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Abstract

We prove an existence theorem for the equation x′ = f(t, xt),
x(Θ) = ϕ(Θ), where xt(Θ) = x(t + Θ), for −r ≤ Θ < 0, t ∈ Ia,
Ia = [0, a], a ∈ R+ in a Banach space, using the Henstock-Kurzweil-
Pettis integral and its properties. The requirements on the function
f are not too restrictive: scalar measurability and weak sequential
continuity with respect to the second variable. Moreover, we suppose
that the function f satisfies some conditions expressed in terms of the
measure of weak noncompactness.
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1. Introduction

The Henstock-Kurzweil integral encompasses the Newton, Riemann and
Lebesgue integrals ([18, 21, 27]). A particular feature of this integral is that
integrals of highly oscillating functions such as F ′(t), where F (t) = t2 sin t−2

on (0, 1] and F (0) = 0, can be defined. This integral was introduced by Hen-
stock and Kurzweil independently in 1957–58 and has since proved useful in
the study of ordinary differential equations ([1, 7, 8, 24]).
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A further step of generalization was done in [9] which applies the Henstock-
Kurzweil integrals to the study of Retarded Functional Differential Equa-
tions with finite delays, i.e., equations of the form

(1.1) x′(t) = f(t, xt),

where xt(Θ) = x(t+ Θ) and Θ takes values from [−r, 0] for some finite posi-
tive number r, subject to some initial function ϕ, where ϕ is some Henstock-
Kurzweil integrable function over [−r, 0].

The theory of Retarded Functional Differential Equations of (1.1) has
been well-understood when ϕ and f are continuous functions, hence Rie-
mann integrable.

Hale in [20] notes that the results still hold true when continuity of f is
weakened to satisfy Carathéodory conditions. M.C. Deflour and S.K. Mitter
in [14] further generalized the theory to the case where the initial function
ϕ and f are Lebesgue integrable.

The further step of generalization which was made in [9] is such that f
and ϕ are only assumed to be Henstock-Kurzweil integrable. In [10] T.S.
Chew and T.L. Toh showed that the result of [9] can be generalized to
Retarded Functional Differential Equations with unbounded delays under
Henstock-Kurzweil integral settings. A. Sikorska-Nowak in [29] generalized
previous results to Retarded Functional Differential Equations in Banach
spaces, using the HL integral, which was defined by S.S. Cao in [6].

In this paper, we are going to prove the existence theorem for the prob-
lem (1.1), where the requirements on the function f are not too restric-
tive: scalar measurability and weak sequential continuity with respect to
the second variable. We generalize both concepts of integrals: Pettis and
Henstock-Kurzweil, introducing the Henstock-Kurzweil-Pettis integral.

Let (E, ‖ · ‖) be a Banach space and let E∗ be its dual space. Moreover,
let (C(Ia, E), ω) denote the space of all continuous functions from Ia to E
endowed with the topology σ(C(Ia, E), C(Ia, E)∗).

Let r, a be nonnegative real numbers, Ia = [0, a], a ∈ R+. Let x be
some function defined on [−r, a]. For any t ∈ Ia, the function xt is defined
as xt(Θ) = x(t + Θ), where −r ≤ Θ < 0. Here Θ may be a function
involving t.

Let f : Ia × C([−r, 0], E) → E and

(1.2)

{

x′(t) = f(t, xt)

x(Θ) = ϕ(Θ),
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where ϕ is some specified function.
We will consider the problem

(1.3)







x(t) = ϕ(0) +

∫ t

0
f(t, xs)ds

x0 = ϕ
t ∈ Ia,

where the integral is taken in the sense of Henstock-Kurzweil-Pettis.
Our fundamental tool is the measure of weak noncompactness developed

by DeBlasi ([5], see also [4]).

The measure of weak noncompactness β(A) is defined by

β(A) = inf{t > 0 : there exists C ∈ Kω such that A ⊂ C + tB0},

where Kω is the set of weakly compact subsets of E and B0 is the norm
unit ball in E. We use the following properties of the measure of weak
noncompactness β(A):

(i) if A ⊂ B then β(A) ≤ β(B);

(ii) β(A) = β(Ā), where Ā denotes the closure of A;

(iii) β(A) = 0 if and only if A is relatively weakly compact;

(iv) β(A ∪B) = max {β(A), β(B)};

(v) β(λA) = |λ|β(A), (λ ∈ R);

(vi) β(A+B) ≤ β(A) + β(B);

(vii) β(convA) = β(A).

It is necessary to remark that if β has these properties, then the following
Lemma is true.

Lemma 1.1 ([26]). Let H ⊂ C(Ia, E) be a family of strongly equicon-

tinuous functions. Let, for t ∈ Ia,H(t) = {h(t) ∈ E, h ∈ H}. Then

βC(H) = supt∈Ia

β(H(t)) = β(H(Ia)), where βC(H) denotes the measure of

noncompactness in C(Ia, E) and the function t 7→ β(H(t)) is continuous.

Fix x∗ ∈ E∗ and consider the problem

(1.2′) (x∗x)′(t) = x∗f(t, xt), x(Θ) = ϕ(Θ), t ∈ Ia .

Let us introduce the following definitions.
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Definition 1.2 ([28]). Let F : [a, b] → E and let A ⊂ [a, b]. The function
f : A→ E is a pseudoderivative of F on A if for each x∗ in E∗ the real-valued
function x∗F is differentiable almost everywhere on A and (x∗F )′ = x∗f
almost everywhere on A.

From the above definition it is clear that the left-hand side of (1.2’) can be
rewritten to the form x∗(x′(t)) where x′ denotes the pseudoderivative.

Definition 1.3 ([18, 27]). A family F of functions F is said to be uniformly

absolutely continuous in the restricted sense on X or, in short, uniformly
AC∗(X) if for every ε > 0 there is η > 0 such that for every F in F and for
every finite or infinite sequence of non-overlapping intervals {[ai, bi]} with
ai, bi ∈ X and satisfying

∑

i |bi − ai| < η, we have
∑

i ω(F, [ai, bi]) < ε where
ω denotes the oscillation of F over [ai, bi] (i.e., ω(F, [ai, bi]) = sup{|F (r) −
F (s)| : r, s ∈ [ai, bi]}).

A family F of functions F is said to be uniformly generalized absolutely

continuous in the restricted sense on [a, b] or uniformly ACG∗ on [a, b] if
[a, b] is the union of a sequence of closed sets Xi such that on each Xi the
family F is uniformly AC∗(Xi).

We will use the following results.

Theorem 1.4 ([23]). Let E be a metrizable locally convex topological vector

space. Let D be a closed convex subset of E, and let F be a weakly sequen-

tially continuous map of D into itself. If for some x ∈ D the implication

(1.4) V̄ = conv({x} ∪ F (V )) ⇒ V is relatively weakly compact,

holds for every subset V of D, then F has a fixed point.

Let us recall that a function f : Ia → E is said to be a weakly continuous if
it is continuous from Ia to E endowed with its weak topology.

A function g : E → E1, where E and E1 are Banach spaces, is said
to be a weakly-weakly sequentially continuous if for each weakly convergent
sequence xn in E, a sequence (g(xn)) is weakly convergent in E1. The fact

that the sequence xn tends weakly to x0 in E will be denoted by xn
ω
→x0.

A very interesting discussion (including examples) about different types
of continuity can be found in [2] and [3]. The notion of weak sequential
continuity seems to be most convenient. It is not always possible to show
that a given operator between Banach spaces is weakly continuous, quite
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often its weak sequential continuity offers no problem. This follows from the
fact that the Lebesgue dominated convergence theorem is valid for sequences
but not for nets.

2. Henstock-Kurzweil-Pettis integrals in Banach spaces

In this part, we present the definition of the Henstock-Kurzweil-Pettis in-
tegral and we give properties of this integral. For basic definitions we refer
the reader to [18, 21] or [25].

Definition 2.1 ([6]). The function [a, b] → E is Henstock-Kurzweil inte-

grable on [a, b] if there exists A ∈ E with the following property: for every
ε > 0 there exists a positive function δ(·) on [a, b] such that for every division
D of [a, b] given by a = x0 < x1 < ... < xn = b and {ξ1, ξ2, ..., ξn} satisfying
ξi ∈ [xi−1, xi] ⊂ (ξi − δ(ξi), ξi + δ(ξi)) for i = 1, 2, ..., n, we have

∥

∥

∥

∥

∥

n
∑

i=1

f(ξi)(xi − xi−1) −A

∥

∥

∥

∥

∥

< ε.

We write (HK)
∫ b
a f(t)dt = A. We say that D is δ-fine and we can write

D = {[u, v]; ξ} with ξ ∈ [u, v] ⊂ (ξ − δ(ξ), ξ + δ(ξ)). We will write f ∈
HK([a, b], E) if f is Henstock-Kurzweil integrable on [a, b].

This definition includes the generalized Riemann integral defined by
Gordon ([16]).

Definition 2.2 ([6]). A function f : [a, b] → E is HL integrable on [a, b]
(f ∈ HL([a, b], E) if there exists a function F : [a, b] → E, defined on the
subintervals of [a, b], satisfying the following property: given ε > 0 there
exists a positive function δ(·) on [a, b] such that if D = {[u, v]; ξ} is a δ-fine
division of [a, b], we have

∑

D

‖f(ξ)(v − u) − (F (v) − F (u))‖ < ε.

Remark 2.3. We note that f ∈ HL([a, b], E) implies f ∈ HK([a, b], E) by
the triangle inequality. In general, the converse is not true. For real-valued
functions, the two integrals are equivalent.

Definition 2.4 ([28]). The function f : Ia → E is Pettis integrable
(P integrable for short) if
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(i) ∀
x∗∈E∗

x∗f is Lebesgue integrable on Ia,

(ii) ∀
A⊂Ia,A measurable

∃g ∈ E ∀
x∗∈E∗

x∗g = (L)

∫

A
x∗f(s)ds.

Now we present a definition of the integral which is a generalization of both
Pettis and Henstock-Kurzweil integrals.

Definition 2.5 ([13]). A function f : Ia → E is Henstock-Kurzweil-Pettis

integrable (HKP integrable for short) if there exists a function g : Ia → E
with the following properties:

(i) ∀
x∗∈E∗

x∗f is Henstock-Kurzweil integrable on Ia and

(ii) ∀
t∈Ia

∀
x∗∈E∗

x∗g(t) = (HK)

∫ t

0
x∗f(s)ds.

This function g will be called a primitive of f and by g(a) =
∫ a
0 f(t)dt we

will denote the Henstock-Kurzweil-Pettis integral of f on the interval Ia.

Remark 2.6. Our notion of integral is essentially more general than the
previous ones (in Banach spaces):

(a) Pettis integral. By the definition of the Pettis integral and since each
Lebesgue integrable function is HK integrable we can put the Lebesgue
integral in condition (i) of Definition 2.4 and as a consequence we ob-
tain, that P integrable function is HKP integrable.

(b) Bochner, Riemann, and Riemann-Pettis integrals ([16]).

(c) McShane integral ([19]).

(d) Henstock-Kurzweil integral, HL integral: we present an example below.

Example. We present an example of a function which is HKP integrable
and neither HL integrable nor P integrable.

Let f : [0, 1] → (L∞[0, 1], ‖·‖
∞

) and let f(t) = χ[0,t] +A(t) ·F ′(t), where

F (t) = t2 sin t−2

F (0) = 0
, χ[0,t](τ) =

{

1, τ ∈ [0, t]

0, τ /∈ [0, t],
t, τ ∈ [0, 1],

A(t)(τ) = 1 for t, τ ∈ [0, 1].
Put f1(t) = χ[0,t], f2(t) = A(t)F ′(t).



Retarded functional differential equations in ... 321

We will show that a function f(t) = f1(t) + f2(t) is integrable in the sense
of Henstock-Kurzweil-Pettis.

Let us observe that

x∗f(t) = x∗(f1(t) + f2(t)) = x∗(f1(t)) + x∗(f2(t)).

The function x∗(f1(t)) is Lebesgue integrable (in fact f1 is Pettis integrable
[15]), so it is Henstock-Kurzweil integrable, and the function x∗(f2(t)) is
Henstock-Kurzweil integrable by Definition 2.5.

For each x∗ ∈ E∗ the function x∗f is not Lebesgue integrable because
x∗f2 is not Lebesgue integrable. So f is not Pettis integrable. Moreover, the
function f1 is not strongly measurable ([15]) and the function f2 is strongly
measurable. So their sum f is not strongly measurable. Then by Theorem
9 from [6] f is not HL integrable.

In the sequel, we will investigate some properties of the HKP integral which
are important in the next part of our paper.

Theorem 2.7 ([13]). Let f : [a, b] → E be HKP integrable on [a, b] and let

F (x) =
∫ x
a f(s)ds.

(i) For each x∗ in E∗ the function x∗f is HK integrable on [a, b] and

(HK)
∫ x
a x

∗f(s)ds = x∗F (x).

(ii) The function F is weakly continuous on [a, b] and f is a pseudoderiva-

tive of F on [a, b].

Theorem 2.8 ([11]). Let fn, f : Ia → E and assume that fn : Ia → E are

HKP integrable on Ia. Let Fn be a primitive of fn. If we assume that:

(i) ∀
x∗∈E∗

x∗fn(t) → x∗f(t) a.e. on Ia,

(ii) for each x∗ ∈ E∗ the family G = {x∗Fn : n = 1, 2, . . .) is uniformly

ACG∗ on Ia (i.e., weakly uniformly ACG∗ on Ia),

(iii) for each x∗ ∈ E∗ the set G is equicontinuous on Ia,

then f is HKP integrable on Ia and
∫ t
0 fn(s)ds tends weakly in E to

∫ t
0 f(s)ds

for each t ∈ Ia.
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Theorem 2.9 ([13]). If the function f : Ia → E is HKP integrable, then

∫

I
f(t)dt ∈ |I| · conv f(I),

where conv f(I) is the closure of the convex of f(I), I is an arbitrary subin-

terval of Ia and |I| is the lenght of I.

3. Main result

Now we prove an existence theorem for the problem (1.2) under the weakest
assumptions of f , as it is known.

Two functions ϕ1, ϕ2 which are HKP integrable on some interval [u, v]
are said to belong to the same equivalence class if ϕ1(t) = ϕ2(t) almost
everywhere in [u, v].

Let H[u, v] denote the space of equivalence classes of functions which
are HKP integrable on [u, v]. The norm ‖·‖H on H[u, v] is defined as follows:
for P ∈ H[u, v], ‖P‖H = supt∈[u,v] ‖Φ(t)‖, where Φ(t) =

∫ t
u ψ(s)ds for any

ψ ∈ P .
Let ϕ be some function fixed in H[−r, 0], where r > 0. The sets Ωb

and Ra,b are defined as Ωb = {x ∈ H[−r, 0], ‖x − ϕ‖H ≤ b}, Ra,b = Ia × Ωb,
where a, b are positive numbers.

Continuity here is understood in the sense that if {xn}, n = 1, 2, ... is a
sequence in Ωb and xn(s)converges uniformly on [−r, 0] to some x0 ∈ Ωb as
n→ ∞, then for almost all t ∈ Ia, f(t, xn) converges to f(t, x0) as n→ ∞.

It is convenient here to introduce an auxiliary function
_

x: if x is defined
on Iα(0 < α < a) with x(0) = ϕ(0), the function

_

x is defined as:

_

xt =

{

x(t), t ∈ [0, α],

ϕ(t), t ∈ [−r, 0].

The set A(ϕ, a) ⊂ C(Ia, E) is defined as

A(ϕ, a) = {x ∈ C(Ia, E) : x(0) = ϕ(0), ‖x‖ ≤ b+ ‖ϕ(0)‖ , x̂t ∈ Ωb}.

It is easy to see that the set A(ϕ, a) is bounded, closed and convex.

Let F : C(Ia, E) → C(Ia, E) be defined by F (x)(t) = x0 +
∫ t
0 f(s, x̂s)ds,

for t ∈ Ia and x ∈ A(ϕ, a), where the integral is taken in the sense of HKP.
Moreover, let K = {F (x) ∈ C(Ia, E) : x ∈ A(ϕ, a)}.
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Now we are able to introduce the definition of pseudo-solution which we will
use in the sequel.

Definition 3.1 ([22]). A function x : Ia → E is said to be a pseudo-solution

of the problem (1.2) if it satisfies the following conditions:

(i) x(·) is ACG∗,

(ii) x(Θ) = ϕ(Θ),

(iii) for each x∗ ∈ E∗ there exists a set A(x∗), with a Lebesgue measure
zero, such that for each t /∈ A(x∗)

x∗(x′(t)) = x∗(f(t, xt)).

Here “ ′“ denotes a pseudoderivative (see [26]).

Theorem 3.2. Let ϕ be some fixed function in H[−r, 0]. Assume that

for each ACG∗ function x : Ia → E, f(t, xt) is HKP integrable, f(t, ·) is

a weakly-weakly sequentially continuous function defined on Ra,b for some

positive numbers and

(3.1) β(f(I,X)) ≤ d · β(X), 0 ≤ da < 1,

for each bounded subset X ⊂ E, and I ⊂ Ia, where β is DeBlasi measure

of weak noncompactness. Suppose that K is equicontinuous and uniformly

ACG∗ on Ia. Then there exists a pseudo- solution of the problem (1.2) on

Iα, for some 0 < α ≤ a with initial function ϕ.

Proof. We will prove, in fact, the existence of a solution for the problem
(1.3). By Theorem 2.7(i) each solution of the problem (1.3) is a solution of
the problem (1.2). Fix an arbitrary b ≥ 0. By equicontinuity of K, there
exists a number α, 0 < α ≤ a such that

∥

∥

∥

∥

∫ t

0
f(s, x̂s)ds

∥

∥

∥

∥

≤ b, for t ∈ Ia,

∥

∥

∥

∥

∫ τ

−r
[ϕ(0) − ϕ(s)]ds

∥

∥

∥

∥

< k,

∥

∥

∥

∥

∫ τ

−r

∫ t+s

0
f(p, x̂p)dpds

∥

∥

∥

∥

< l , k + l = b and x ∈ A(ϕ, α).

By our assumptions the operator F is well defined and maps A(ϕ, α) into
A(ϕ, α) because:

(i)

∥

∥

∥

∥

ϕ(0) +

∫ t

0
f(s, x̂s)ds

∥

∥

∥

∥

≤ ‖ϕ(0)‖ +

∥

∥

∥

∥

∫ t

0
f(s, x̂s)ds

∥

∥

∥

∥

≤ ‖ϕ(0)‖ + b
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(ii)
∥

∥

∥F̂ (xt) − ϕ
∥

∥

∥

H
= sup

τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r
[F̂ (xt)(s) − ϕ(s)]ds

∥

∥

∥

∥

= sup
τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r
[F̂ (x)(t+ s) − ϕ(s)]ds

∥

∥

∥

∥

= sup
τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r

[

ϕ(0) +

∫ t+s

0
f(p, x̂p)dp− ϕ(s)

]

ds

∥

∥

∥

∥

≤ sup
τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r
[ϕ(0) − ϕ(s)]ds +

∫ τ

−r

∫ t+s

0
f(p, x̂p)dpds

∥

∥

∥

∥

= sup
τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r
[ϕ(0) − ϕ(s)]ds

∥

∥

∥

∥

+ sup
τ∈[−r,0]

∥

∥

∥

∥

∫ τ

−r

∫ t+s

0
f(p, x̂p)dpds

∥

∥

∥

∥

≤ k + l = b.

We will show that the operator F is sequentially continuous.

By Lemma 9 of [25] a sequence xn(·) is weakly convergent in C(Iα, E)

to x(·) iff xn(t) tends weakly to x(t) for each t ∈ Iα, so if xn
t

ω
→x in C(Iα, E)

then f(t, xn
t )

ω
→ f(t, xt) in E for t ∈ Iα and by Theorem 2.8 we have

lim
n→∞

∫ t

0
f(s, xn

s )ds =

∫ t

0
f(s, xs)ds

weakly in E, for each t ∈ Iα.

We see that F (xn)(t) → F (x)(t) weakly in E for each t ∈ Iα so F (xn) →
F (x) in C((Iα, E), ω).

Suppose that V ⊂ A(ϕ, α) satisfies the condition V̄ = conv (F (V )∪{x})
for some x ∈ A(ϕ, α). We will prove that V is relatively weakly compact in
A(ϕ, α), thus (1.4) is satisfied. Theorem 1.4 will ensure that F has a fixed
point.

Let, for t ∈ Iα, V (t) = {υ(t) ∈ E, υ ∈ V }. Put

{
∫ t

0
f(s, x̂s)ds, x ∈ V

}

=

∫ t

0
f(s, Vs),

where

Vs = {x̂s : x ∈ V }, F (V (t)) = ϕ(0) +

∫ t

0
f(s, Vs)ds .
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By the properties of the measure of weak noncompactness, the assumption
(3.1) and Theorem 2.9 we have

β(F (V (t))) = β

(

ϕ(0) +

∫ t

0
f(s, Vs)ds

)

≤ β

(
∫ t

0
f(s, Vs)ds

)

≤ β(t · conv f([0, t], Vt([0, t])))

≤ t · β(f([0, t], Vt([0, t])) ≤ a · β(f(Iα, Vt(Iα))) ≤ a · d · β(Vt(Iα)).

By Lemma 1.1 we get

β(Vt(Iα)) = sup
t∈Iα

β(Vt),

so

β(F (V (t))) ≤ a · d · β(Vt(Iα)), for each t ∈ Iα.

Because V = conv (F (V ) ∪ {x}) then by the property of measure of weak
noncompactness we have

β(V (t)) = β(conv F (V (t)) ∪ {x}) ≤ β(F (V (t))) ≤ a · dβ(V (Iα)).

Because 0 ≤ a · d < 1 so β(V (t)) = 0, for each t ∈ Iα.

By Arzelà-Ascoli theorem, V is relatively weakly compact in C(Ia, E).
So, by Theorem 1.4, F has a fixed point which is a pseudo-solution of the
problem (1.3). Because each solution of the problem (1.3) is a solution of
the problem (1.2), so there exists a pseudo-solution of the problem (1.2).

Remark 3.3. The condition (1.4) in our Theorem 3.2 can be generalized
to the Sadovskii condition: β(F (I,X)) < β(X), whenever β(X) > 0, where
β can be replaced by some axiomatic measure of weak noncompactness.

Remark 3.4. As we generalize both Pettis and Henstock-Kurzweil integrals
our existence theorem is an extension of previous results; for example: T.S.
Chew, W. van Brunt, G.C. Wake ([9]), T.S. Chew, T.L. Toh ([10]), M.C.
Deflour, S.K. Mitter ([14]), A. Sikorska-Nowak ([29]) and others.
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