2)

where Q is a convex multifunction and Gr(TK) is the graph of the multi-
function x 7→ TK(x): the contingent cone at x. In order to obtain solutions
of the problem (1.2), Cornet and Haddad imposed stronger conditions on
the viability set K and the tangent vector y0, namely K = L∩M, y0 belongs
to TL(x0) ∩ TIM (x0) and Gr(TK) is locally compact. Here TIM (x0) is the
interior tangent cone introduced by Dubovitskij and Muljitin [6].

Another line of research appeared later, it considers the second order
viability problems without convexity. Two kinds of problems are studied in
this topic. In the first one, the space of state constraints is finite-dimensional
(see [3, 9, 10]). In this work, the right hand-side is upper semi-continuous
and cyclically monotone. Proof technics are based on Ascoli’s theorem and
the basic relation

d

dt
V (x(t)) = ‖ẋ(t)‖2,

where V is a convex and lower semi-continuous function whose subdifferen-
tial ∂V contains the right-hand side. The non-convex case in Hilbert space
has been studied by Morchadi and Sajid [11]. The authors proved the exis-
tence of solution for a second-order viability problem without convexity and
compactness of the right-hand side of the inclusion. However, the viability
set is convex. Their approach is based on the Baire category theorem. See
also the work of Ibrahim and Alkulaibi [2].

First-order viability problem with the non-convex Carathéodory Lips-
chitzean right-hand side in Banach space has been studied recently by Duc
Ha [7]. The author establishes a multi-valued version of Larrieu’s work [8],
assuming the following tangential condition:

lim inf
h7→0+

1

h
e

(

x +

∫ t+h

t

F (s, x)ds,K

)

= 0,
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where K is the viability set and e(., .) denotes the Hausdorff’s excess.
In this paper we extend this result to the second-order case with the

following tangential condition:

(1.3) lim inf
h7→0+

1

h2
e

(

x + hy +
h

2

∫ t+h

t

F (s, x, y)ds,K

)

= 0.

The case deserves mentioning: when F is compact values in finite-dimensional
space and does not depend on time s. The condition (1.3) becomes

lim inf
h7→0+

1

h2
e

(

x + hy +
h2

2
F (x, y),K

)

= 0,

which is equivalent to the following relation:

∀v ∈ F (x, y) lim inf
h7→0+

1

h2
dK

(

x + hy +
h2

2
v

)

= 0,

i.e., F (x, y) is contained in the set second-order tangent of K at (x, y) in-
troduced by Ben-Tal and defined by:

AK(x, y) =

{

z ∈ E : lim inf
h7→0+

1
h2

2

dK

(

x + hy +
h2

2
z

)

= 0

}

.

This condition was used in [1, 9, 10].

2. Preliminaries and statement of the main result

Let E be a separable Banach space with the norm ‖ · ‖. For measurability
purposes, E (resp. Ω ⊂ E) is endowed with the σ-algebra B(E) (resp. B(Ω))
of Borel subsets for the strong topology and [0, 1] is endowed with Lebesgue
measure and the σ-algebra of Lebesgue measurable subsets. For x ∈ E and
r > 0 let B(x, r) := {y ∈ E; ‖ y−x ‖< r} be the open ball centered at x with
radius r and B̄(x, r) be its closure and put B = B(0, 1). For x ∈ E and for
nonempty sets A,B of E we denote dA(x) or d(x,A) := inf{‖ y−x ‖; y ∈ A},
e(A,B) := sup{dB(x);x ∈ A} and H(A,B) := max{e(A,B), e(B,A)}. A
multifunction is said to be measurable if its graph is measurable. For more
details on measurability theory, we refer the reader to the book of Castaing-
Valadier [4].
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Let us recall the following Lemmas that will be used in the paper. For the
proofs, we refer the reader to [12].

Lemma 2.1. Let Ω be a nonempty set in E. Assume that F : [a, b]×Ω → 2E

is a multifunction with nonempty closed values satisfying:

• For every x ∈ Ω, F (·, x) is measurable on [a, b];

• For every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on Ω.

Then for any measurable function x(·) : [a, b] → Ω, the multifunction
F (·, x(·)) is measurable on [a, b].

Lemma 2.2. Let G : [a, b] → 2E be a measurable multifunction and y(·) :
[a, b] → E a measurable function. Then for any positive measurable function
r(·) : [a, b] → R

+, there exists a measurable selection g(·) of G such that for
almost all t ∈ [a, b]

‖g(t) − y(t)‖ ≤ d
(

y(t), G(t)
)

+ r(t).

Assume that the following hypotheses hold:

(H1) K is a nonempty closed subset in E and Ω is a nonempty open subset
in E;

(H2) F : [0, 1] × K × Ω → 2E is a set valued map with nonempty closed
values satisfying

(i) For each (x, y) ∈ K × Ω, t 7→ F (t, x, y) is measurable;

(ii) There exists a function m ∈ L1([0, 1], R+) such that for all t ∈
[0, 1] and for all (x1, y1), (x2, y2) ∈ K × Ω

H
(

F (t, x1, y1), F (t, x2, y2)
)

≤ m(t)‖y1 − y2‖;

(iii) For each bounded subset S of K × Ω, there exists a function
gS ∈ L1([0, 1], R+) such that for all t ∈ [0, 1] and for all (x, y) ∈ S

‖F (t, x, y)‖ := sup
z∈F (t,x,y)

‖z‖ ≤ gS(t);

(H3) (Tangential condition) For every (t, x, y) fixed in [0, 1] × K × Ω,

lim inf
h7→0+

1

h2
e

(

x + hy +
h

2

∫ t+h

t

F (s, x, y)ds,K

)

= 0.
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For any (x0, y0) ∈ K × Ω, consider the problem:











ẍ(t) ∈ F (t, x(t), ẋ(t)) a.e;

x(0) = x0, ẋ(0) = y0;

x(t) ∈ K.

(2.4)

Theorem 2.3. If assumptions (H1), (H2) and (H3) are satisfied, then there
exist T > 0 and an absolutely continuous function x(·) : [0, T ] → E, for
which ẋ(·) : [0, T ] → E is also absolutely continuous such that x(·) is a
solution of (2.4).

3. Proof of the main result

Let r > 0 such that B̄(y0, r) ⊂ Ω and g ∈ L1([0, 1], R+) such that

(3.1) ‖ F (t, x, y) ‖ ≤ g(t) ∀(t, x, y) ∈ [0, 1] × (K ∩ B(x0, r)) × B̄(y0, r).

Let T1 > 0 and T2 > 0 such that

(3.2)

∫ T1

0
m(t)dt < 1 and

∫ T2

0

(

g(t) + r+ ‖ y0 ‖ +1
)

dt <
r

2
.

For ε > 0 there exists η(ε) > 0 such that

(3.3)

∣

∣

∣

∣

∣

∫ t2

t1

g(τ)dτ

∣

∣

∣

∣

∣

< ε whenever |t1 − t2| < η(ε).

Set

(3.4) T = min
{

T1, T2, 1
}

and α = min

{

T,
1

2
η(

ε

4
),

ε

4

}

.

We will use the following approximation Lemma to prove the main result.

Lemma 3.1. If assumptions (H1)–(H3) are satisfied, then for all ε > 0
and for all y ∈ L1([0, T ], E), there exist f ∈ L1([0, T ], E), z : [0, T ] → E

differentiable and a step function θ : [0, T ] → [0, T ] such that

• f(t) ∈ F
(

t, z(θ(t)), ż(θ(t))
)

for all t ∈ [0, T ];
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•
∥

∥f(t) − y(t)
∥

∥ ≤ d
(

y(t), F
(

t, z(θ(t)), ż(θ(t)
)

)

+ ε for all t ∈ [0, T ];

•
∥

∥

∥
ż(t) − y0 −

∫ t

0 f(τ)dτ
∥

∥

∥
≤ ε for all t ∈ [0, T ].

Proof. By (H3), for (0, x0, y0), we have

lim inf
h7→0+

1

h2
e

(

x0 + hy0 +
h

2

∫ h

0
F (s, x0, y0)ds,K

)

= 0.

Hence, there exists 0 < h ≤ α such that

e

(

x0 + hy0 +
h

2

∫ h

0
F (s, x0, y0)ds,K

)

<
αh2

4
.

Put

h0 := max

{

h ∈]0, α] : e

(

x0 + hy0 +
h

2

∫ h

0
F (s, x0, y0)ds,K

)

≤
αh2

4

}

.

In view of Lemma 2.2, there exists a function f0 ∈ L1([0, h0], E) such that
for all t ∈ [0, h0], one has

f0(t) ∈ F (t, x0, y0) and ‖f0(t) − y(t)‖ ≤ d
(

y(t), F (t, x0, y0)
)

+ ε.

Moreover, it is clear that

dK

(

x0 + h0y0 +
h0

2

∫ h0

0
f0(s)ds

)

≤
αh2

0

4
.

So, there exists x1 ∈ K such that

2

h2
0

∥

∥

∥

∥

∥

x1 −

(

x0 + h0y0 +
h0

2

∫ h0

0
f0(s)ds

)∥

∥

∥

∥

∥

≤
2

h2
0

dK

(

x0 + h0y0 +
h0

2

∫ h0

0
f0(s)ds

)

+
α

4
,

hence
∥

∥

∥

∥

∥

x1 − x0 − h0y0

h2
0

2

−
1

h0

∫ h0

0
f0(s)ds

∥

∥

∥

∥

∥

< α.
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Set

u0 =
x1 − x0 − h0y0

h2
0

2

,

then

(3.5) x1 = x0 + h0y0 +
h2

0

2
u0 ∈ K and u0 ∈

1

h0

∫ h0

0
f0(s)ds + αB.

Put y1 = y0 + h0u0. Since f0(t) ∈ F (t, x0, y0) for all t ∈ [0, h0], by (3.1),
(3.2) and (3.4), we have

‖x1 − x0‖ =

∥

∥

∥

∥

h0y0 +
h2

0

2
u0

∥

∥

∥

∥

≤ h0‖y0‖ +
h0

2

∫ h0

0
g(s)ds +

h2
0

2
α

≤ h0‖y0‖ +

∫ h0

0
g(s)ds + h0 =

∫ h0

0

(

g(s) + ‖y0‖ + 1
)

ds <
r

2
.

Then x1 ∈ B(x0, r). Also by (3.5), we have

‖y1 − y0‖ = ‖h0u0‖ ≤

∫ h0

0
g(s)ds + h0α ≤

∫ h0

0

(

g(s) + 1
)

ds <
r

2
.

Then y1 ∈ B(y0, r).

We reiterate this process for constructing sequences hq, tq, xq, yq, fq and
uq satisfying for some rank m ≥ 1 the following assertions:

(a) For all q ∈ {0, . . . ,m − 1}

hq := max

{

h ∈]0, α] : e

(

xq + hyq +
h

2

∫ tq+1

tq

F (s, xq, yq)ds,K

)

≤
αh2

4

}

(b) t0 = 0, tm−1 < T ≤ tm with tq =
∑q−1

j=0 hj for all q ∈ {1, . . . ,m};

(c) For all q ∈ {1, . . . ,m}

xq =

(

x0 +

q−1
∑

j=0

hjyj +

q−1
∑

j=0

h2
j

2
uj

)

∈ K ∩ B(x0, r)
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and

yq =

(

y0 +

q−1
∑

j=0

hjuj

)

∈ B(y0, r);

(d) For all q ∈ {0, . . . ,m − 1}, for every t ∈ [tq, tq+1]

uq ∈
1

hq

∫ tq+1

tq

fq(s)ds + αB, fq(t) ∈ F (t, xq, yq)

and

‖fq(t) − y(t)‖ ≤ d
(

y(t), F (t, xq , yq)
)

+ ε;

(e) For all q ∈ {0, . . . ,m − 1}
∥

∥

∥

∥

∥

yq+1 − yq −

∫ tq+1

tq

fq(t)dt

∥

∥

∥

∥

∥

< hqα.

It is easy to see that for q = 1, the assertions (a)–(e) are fulfilled. Let now
q ≥ 2. Assume that (a)–(e) are satisfied for any j = 1, . . . , q. If T ≤ tq+1,

then we take m = q + 1 and so the process of iterations is stopped and we
get (a)–(e) satisfied with tm−1 < T ≤ tm. In the other case: tq+1 < T, we
define xq+1 and yq+1 as follows

xq+1 := xq + hqyq +
h2

q

2
uq = x0 +

q
∑

j=0

hjyj +

q
∑

j=0

h2
j

2
uj ∈ K,

and

yq+1 := yq + hquq = y0 +

q
∑

j=0

hjuj.

By (3.1), (3.2) and (3.4), we have

‖xq+1− x0‖≤

q
∑

j=0

hj‖yj‖ +

q
∑

j=0

h2
j

2
‖uj‖≤

q
∑

j=0

hj‖yj− y0‖ + hj‖y0‖ + ‖hjuj‖

≤

q
∑

j=0

hj

(

r + ‖y0‖
)

+

q
∑

j=0

∫ tj+1

tj

‖fj(t)‖dt + αhj

≤

∫ tq+1

0

(

g(t) + r + ‖y0‖ + 1
)

dt < r,
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which ensures that xq+1 ∈ K ∩ B(x0, r). Also we have

‖yq+1−y0‖ ≤

q
∑

j=0

‖hjuj‖ ≤

q
∑

j=0

∫ tj+1

tj

‖fj(t)‖dt+αhj ≤

∫ tq+1

0

(

g(t)+1
)

dt < r,

so that yq+1 ∈ B(y0, r). Thus the conditions (a)–(e) are satisfied for q + 1.

Now, we have to prove that this iterative process is finite, i.e., there
exists a positive integer m such that tm−1 < T ≤ tm. Suppose the contrary:
tq ≤ T for all q ≥ 1. Then the bounded increasing sequence (tq)q converges
to some t̄ such that t̄ ≤ T . By (c) and (d), for q > p we get

‖xq − xp‖ ≤

q−1
∑

j=p

hj‖yj‖ +

q−1
∑

j=p

h2
j

2
‖uj‖

≤

q−1
∑

j=p

hj

(

‖yj − y0‖ + ‖y0‖
)

+

q−1
∑

j=p

h2
j

2

1

hj

∫ tj+1

tj

‖fj(s)‖ds + α

q−1
∑

j=p

h2
j

2

≤
(

r + ‖y0‖ + α
)

q−1
∑

j=p

hj +

q−1
∑

j=p

∫ tj+1

tj

g(s)ds

≤

∫ tq

tp

g(t)dt + (tq − tp)
(

‖ y0 ‖ +r + 1
)

,

and

‖yq − yp‖ ≤

q−1
∑

j=p

hj‖uj‖ ≤

q−1
∑

j=p

hj
1

hj

∫ tj+1

tj

‖fj(s)‖ds + α

q−1
∑

j=p

hj

≤

q−1
∑

j=p

∫ tj+1

tj

g(s)ds + α

q−1
∑

j=p

hj ≤

∫ tq

tp

g(t)dt + tq − tp.

The last terms of the above tow inequalities converge to 0 when p, q → +∞,

then (xq)q and (yq)q are Cauchy sequences, and hence they converge to some
x̄ ∈ K and ȳ ∈ B̄(y0, r) respectively. As (t, x̄, ȳ) ∈ [0, T ] × K × Ω, by (H3),
there exist h ∈]0, α] and an integer q0 ≥ 1 such that for all q ≥ q0



14 M. Aitalioubrahim and S. Sajid































































e

(

x + hȳ + h
2

∫ t̄+h

t̄
F (s, x̄, ȳ)ds,K

)

≤ h2α
30 ;

‖xq − x‖ ≤ h2α
30 ;

‖yq − y‖ ≤ hα
30 ;

t̄ − tq < min{η( 2hα
30 ), h};

‖ yq − ȳ ‖
∫ t̄+h

t̄
m(t)dt ≤ 2hα

30 .

(3.6)

Let q > q0 be given. For an arbitrary measurable selection φq of F (t, xq, yq)
on [0, t̄ + h], there exists a measurable selection φ of F (t, x̄, ȳ) on [0, t̄ + h]
such that

(3.7) ‖φq(t) − φ(t)‖ ≤ d
(

φq(t), F (t, x̄, ȳ)
)

+
2α

30
≤ m(t)‖yq − ȳ‖ +

2α

30
.

Relations (3.6) and (3.7) ensure

dK

(

xq + hyq +
h

2

∫ tq+h

tq

φq(s)ds

)

≤ ‖xq − x‖ + h‖yq − y‖ +
h

2

∫ t̄

tq

‖φq(s)‖ds + dK

(

x + hȳ +
h

2

∫ t̄+h

t̄

φ(s)ds

)

+
h

2

∫ tq+h

t̄

‖φq(s) − φ(s)‖ds +
h

2

∫ t̄+h

tq+h

‖φ(s)‖ds

≤ ‖xq − x‖ + h‖yq − y‖ +
h

2

∫ t̄

tq

g(s)ds + dK

(

x + hȳ +
h

2

∫ t̄+h

t̄

φ(s)ds

)

+
h

2

∫ t̄+h

t̄

m(s) ‖ yq − ȳ ‖ ds +
h2α

30
+

h

2

∫ t̄+h

tq+h

g(s)ds

≤
h2α

30
+

h2α

30
+

h2α

30
+

h2α

30
+

h2α

30
+

h2α

30
+

h2α

30
<

h2α

4
.



Second-order viability result in Banach spaces 15

Since φq is an arbitrary measurable selection of F (t, xq, yq) on [0, t̄ + h], it
follows that

e

(

xq + hyq +
h

2

∫ tq+h

tq

F (t, xq, yq)ds,K

)

≤
h2α

4
.

On the other hand, by (3.6), we have

tq+1 ≤ t < tq + h ≤ T, and hence h > tq+1 − tq = hq.

Finally h > hq, 0 < h ≤ α and

e

(

xq + hyq +
h

2

∫ tq+h

tq

F (t, xq, yq)ds,K

)

≤
h2α

4
.

This contradicts the maximality of hq. Therefore, there exists an integer
m ≥ 1 such that tm−1 < T ≤ tm and for which assertions (a)–(e) are
fulfilled.

Now, we take tm = T and we define the function θ : [0, T ] → [0, T ],
z : [0, T ] → E and f ∈ L1([0, T ], E) by setting for all t ∈ [tq, tq+1[

θ(t) = tq, f(t) = fq(t), z(t) = xq + (t − tq)yq +
(t − tq)

2

2
uq.

Claim 3.2. For all q ∈ {0, . . . ,m} we have

∥

∥

∥

∥

∥

yq − y0 −

∫ tq

0
f(s)ds

∥

∥

∥

∥

∥

≤ αtq.

Proof. Obviously, for q = 0 the above assertion is fulfilled. By induction,
assume that

∥

∥

∥

∥

∥

yj − y0 −

∫ tj

0
f(s)ds

∥

∥

∥

∥

∥

≤ αtj .
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For any j = 1, . . . , q − 1. By (d) we have

∥

∥

∥

∥

∥

yq − y0 −

∫ tq

0
f(s)ds

∥

∥

∥

∥

∥

=

=

∥

∥

∥

∥

∥

yq−1 − y0 −

∫ tq−1

0
f(s)ds + hq−1uq−1 −

∫ tq

tq−1

f(s)ds

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

yq−1 − y0 −

∫ tq−1

0
f(s)ds

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

hq−1uq−1 −

∫ tq

tq−1

f(s)ds

∥

∥

∥

∥

∥

≤ αtq−1 + αhq−1 = αtq−1 + αtq − αtq−1 = αtq.

Now let t ∈ [tq, tq+1], then by Claim 3.2, relations (3.1), (3.4) and (d), we
have

∥

∥

∥

∥

∥

ż(t) − y0 −

∫ t

0
f(s)ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

yq − y0 −

∫ tq

0
f(s)ds + (t − tq)uq −

∫ t

tq

f(s)ds

∥

∥

∥

∥

∥

≤

∥

∥

∥

∥

∥

yq − y0 −

∫ tq

0
f(s)ds

∥

∥

∥

∥

∥

+ ‖hquq‖ +

∫ tq+1

tq

g(s)ds

≤ αtq + 2

∫ tq+1

tq

g(s)ds + αhq ≤
ε

4
+

ε

2
+

ε

4
= ε.

The proof of Lemma 3.1 is complete.

Proof of Theorem 2.3. Let (εn)n≥1 be a strictly decreasing sequence of
positive scalars such that

∑∞
n=1 εn < ∞. In view of Lemma 3.1, we can define

inductively sequences (fn(·))n≥1 ⊂ L1([0, T ], E), (zn(·))n≥1 ⊂ C1([0, T ], E)
and (θn(·))n≥1 ⊂ S([0, T ], [0, T ]), where S([0, T ], [0, T ]) denotes the space of
step functions from [0, T ] into [0, T ] such that

(1) fn(t) ∈ F
(

t, zn(θn(t)), żn(θn(t))
)

for all t ∈ [0, T ];

(2)
∥

∥fn+1(t)−fn(t)
∥

∥ ≤ d
(

fn(t), F
(

t, zn+1(θn+1(t)), żn+1(θn+1(t))
)

)

+ εn+1

for all t ∈ [0, T ];

(3)
∥

∥

∥
żn(t) − y0 −

∫ t

0 fn(τ)dτ
∥

∥

∥
≤ εn for all t ∈ [0, T ].
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By (1) and (2) we have

∥

∥fn+1(t) − fn(t)
∥

∥

≤ H
(

F
(

t, zn(θn(t)), żn(θn(t))
)

, F
(

t, zn+1(θn+1(t)), żn+1(θn+1(t))
)

)

+ εn+1

≤ m(t)
∥

∥żn(θn(t)) − żn+1(θn+1(t))
∥

∥+ εn+1

≤ m(t)
(

∥

∥żn(θn(t))−żn(t)
∥

∥+
∥

∥żn(t)−żn+1(t)
∥

∥+
∥

∥żn+1(t) − żn+1(θn+1(t))
∥

∥

)

+ εn+1.

On the other hand, for t ∈ [tq, tq+1[ we have

∥

∥żn(t) − żn(θn(t))
∥

∥ =
∥

∥żn(t) − żn(tq)
∥

∥

≤

∥

∥

∥

∥

∥

żn(t) − y0 −

∫ t

0
fn(s)ds

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

yq − y0 −

∫ tq

0
fn(s)ds

∥

∥

∥

∥

∥

+

∫ t

tq

‖fn(s)‖ds

≤ εn + αtq +

∫ t

tq

g(s)ds ≤ εn +
εn

4
+

εn

4
,

hence

∥

∥żn(t) − żn(θn(t))
∥

∥ ≤ 2εn.(3.8)

Thus, we get

∥

∥fn+1(t) − fn(t)
∥

∥ ≤ m(t)
(

2εn + 2εn+1 + ‖żn − żn+1‖∞

)

+ εn+1

≤ m(t)
(

4εn + ‖żn − żn+1‖∞

)

+ εn+1.(3.9)

Relations (3.2) and (3.9) yield
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‖ żn+1(t) − żn(t) ‖

≤

∥

∥

∥

∥

∥

żn+1(t) − y0 −

∫ t

0
fn+1(s)ds

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

żn(t) − y0 −

∫ t

0
fn(s)ds

∥

∥

∥

∥

∥

+

∫ t

0
‖ fn+1(s) − fn(s) ‖ ds

≤ εn+1 + εn +

∫ t

0
m(s)

(

‖ żn(·) − żn+1(·) ‖∞ +4εn

)

ds + tεn

≤ 7εn+ ‖ żn(·) − żn+1(·) ‖∞

∫ T

0
m(s)ds.

Then

‖ żn(·) − żn+1(·) ‖∞ ≤
7εn

1 − L
,(3.10)

where L =
∫ T

0 m(s)ds. Hence for, n < m, it follows that

‖ żm(·) − żn(·) ‖∞ ≤
7

1 − L

m−1
∑

i=n

εi.

Thus the sequence (żn(·))n≥1 converges uniformly on [0, T ] to a function
y(·).

On the other hand, observe that żn(θn(t)) converges uniformly to y(t)
on [0, T ]. Indeed, by (3.8) since

‖ żn(θn(t)) − y(t) ‖ ≤ ‖ żn(t) − żn(θn(t)) ‖ + ‖ żn(t) − y(t) ‖

then (żn(·)) converges uniformly to y(·).

Thus

(3.11) żn(θn(·)) converges uniformly to y(·) on [0, T ].

By construction, we have żn(θn(t)) ∈ B(y0, r) for every t ∈ [0, T ], then
y(t) ∈ Ω for all t ∈ [0, T ].

Now we return to relation (3.9). By relation (3.10) we have
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∥

∥fn+1(t) − fn(t)
∥

∥ ≤ m(t)
(

4εn+ ‖ żn(·) − żn+1(·) ‖∞

)

+ εn

≤

(

m(t)
(

4 +
7

1 − L

)

+ 1

)

εn.

This implies (as above) that (fn(t))n≥1 is a Cauchy sequence and (fn(·))n≥1

converges point-wisely to f(·). Further, since ‖fn(t)‖ ≤ g(t), by (3) and by
Lebesgue dominated convergence theorem, we have

y(t) = lim
n→∞

żn(t) = lim
n→∞

(

y0 +

∫ t

0
fn(s)ds

)

= y0 +

∫ t

0
f(s)ds.

Hence ẏ(t) = f(t). Since for n < m

‖żm(·) − żn(·)‖∞ ≤
7

1 − L

m−1
∑

i=n

εi,

then we have for all t ∈ [0, T ]

‖zm(t) − zn(t)‖ ≤

∫ t

0
‖żm(s) − żn(s)‖ds ≤

7

1 − L

m−1
∑

i=n

εi.

Thus the sequence (zn(·))n≥1 converges uniformly on [0, T ] to a function
x(·). Also the relation

zn(t) = x0 +

∫ t

0
żn(s)ds

yields

x(t) = x0 +

∫ t

0
y(s)ds.

Therefore, ẋ(t) = y(t) for all t ∈ [0, T ].

On the other hand, observe that zn(θn(t)) converges uniformly to x(t)
on [0, T ]. Indeed, for t ∈ [tq, tq+1[ we have

‖zn(t) − zn(θn(t))‖ ≤

∫ t

θn(t)
‖żn(s)‖ds.
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Since θn(t) converges to t and żn(·) is bounded, it follows that
‖zn(t) − zn(θn(t))‖ converges to 0 as n → ∞. Since

‖zn(θn(t)) − x(t)‖ ≤ ‖zn(t) − zn(θn(t))‖ + ‖zn(t) − x(t)‖

and (zn(·)) converges uniformly to x(·), then zn(θn(t)) converges uniformly
to x(t) on [0, T ]. By construction, we have zn(θn(t)) ∈ K for every t ∈ [0, T ]
and K is closed, then x(t) ∈ K for all t ∈ [0, T ].

Finally, observe that by (1),

d
(

f(t), F (t, x(t), ẋ(t))
)

≤ H
(

F
(

t, zn(θn(t)), żn(θn(t))
)

, F
(

t, x(t), ẋ(t)
)

)

+ ‖f(t) − fn(t)‖ ≤ ‖f(t) − fn(t)‖ + m(t)‖żn(θn(t)) − ẋ(t)‖.

Since fn(t) converges to f(t) and by (3.11), the last term converges to 0. So
that ẍ(t) = f(t) ∈ F (t, x(t), ẋ(t)) a.e. in [0, T ]. Hence the proof is complete.
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