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In this paper, we prove existence and controllability results for first
and second order semilinear neutral functional differential inclusions
with finite or infinite delay in Banach spaces, with nonlocal conditions.
Our theory makes use of analytic semigroups and fractional powers of
closed operators, integrated semigroups and cosine families.

Keywords and phrases: semilinear differential inclusions, nonlo-
cal conditions, analytic semigroups, cosine functions, integrated semi-
groups, fixed point, nonlinear alternative, controllability.

2000 Mathematics Subject Classification: 34A60, 34G20, 93B05.

1. Introduction

In this paper, we shall be concerned with the existence and controllability
for first and second order semilinear neutral functional differential inclusions
in a real Banach space, with nonlocal conditions.
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In Section 3, we study first order initial value problems for a semilinear
neutral functional differential inclusion with nonlocal conditions of the form,

(1.1)
d

dt
[y(t) − f(t, yt)] ∈ Ay(t) + F (t, yt), a.e. t ∈ J = [0, T ]

(1.2) y(t) + ht(y) = φ(t), t ∈ [−r, 0],

where f : J × D → E, F : J × D −→ P(E) is a multivalued map, ht ∈ D,
φ ∈ D, D = {ψ : [−r, 0] → E|ψ is continuous}, A is the infinitesimal
generator of a strongly continuous semigroup S(t), t ≥ 0 and E is a separable
real Banach space with the norm ‖ · ‖.

For any continuous function y defined on the interval [−r, T ] and any
t ∈ J, we denote by yt the element of D defined by

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

For ψ ∈ D the norm of ψ is defined by

‖ψ‖D = sup{‖ψ(θ)‖ : θ ∈ [−r, 0]}.

The nonlocal condition ht(y) may be given by

ht(y) =

p
∑

i=1

ciy(ti + t), t ∈ [−r, 0]

where ci, i = 1, . . . , p, are given constants and 0 < t1 < . . . < tp ≤ T.
At time t = 0, we have

h0(y) =

p
∑

i=1

ciy(ti).

In Section 4, we consider a general form of the problem (1.1)–(1.2) where
A : D(A) ⊂ E → E is a nondensely defined closed linear operator.

In Section 5, we study second order initial value problems for a semi-
linear neutral functional differential inclusion with nonlocal conditions of
the form

(1.3)
d

dt
[y′(t) − f(t, yt)] ∈ Ay(t) + F (t, yt), t ∈ J := [0, T ],

(1.4) y(t) + ht(y) = φ(t), t ∈ [−r, 0], y′(0) + h1(y) = η,
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where A is the infinitesimal generator of a family of cosine operators {C(t) :
t ≥ 0}, η ∈ E and f, F, φ, ht are as in the problem (1.1)–(1.2) and h1 :
C(J,E) → E is continuous.

Nonlocal conditions for evolution equations were initiated by Byszewski.
We refer the reader to [7] and the references cited therein for a motivation
regarding nonlocal initial conditions. The nonlocal condition can be applied
in physics and is more natural than the classical initial condition y(0) = y0.

IVPs (1.1)–(1.2) and (1.3)–(1.4) were studied in the literature under
growth conditions on F. Here, by using the ideas in [2] we obtain new results
if instead of growth conditions we assume the existence of a maximal solution
to an appropriate problem.

Our existence theory is based on fixed point methods, in particular the
Leray-Schauder Alternative for single valued and Kakutani maps, Kaku-
tani’s fixed point theorem and on a selection theorem for lower semicontin-
uous maps.

In Section 6, we study controllability results for the problems (1.1)–(1.2)
and (1.3)–(1.4) by using the Leray-Schauder Alternative for Kakutani maps.
We refer to [5] for recent controllability results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
that are used throughout this paper.

Let (X, d) be a metric space. We use the notations:
P(X) = {Y ⊂ X : Y 6= ∅}, Pcl(X) = {Y ∈ P(X) : Y closed}, Pb(X) =
{Y ∈ P(X) : Y bounded}, Pc(X) = {Y ∈ P(X) : Y convex}, Pcp(X) =
{Y ∈ P(X) : Y compact}, Pc,cp(X) = Pc(X) ∩ Pcp(X) etc. A multivalued
map G : X → P(X) is convex (closed) valued if G(x) is convex (closed) for
all x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in
X for all B ∈ Pb(X) (i.e., supx∈B{sup{‖y‖ : y ∈ G(x)}} <∞).

G is called upper semi-continuous (u.s.c.) on X if for each x0 ∈ X the
set G(x0) is a nonempty, closed subset of X, and if for each open set U of
X containing G(x0), there exists an open neighborhood V of x0 such that
G(V) ⊆ U .

G is said to be completely continuous if G(B) is relatively compact for
every B ∈ Pb(X). If the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed
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graph (i.e., xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has a
fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of the
multivalued operator G will be denoted by FixG.

A multivalued map N : J → Pcl(E) is said to be measurable, if for every
y ∈ E, the function t 7−→ d(y,N(t)) = inf{‖y−z‖ : z ∈ N(t)} is measurable.
For more details on multivalued maps see the books of Aubin and Cellina
[4], Deimling [10], Górniewicz [12] and Hu and Papageorgiou [17].

Throughout this paper, E will be a separable Banach space provided
with norm ‖ · ‖ and A : D(A) → E will be the infinitesimal generator of
an analytic semigroup, S(t), t ≥ 0, of bounded linear operators on E. For
the theory of strongly continuous semigroup, we refer the reader to Pazy
[21]. If S(t), t ≥ 0, is a uniformly bounded and analytic semigroup such
that 0 ∈ ρ(A), then it is possible to define the fractional power (−A)α, for
0 < α ≤ 1, as closed linear operator on its domain D(−A)α. Furthermore,
the subspace D(−A)α is dense in E, and the expression

‖x‖α = ‖(−A)αx‖, x ∈ D(−A)α

defines a norm on D(−A)α. Hereafter we denote by Eα the Banach space
D(−A)α normed with ‖·‖α. Then for each 0 < α ≤ 1, Eα is a Banach space,
and Eα ↪→ Eβ for 0 < β ≤ α ≤ 1 and the imbedding is compact whenever
the resolvent operator of A is compact. Also for every 0 < α ≤ 1 there exists
Cα > 0 such that

‖(−A)αS(t)‖ ≤
Cα

tα
, 0 < t ≤ T.

We say that a family {C(t) | t ∈ R} of operators in B(E) is a strongly

continuous cosine family if

(i) C(0) = I,

(ii) C(t+ s) + C(t− s) = 2C(t)C(s), for all s, t ∈ R,

(iii) the map t 7→ C(t)(x) is strongly continuous, for each x ∈ E.

The strongly continuous sine family {S(t) | t ∈ R}, associated with the given
strongly continuous cosine family {C(t) | t ∈ R}, is defined by

(2.1) S(t)(x) =

∫ t

0
C(s)(x) ds, x ∈ E, t ∈ R.
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The infinitesimal generator A : E → E of a cosine family {C(t) | t ∈ R} is
defined by

A(x) =
d2

dt2
C(t)(x)

∣

∣

∣

t=0
.

For more details on strongly continuous cosine and sine families, we refer
the reader to the books of Goldstein [13], Heikkila and Lakshmikantham [15]
and Fattorini [11] and the papers [22] and [23].

Proposition 2.1 [22]. Let C(t), t ∈ R be a strongly continuous cosine fam-

ily in E. Then:

(i) there exist constants M1 ≥ 1 and ω ≥ 0 such that ‖C(t)‖ ≤ M1e
ω|t|

for all t ∈ R;

(ii) ‖S(t1) − S(t2)‖ ≤M1

∣

∣

∣

∣

∫ t1

t2

eω|s|ds

∣

∣

∣

∣

for all t1, t2 ∈ R.

Definition 2.2. A multi-valued map F : J × D → Pc,cp(E) is said to be
L1-Carathéodory if

(i) t 7→ F (t, x) is measurable for each x ∈ D,

(ii) x 7→ F (t, x) is upper semi-continuous for almost all t ∈ J, and

(iii) for each real number ρ > 0, there exists a function hρ ∈ L1(J,R+) such
that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ hρ(t), a.e. t ∈ J

for all u ∈ D with ‖u‖D ≤ ρ.

We need also the following result, see [16].

Lemma 2.3. Let v(·), w(·) : [0, T ] → [0,∞) be continuous functions. If w(·)
is nondecreasing and there are constants θ > 0, 0 < α < 1 such that

v(t) ≤ w(t) + θ

∫ t

0

v(s)

(t− s)1−α
ds, t ∈ [0, T ],
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then

v(t) ≤ eθnΓ(α)ntnα/Γ(nα)
n−1
∑

j=0

(

θTα

α

)j

w(t),

for every t ∈ [0, T ] and every n ∈ N such that nα > 1, and Γ(·) is the

Gamma function.

3. First order semilinear neutral functional differential

inclusions with nonlocal conditions

Let us start by defining what we mean by a solution to the problem
(1.1)–(1.2).

Definition 3.1. A function y ∈ C([−r, T ], E) is said to be a mild solution
of (1.1)–(1.2) if y(t) + ht(y) = φ(t) on [−r, 0], and exists v ∈ L1(J,E) such
that v(t) ∈ F (t, yt) a.e on J and

y(t) = S(t)[φ(0) − h0(y) − f(0, φ)] + f(t, yt) +

∫ t

0
AS(t− s)f(s, ys) ds

+

∫ t

0
S(t− s)v(s) ds, t ∈ J.

For the multivalued map F and for each y ∈ C(J,E), we define SF,y by

SF,y = {v ∈ L1(J,E) : v(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

Our first existence result for the IVP (1.1)–(1.2) is the following.

Theorem 3.2. Assume that:

(3.2.1) A : D(A) ⊂ E → E is the infinitesimal generator of an analytic

semigroup S(t), t ≥ 0, of bounded linear operators on E. Assume

that 0 ∈ ρ(A), S(t) is compact for t > 0, and there exist constants

M ≥ 1 and C1−β such that

‖S(t)‖B(E) ≤M and ‖(−A)1−βS(t)‖ ≤
C1−β

t1−β
, forall t > 0;

(3.2.2) (i) the map H : C([−r, T ], E) → C([−r, T ], E), given by H(y)(t) =
f(t, yt) for t ∈ [0, T ], is continuous and completely continuous;
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(ii) f is Eβ-valued, and there exist constants c1, c2 ≥ 0 such that

c1‖(−A)−β‖ < 1 and

‖(−A)βf(t, x)‖ ≤ c1‖x‖D + c2, (t, x) ∈ J ×D;

(3.2.3) given ε > 0, then for any bounded subset D of C([−r, T ], E) there

exists a δ > 0 with ‖(S(h)−I)h0(y)‖ < ε for all y ∈ D and h ∈ [0, δ]
and ‖ht(y)−hs(y)‖ < ε for all y ∈ D and t, s ∈ [−r, 0] with |t−s| < δ;

(3.2.4) for each t ∈ [−r, 0] the function ht is continuous and completely

continuous and there exists Q > 0 such that ‖ht(u)‖ ≤ Q,u ∈
C([−r, b], E) and t ∈ [−r, 0];

(3.2.5) F : J ×E → Pc,cp(E) is an L1-Carathéodory multivalued map;

(3.2.6) there exist an L1-Carathéodory function g : J× [0,∞) → [0,∞) such

that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ g(t, ‖u‖D)

for almost all t ∈ J and all u ∈ D;

(3.2.7) g(t, x) is nondecreasing in x for a.e. t ∈ J ;

(3.2.8) the problem

v′(t) = bK2g(t, v(t)), a.e. t ∈ J,

v(0) = bK0,

where

K0 = Λ(1 − c1‖(−A)−β‖)−1,

K1 = C1−βc1(1 − c1‖(−A)−β‖)−1,

K2 = M(1 − c1‖(−A)−β‖)−1,

b = eK
n
1
(Γ(β))nT nβ/Γ(nβ)

n−1
∑

j=0

(

K1T
β

β

)j

,

Λ = M‖φ‖D
{

1 + c1‖(−A)−β‖
}

+MQ+ c2‖(−A)−β‖{M + 1} +
C1−βc2T

β

β
,

and n is the first integer such that nβ > 1, has a maximal solution

r(t).
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Then the IVP (1.1)–(1.2) has at least one mild solution on [−r, T ].

Proof. Transform the problem (1.1)–(1.2) into a fixed point problem. Con-
sider the operator N : C([−r, T ], E) −→ P(C([−r, T ], E)) defined by:

N(y) =

=











































h ∈ C([−r, T ], E) : h(t) =











































φ(t) − ht(y), t ∈ [−r, 0],

S(t)[φ(0) − h0(y) − f(0, φ(0))]

+f(t, yt) +

∫ t

0

AS(t− s)f(s, ys)ds

+

∫ t

0

S(t− s)v(s)ds, t ∈ J,











































where v ∈ SF,y.

We shall show that N has a fixed point. The proof is given in several
steps.

Step 1. N(y) is convex for each y ∈ C([−r, T ], E).

This is obvious since SF,y is convex (because F has convex values).

Step 2. N maps bounded sets into bounded sets in C([−r, T ], E).

Let Bq := {y ∈ C([−r, T ], E) : ‖y‖ = supt∈[−r,T ] ‖y(t)‖ ≤ q} be a bounded
set in C([−r, T ], E) and y ∈ Bq. Then for each h ∈ N(y) there exists v ∈ SF,y

such that

h(t) = S(t)[φ(0) − h0(y) − f(0, φ(0))] + f(t, yt)

+

∫ t

0
AS(t− s)f(s, ys)ds+

∫ t

0
S(t− s)v(s)ds, t ∈ J.

Thus for each t ∈ J we get (see [21, Theorem 2.6.8 (d) and Theorem
2.6.13 (b)]

‖h(t)‖ ≤

≤M‖φ‖D +MQ+M‖(−A)−β‖(c1‖φ‖D + c2) + ‖(−A)−β‖[c1‖yt‖D + c2]

+

∫ t

0
‖(−A)1−βS(t− s)‖‖(−A)βf(s, ys)‖ds+M

∫ t

0
‖v(s)‖ ds
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≤M‖φ‖D +MQ+M‖(−A)−β‖(c1‖φ‖D + c2) + ‖(−A)−β‖[c1‖yt‖D + c2]

+C1−βc1

∫ t

0

‖ys‖D
(t− s)1−β

ds+
C1−βc2T

β

β
+M

∫ t

0
hρ(s) ds

≤M‖φ‖D +MQ+M‖(−A)−β‖(c1‖φ‖D + c2) + ‖(−A)−β‖[c1q + c2]

+
C1−βT

β

β
[c1q + c2] +M‖hρ‖L1 ;

here hq is chosen as in Definition 2.2. Then for each h ∈ N(Bq) we have

‖h‖ ≤ M‖φ‖D +MQ+M‖(−A)−β‖(c1‖φ‖D + c2) + ‖(−A)−β‖[c1q + c2]

+
C1−βT

β

β
[c1q + c2] +M‖hρ‖L1 := `.

Step 3. N maps bounded sets into equicontinuous sets of C([−r, T ], E).

We consider Bq as in Step 2 and let h ∈ N(y) for y ∈ Bq. Let ε > 0 be given.
Now let τ1, τ2 ∈ J with τ2 > τ1. We consider two cases τ1 > ε and τ1 ≤ ε.

Case 1. If τ1 > ε, then

‖h(τ2) − h(τ1)‖ ≤

≤ ‖ [S(τ2) − S(τ1)][φ(0) − h0(y) − f(0, φ(0)] ‖

+ ‖f(τ2, yτ2) − f(τ1, yτ1)‖

+

∫ τ1−ε

0
‖(−A)1−β [S(τ2 − s) − S(τ1 − s)](−A)βf(s, ys)‖ds

+

∫ τ1

τ1−ε
‖(−A)1−β [S(τ2 − s) − S(τ1 − s)](−A)βf(s, ys)‖ds

+

∫ τ2

τ1

‖(−A)1−βS(τ2 − s)(−A)βf(s, ys)‖ds

+

∫ τ1−ε

0
‖S(τ2 − s) − S(τ1 − s)‖‖v(s)‖ds
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+

∫ τ1

τ1−ε
‖S(τ2 − s) − S(τ1 − s)‖‖v(s)‖ds

+

∫ τ2

τ1

‖S(τ2 − s)‖‖v(s)‖ds

≤ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+M‖S(τ2 − τ1 + ε) − S(ε)‖B(E)‖h0(Bq)‖

+ ‖f(τ2, yτ2) − f(τ1, yτ1)‖

+M

∫ τ1−ε

0
‖(−A)1−β [S(τ2 − τ1 + ε) − S(ε)](−A)βf(s, ys)‖ds

+M‖(−A)−β‖C1−β(c1q + c2)

[

(τ2 − τ1 + ε)β

β
−

(τ2 − τ1)
β

β
+
εβ

β

]

+M‖(−A)−β‖C1−β(c1q + c2)
(τ2 − τ1)

β

β

+M‖S(τ2 − τ1 + ε) − S(ε)‖B(E)

∫ τ1−ε

0
hq(s)ds

+2M

∫ τ1

τ1−ε
hq(s)ds

+M

∫ τ2

τ1

hq(s)ds

≤ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+M‖S(τ2 − τ1 + ε) − S(ε)‖B(E)‖h0(Bq)‖

+ ‖f(τ2, yτ2) − f(τ1, yτ1)‖

+M‖(−A)1−β‖‖S(τ2 − τ1 + ε) − S(ε)‖B(E)

∫ τ1−ε

0
[c1q + c2]ds

+M‖(−A)−β‖C1−β(c1q + c2)

[

(τ2 − τ1 + ε)β

β
−

(τ2 − τ1)
β

β
+
εβ

β

]
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+M‖(−A)−β‖C1−β(c1q + c2)
(τ2 − τ1)

β

β

+M‖S(τ2 − τ1 + ε) − S(ε)‖B(E)

∫ τ1−ε

0
hq(s)ds

+2M

∫ τ1

τ1−ε
hq(s)ds

+M

∫ τ2

τ1

hq(s)ds

where we have used the semigroup identities

S(τ2 − s) = S(τ2 − τ1 + ε)S(τ1 − s− ε), S(τ1 − s) = S(τ1 − s− ε)S(ε),

S(τ2) = S(τ2 − τ1 + ε)S(τ1 − ε), S(τ1) = S(τ1 − ε)S(ε).

Case 2. Let τ1 ≤ ε. For τ2 − τ1 < ε we get

|h(τ2) − h(τ1)| ≤ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+M‖S(τ2 − τ1)h0(y) − h0(y)‖

+ ‖f(τ2, yτ2) − f(τ1, yτ1)‖

+

∫ τ2

0
‖(−A)1−βS(τ2 − s)(−A)βf(s, ys)‖ds

+

∫ τ1

0
‖(−A)1−βS(τ1 − s)(−A)βf(s, ys)‖ds

+

∫ τ2

0
‖S(τ2 − s)‖hq(s)ds

+

∫ τ1

0
‖S(τ1 − s)‖hq(s)ds

≤ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+M‖S(τ2 − τ1)h0(y) − h0(y)‖
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+ ‖f(τ2, yτ2) − f(τ1, yτ1)‖

+ ‖(−A)−β‖C1−β(c1q + c2)
(2ε)β

β

+ ‖(−A)−β‖C1−β(c1q + c2)
εβ

β

+M

∫ 2ε

0
hq(s)ds

+M

∫ ε

0
hq(s)ds.

Now (3.2.2), (3.2.3) and the fact that s→ (−A)1−βS(s) is continuous in the
uniform operator topology on (0, T ] implies the equicontinuity.

The equicontinuity for the case τ1 < τ2 ≤ 0 follows from the uniform
continuity of φ on the interval [−r, 0], and for the case τ1 ≤ 0 ≤ τ2 by
combining the previous cases.

Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t.
For y ∈ Bq and v ∈ SF,y we define

rε(t) =

∫ t−ε

0
AS(t− s)f(s, ys)ds+

∫ t−ε

0
S(t− s)v(s)ds

=

∫ t−ε

0
(−A)1−βS(t− s)(−A)βf(s, ys)ds

+S(ε)

∫ t−ε

0
S(t− s− ε)v(s)ds

= S(ε)

∫ t−ε

0
(−A)1−βS(t− s− ε)(−A)βf(s, ys)ds

+S(ε)

∫ t−ε

0
S(t− s− ε)v(s)ds.

Note

{
∫ t−ε

0
(−A)1−βS(t− s− ε)(−A)βf(s, ys)ds : y ∈ Bq and v ∈ SF,y

}
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is a bounded set since
∥

∥

∥

∫ t−ε

0
(−A)1−βS(t− s− ε)(−A)βf(s, ys)ds

∥

∥

∥

≤MC1−β‖(−A)−β‖(c1q + c2)

∫ t−ε

0

ds

(t− s− ε)1−β
.

Also, note
{

∫ t−ε

0
S(t− s− ε)v(s)ds : y ∈ Bq and v ∈ SF,y

}

is a bounded set since
∥

∥

∫ t−ε
0 S(t − s − ε)v(s)ds

∥

∥ ≤ M
∫ t−ε
0 hq(s)ds and

now since S(t) is a compact operator for t > 0, the set Yε(t) = {rε(t) : y ∈
Bq and v ∈ SF,y} is relatively compact in E for every ε, 0 < ε < t. Moreover,
for r = r0 we have

‖r(t) − rε(t)‖ ≤ MC1−β‖(−A)−β‖(c1q + c2)

∫ t−ε

0

ds

(t− s− ε)1−β

+ M

∫ t

t−ε
hq(s)ds.

Therefore, the set Y (t) = {r(t) : y ∈ Bq and v ∈ SF,y} is totally bounded.
Hence Y (t) is relatively compact in E.

As a consequence of Steps 2, 3 and the Arzelá-Ascoli theorem we can
conclude that N : C([−r, T ], E) −→ P(C([−r, T ], E)) is completely contin-
uous.

Step 4. N has a closed graph.
Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).
Now hn ∈ N(yn) means that there exists vn ∈ SF,yn such that for each t ∈ J

hn(t) = S(t)[φ(0)− h0(yn)− f(0, φ(0))] + f(t, ynt) +

∫ t

0
AS(t− s)f(s, yns) ds

+

∫ t

0
S(t− s)vn(s)ds.

We must prove that there exists v∗ ∈ SF,y∗ such that for each t ∈ J

h∗(t) = S(t)[φ(0)− h0(y∗)− f(0, φ(0))] + f(t, y∗t) +

∫ t

0
AS(t− s)f(s, y∗s) ds

+

∫ t

0
S(t− s)v∗(s)ds.
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Now since s→ AT (t− s) is continuous in the uniform operator topology on
[0, t) we have that

∥

∥

∥

(

hn− S(t)[φ(0)− h0(yn) − f(0, φ(0))] − f(t, ynt) −

∫ t

0

AS(t− s)f(s, yns) ds
)

−
(

h∗− S(t)[φ(0)− h0(y∗) − f(0, φ(0))] − f(t, y∗t) −

∫ t

0

AS(t− s)f(s, y∗s) ds
)
∥

∥

∥
→ 0,

as n→ ∞.

Consider the linear continuous operator

Γ : L1(J,E) −→ C(J,E)

v 7−→ Γ(v)(t) =

∫ t

0
S(t− s)v(s)ds.

It follows that Γ ◦ SF is a closed graph operator ([20]).

Also from the defintion of Γ we have that

hn(t) − S(t)[φ(0) − h0(yn) − f(0, φ(0))] − f(t, ynt) −

∫ t

0
AS(t− s)f(s, yns) ds

∈ Γ(SF,yn).

Since yn −→ y∗, it follows that

h∗(t) − S(t)[φ(0) − h0(y∗) − f(0, φ(0))] − f(t, y∗t) −

∫ t

0
AS(t− s)f(s, y∗s) ds

=

∫ t

0
S(t− s)v∗(s)ds

for some v∗ ∈ SF,y∗.

Step 5. Now it remains to show that the set

M := {y ∈ C([−r, T ], E) : λy ∈ N(y), for some λ > 1}

is bounded.

Let y ∈ M. Then λy ∈ N(y) for some λ > 1. Thus there exists v ∈ SF,y

such that
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y(t) = λ−1S(t)[φ(0) − h0(y) − f(0, φ(0))] + λ−1f(t, yt)

+ λ−1

∫ t

0
AS(t− s)f(s, ys)ds+ λ−1

∫ t

0
S(t− s)v(s)ds, t ∈ J.

Then

‖y(t)‖ ≤

≤M‖φ‖D +MQ+M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖yt‖D + c2]

+

∫ t

0
‖(−A)1−βS(t− s)‖‖(−A)βf(s, ys)‖ ds +M

∫ t

0
g(s, ‖ys‖D)ds

≤M‖φ‖D +MQ+M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖yt‖D + c2]

+ C1−βc1

∫ t

0

‖ys‖D
(t− s)1−β

ds+
C1−βc2T

β

β
+M

∫ t

0
g(s, ‖ys‖D)ds

≤ Λ + c1‖(−A)−β‖‖yt‖D

+ C1−βc1

∫ t

0

‖ys‖D
(t− s)1−β

ds+M

∫ t

0
g(s, ‖ys‖D)ds, t ∈ J.

Put w(t) = max{‖y(s)‖ : −r ≤ s ≤ t}, t ∈ J. Then ‖yt‖D ≤ w(t) for all
t ∈ J and there is a point t∗ ∈ [−r, t] such that w(t) = y(t∗). Hence we have

w(t) = ‖y(t∗)‖

≤ Λ + c1‖(−A)−β‖‖yt∗‖D + C1−βc1

∫ t∗

0

‖ys‖D
(t− s)1−β

ds

+ M

∫ t∗

0
g(s, ‖ys‖D)ds

≤ Λ + c1‖(−A)−β‖w(t) + C1−βc1

∫ t

0

w(s)

(t− s)1−β
ds

+ M

∫ t

0
g(s, w(s)) ds,
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or

w(t) ≤
1

1 − c1‖(−A)−β‖

{

Λ + C1−βc1

∫ t

0

w(s)

(t− s)1−β
ds+M

∫ t

0
g(s, w(s)) ds

}

≤ K0 +K1

∫ t

0

w(s)

(t− s)1−β
ds+K2

∫ t

0
g(s, w(s)) ds, t ∈ J.

From Lemma 2.3 we have

w(t) ≤ b

(

K0 +K2

∫ t

0
g(s, w(s)) ds

)

,

where

b = eK
n
1
(Γ(β))nT nβ/Γ(nβ)

n−1
∑

j=0

(

K1T
β

β

)j

.

Let

m(t) = b

(

K0 +K2

∫ t

0
g(s, w(s)) ds

)

, t ∈ J.

Then we have w(t) ≤ m(t) for all t ∈ J. Differentiating with respect to t, we
obtain

m′(t) = bK2g(t, w(t)), a.e. t ∈ J, m(0) = bK0.

Using the nondecreasing character of g we get

m′(t) ≤ bK2g(t,m(t)), t ∈ J.

This implies that ([19] Theorem 1.10.2) m(t) ≤ r(t) for t ∈ J, and hence
w(t) ≤ b0 = supt∈J r(t). Thus

sup{‖y(t)‖ : −r ≤ t ≤ T} ≤ b′0 := max{‖φ‖D, b0},

where b0 depends only on T and on the function r. This shows that M is
bounded.

As a consequence of the Leray-Schauder Alternative for Kakutani maps
[14] we deduce that N has a fixed point which is a solution of (1.1)–(1.2).
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Theorem 3.3. Assume that (3.2.1)–(3.2.5) hold. In addition, suppose that

the following condition is satisfied:

(3.3.1) there exists a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup {‖v‖ : v ∈ F (t, u)}

≤ p(t)ψ(‖u‖D) for each (t, u) ∈ J ×D

and there exists a constant M∗ > 0 with

(

1 −K1
T β

β

)

M∗

K0 +K2ψ(M∗)

∫ T

0
p(s) ds

> 1,

where K0,K1,K2 are defined in Theorem 3.2, with 1 −K1
T β

β > 0.

Then the IVP (1.1)–(1.2) has at least one mild solution on [−r, T ].

Proof. Define N as in the proof of Theorem 3.2. As in Theorem 3.2 we
can prove that N is completely continuous.

We show there exists an open set U ⊆ C(J,E) with y /∈ λN(y) for λ ∈ (0, 1)
and y ∈ ∂U. Let λ ∈ (0, 1) and let y ∈ λN(y). Then we have

‖y(t)‖ ≤

≤M‖φ‖D +MQ+M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖yt‖D + c2]

+

∫ t

0
‖(−A)1−βS(t− s)‖‖(−A)βf(s, ys)‖ ds

+ M

∫ t

0
p(s)ψ(‖ys‖D)ds

≤M‖φ‖D +MQ+M‖(−A)−β‖[c1‖φ‖D + c2] + ‖(−A)−β‖[c1‖yt‖D + c2]

+ C1−βc1

∫ t

0

‖ys‖D
(t− s)1−β

+
C1−βc2T

β

β
+M

∫ t

0
p(s)ψ(‖ys‖D)ds
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≤ Λ + c1‖(−A)−β‖‖yt‖D

+ C1−βc1

∫ t

0

‖ys‖D
(t− s)1−β

ds+M

∫ t

0
p(s)ψ(‖ys‖D)ds, t ∈ J.

Put w(t) = max{‖y(s)‖ : −r ≤ s ≤ t}, t ∈ J. Then ‖yt‖D ≤ w(t) for all
t ∈ J and there is a point t∗ ∈ [−r, t] such that w(t) = y(t∗). Hence we have

w(t) = ‖y(t∗)‖

≤ Λ + c1‖(−A)−β‖‖yt∗‖D + C1−βc1

∫ t∗

0

‖ys‖D
(t− s)1−β

ds

+ M

∫ t∗

0
p(s)ψ(‖ys‖D)ds

≤ Λ + c1‖(−A)−β‖w(t) + C1−βc1

∫ t

0

w(s)

(t− s)1−β
ds

+ M

∫ t

0
p(s)ψ(w(s)) ds,

or

w(t) ≤ K0 +K1

∫ t

0

w(s)

(t− s)1−β
ds+K2

∫ t

0
p(s)ψ(w(s)) ds, t ∈ J.

Then we have

‖w‖ ≤ K0 +K1‖w‖

∫ t

0

1

(t− s)1−β
ds+K2ψ(‖w‖)

∫ t

0
p(s) ds

≤ K0 +K1‖w‖
T β

β
+K2ψ(‖w‖)

∫ t

0
p(s) ds.

Consequently
(

1 −K1
T β

β

)

‖w‖

K0 +K2ψ(‖w‖)

∫ T

0
p(s) ds

≤ 1.

Then by (3.3.1), there exists M∗ such that ‖w‖ 6= M∗.
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Set
U = {y ∈ C(J,E) : ‖y‖ < M∗}.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for λ ∈ (0, 1).
As a consequence of the Leray-Schauder Alternative for Kakutani maps [14]
we deduce that N has a fixed point and therefore the problem (1.1)–(1.2)
has a solution on [−r, T ].

Next, we study the case where F is not necessarily convex valued. Our
approach here is based on the Leray-Schauder Alternative for single valued
maps combined with a selection theorem due to Bressan and Colombo [6]
for lower semicontinuous multivalued operators with decomposable values.

Theorem 3.4 Suppose that:

(3.4.1) F : J × D −→ P(E) is a nonempty, compact-valued, multivalued

map such that:

(a) (t, u) 7→ F (t, u) is L⊗ B measurable;

(b) u 7→ F (t, u) is lower semi-continuous for a.e. t ∈ J ;

(3.4.2) for each ρ > 0, there exists a function ϕρ ∈ L1(J,R+) such that

‖F (t, u)‖ = sup{‖v‖ : v ∈ F (t, u)} ≤ ϕρ(t) for a.e. t ∈ J

and for u ∈ E with ‖u‖D ≤ ρ.

In addition, suppose (3.2.1)–(3.2.4), (3.2.6)–(3.2.8) are satisfied. Then the

initial value problem (1.1)–(1.2) has at least one solution on [−r, T ].

Proof. Assumptions (3.4.1) and (3.4.2) imply that F is of lower semicon-
tinuous type. Then there exists ([6]) a continuous function p : C(J,E) →
L1(J,E) such that p(y) ∈ F(y) for all y ∈ C(J,E), where F is the Nemitsky
operator defined by

F(y) = {w ∈ L1(J,E) : w(t) ∈ F (t, y(t)) for a.e. t ∈ J}.

Consider the problem

(3.1)
d

dt
[y(t) − f(t, yt)] −Ay(t) = p(y)(t), t ∈ J,

(3.2) y(t) + ht(y) = φ(t), t ∈ [−r, 0].
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It is obvious that if y ∈ C([−r, T ], E) is a solution to the problem (3.1)–(3.2),
then y is a solution to the problem (1.1)–(1.2).

Transform the problem (3.1)–(3.2) into a fixed point problem consider-
ing the operator N : C([−r, T ], E) → C([−r, T ], E) defined by:

N(y)(t) :=















































φ(t) − ht(y), if t ∈ [−r, 0]

S(t)[φ(0) − h0(y) − f(0, φ(0))] + f(t, yt)

+

∫ t

0
AS(t− s)f(s, ys)ds

+

∫ t

0
S(t− s)p(y)(s)ds, t ∈ J.

We prove that N : C([−r, T ], E) −→ C([−r, T ], E) is continuous.

Let {yn} be a sequence such that yn −→ y in C([−r, T ], E). Then there
is an integer q such that ‖yn‖ ≤ q for all n ∈ N and ‖y‖ ≤ q, so yn ∈ Bq and
y ∈ Bq. We have then by the dominated convergence theorem

‖N(yn) −N(y)‖ ≤ M‖h0(yn) − h0(y)‖

+ ‖f(t, ynt) − f(t, yt)‖

+

∥

∥

∥

∥

[

∫ t

0
AS(t− s)|f(s, yns) − f(s, ys)|ds

]

∥

∥

∥

∥

+ M

∥

∥

∥

∥

[

∫ t

0
|p(yn) − p(y)|ds

]

∥

∥

∥

∥

−→ 0.

Thus N is continuous. Also the argument in Theorem 3.2 guarantees that
N is completely continuous and that there is no y ∈ ∂U (U as defined in
Theorem 3.3), such that y = λN(y) for some λ ∈ (0, 1).

As a consequence of the Leray-Schauder Alternative for single valued
maps we deduce that N has a fixed point y which is a mild solution to the
problem (3.1)–(3.2). Then y is a mild solution to the problem (1.1)–(1.2).

We state without proof the analogous of Theorem 3.3 for the lower semicon-
tinuous case.
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Theorem 3.5. Assume that the conditions (3.2.1)–(3.2.4), (3.4.1), (3.4.2)
and (3.3.1) are satisfied. Then the initial value problem (1.1)–(1.2) has at

least one solution on [−r, T ].

4. Semilinear neutral functional differential inclusions with

nondense domain and nonlocal conditions

Recently, in [1] the authors have considered the following general class of
nonlinear partial neutral functional differential equations with infinite delay

(4.1)
d

dt
[x(t) − f(t, xt)] = A[x(t) − f(t, xt)] + F (t, xt), t ≥ 0

(4.2) x0 = φ ∈ F

where the operator A is nondensely defined, f, F : [0,∞) × F → E and F
is the phase space of functions mapping (−∞, 0] into E. There are many
examples where evolution equations are nondensely defined. For example,
when we look at a one-dimensional heat equation with Dirichlet conditions
on [0, 1] and consider A = ∂2

∂x2 in C([0, 1],R) in order to measure the solutions
in the sup-norm, then the domain,

D(A) = {φ ∈ C2([0, 1],R) : φ(0) = φ(1) = 0},

is not dense in C([0, 1],R) with the sup-norm. See [9] for more examples
and remarks concerning nondensely defined operators.

In this section, we consider the following first order semilinear neutral
functional differential inclusion with nonlocal conditions

(4.3)
d

dt
[y(t) − f(t, xt)] ∈ A[y(t) − f(t, xt)] + F (t, yt), a.e. t ∈ J,

(4.4) y(t) + ht(y) = φ(t), t ∈ [−r, 0],

where f, F, ht, φ are as in the problem (1.1)–(1.2) and A is nondensely de-
fined. We give an existence result by assuming the existence of a maximal
solution to an appropriate problem. The basic tool for this study is the
theory of integrated semigroups.
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Definition 4.1 ([3]). Let E be a Banach space. An integrated semigroup
is a family of operators (S(t))t≥0 of bounded linear operators S(t) on E with
the following properties:

(i) S(0) = 0;

(ii) t→ S(t) is strongly continuous;

(iii) S(s)S(t) =
∫ s
0 (S(t+ r) − S(r))dr, for all t, s ≥ 0.

Definition 4.2. An integrated semigroup (S(t))t≥0 is called exponentially
bounded, if there exists a constant M ≥ 0 and ω ∈ R such that

‖S(t)‖ ≤Meωt, for t ≥ 0.

Moreover, (S(t))t≥0 is called nondegenerate, if S(t)x = 0, for all t ≥ 0,
implies x = 0.

Definition 4.3. An operator A is called a generator of an integrated semi-
group, if there exists ω ∈ R such that (ω,+∞) ⊂ ρ(A) (the resolvent set
of A), and there exists a strongly continuous exponentially bounded family
(S(t))t≥0 of linear bounded operators such that S(0) = 0 and (λI −A)−1 =
λ

∫ ∞
0 e−λtS(t)dt for all λ > ω.

If A is the generator of an integrated semigroup (S(t))t≥0 which is locally
Lipschitz, then from [3], S(·)x is continuously differentiable if and only if
x ∈ D(A). In particular, S ′(t)x := d

dtS(t)x defines a bounded operator on the
set E1 := {x ∈ E : t → S(t)x is continously differentiable on [0,∞)} and
(S′(t))t≥0 is a C0 semigroup on D(A). Here and hereafter, we assume that
A satisfies the Hille-Yosida condition, that is, there exists M ≥ 0 and ω ∈ R

such that (ω,∞) ⊂ ρ(A), sup{(λI−ω)n‖(λI−A)−n‖ : λ > ω, n ∈ N} ≤M,
where ρ(A) is the resolvent operator set of A and I is the identity operator.

Let (S(t))t≥0, be the integrated semigroup generated by A. We note
that, since A satisfies the Hille-Yosida condition, ‖S ′(t)‖B(E) ≤Meωt, t ≥ 0,
where M and ω are from the Hille-Yosida condition (see [18]).

In the sequel, we give some results for the existence of solutions to the
following problem:

(4.5) y′(t) = Ay(t) + g(t), t ≥ 0,
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(4.6) y(0) = y0 ∈ E,

where A satisfies the Hille-Yosida condition, without being densely defined.

Theorem 4.4 [18]. Let g : [0, b] → E be a continuous function. Then for

y0 ∈ D(A), there exists a unique continuous function y : [0, b] → E such

that

(i)

∫ t

0
y(s)ds ∈ D(A) for t ∈ [0, b],

(ii) y(t) = y0 +A

∫ t

0
y(s)ds+

∫ t

0
g(s)ds, t ∈ [0, b],

(iii) ‖y(t)‖ ≤Meωt

(

‖y0‖ +

∫ t

0
e−ωs‖g(s)‖ds

)

, t ∈ [0, b].

Moreover, y satisfies the following variation of constant formula:

(4.7) y(t) = S ′(t)y0 +
d

dt

∫ t

0
S(t− s)g(s)ds, t ≥ 0.

Let Bλ = λR(λ,A) := λ(λI − A)−1. Then ([18]) for all x ∈ D(A), Bλx→ x
as λ→ ∞. Also from the Hille-Yosida condition (with n = 1) it easy to see
that lim

λ→∞
‖Bλx‖ ≤M‖x‖, since

‖Bλ‖ = ‖λ(λI −A)−1‖ ≤
Mλ

λ− ω
.

Thus lim
λ→∞

‖Bλ‖ ≤M. Also if y satisfies (4.7), then

(4.8) y(t) = S ′(t)y0 + lim
λ→∞

∫ t

0
S′(t− s)Bλg(s)ds, t ≥ 0.

We are now in a position to define what we mean by an integral solution of
the IVP (4.3)–(4.4).

Definition 4.5. We say that y : J → E is an integral solution of (4.3)–(4.4)
if

(i) y ∈ C([−r, T ], E),
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(ii)

∫ t

0
[y(s) − f(s, ys)]ds ∈ D(A) for t ∈ J,

(iii) there exists a function v ∈ L1(J,E), such that v(t) ∈ F (t, y(t)) a.e. in
J and

y(t) = S′(t)[φ(0)−h0(y)− f(0, φ(0))] + f(t, yt) +
d

dt

∫ t

0
S(t− s)v(s)ds

and y(t) = φ(t) − ht(y), t ∈ [−r, 0].

Theorem 4.6 Assume that (3.2.2) (i), (3.2.4)–(3.2.7) hold and in addition,

suppose that the following conditions are satisfied:

(4.6.1) A satisfies the Hille-Yosida condition;

(4.6.2) the operator S ′(t) is compact in D(A) whenever t > 0.

(4.6.3) φ(0) − h0(y) − f(0, φ(0)) ∈ D(A);

(4.6.4) there exist constants 0 < c1 < 1, c2 ≥ 0 such that

‖f(t, x)‖ ≤ c1‖x‖D + c2, (t, x) ∈ J ×D;

(4.6.5) given ε > 0, then for any bounded subset D of C([−r, T ], E) there

exists a δ > 0 with ‖(S ′(h)−I)h0(y)‖ < ε for all y ∈ D and h ∈ [0, δ]
and ‖ht(y)−hs(y)‖ < ε for all y ∈ D and t, s ∈ [−r, 0] with |t−s| < δ;

(4.6.6) the problem

v′(t) =
M∗

1 − c1
e−ωtg(t, v(t)), a.e. t ∈ J,

v(0) =
M∗

1 − c1

[

(1 + c1)‖φ‖D +Q+ c2 +
c2
M∗

]

, M∗= max{eωT , 1},

has a maximal solution r(t).

Then the IVP (4.3)–(4.4) has at least one integral solution on [−r, T ].

Proof. Transform the problem (4.3)–(4.4) into a fixed point problem.
Consider the operator N : C([−r, T ], E) → P(C([−r, T ], E)) defined by



Existence and controllability results for semilinear ... 237

N(y) :=



























φ(t) − ht(y), if t ∈ [−r, 0],

S′(t)[φ(0) − h0(y) − f(0, φ(0))] + f(t, yt)

+
d

dt

∫ t

0
S(t− s)v(s)ds, if t ∈ J,

where v ∈ SF,y.
We shall show that N has a fixed point. The proof is given in several

steps.

Step 1. N is convex for each y ∈ C([−r, T ], E).
This is obvious, since F has convex values.

Step 2. N maps bounded sets into bounded sets in C([−r, T ], E).
Let Bq = {y ∈ C([−r, T ], E) : ‖y‖ := supt∈[−r,T ] ‖y(t)‖ ≤ q} be a bounded
set in C([−r, T ], E) and y ∈ Bq. Then for h ∈ N(y) there exists v ∈ SF,y

such that

h(t) = S′(t)[φ(0)−h0(y)−f(0, φ(0))]+f(t, yt)+
d

dt

∫ t

0
S(t−s)v(s)ds, t ∈ J.

Thus for each t ∈ J we get

‖y(t)‖ ≤ Meωt[(1 + c1)‖φ‖D +Q+ c2] + c1‖yt‖D + c2

+ Meωt

∫ t

0
e−ωs‖v(s)‖ds

≤ M∗[(1 + c1)‖φ‖D +Q+ c2] + c1q + c2 +M∗

∫ t

0
e−ωshq(s)ds;

here hq is chosen as in Definition 2.2 and M ∗ = eωT if ω > 0 or M ∗ = 1 if
ω ≤ 0. Then for each h ∈ N(Bq) we have

‖h‖ ≤M∗[(1 + c1)‖φ‖D +Q+ c2] + c1q + c2 +M∗

∫ T

0
e−ωshq(s)ds := `.

Step 3. N sends bounded sets into equicontinuous sets in C([−r, T ], E).
We consider Bq as in Step 2 and let h ∈ N(y) for y ∈ Bq. Let ε > 0 be given.
Now let τ1, τ2 ∈ J with τ2 > τ1. We consider two cases τ1 > ε and τ1 ≤ ε.
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Case 1. It τ1 > ε then

‖h(τ2) − h(τ1)‖ ≤ ‖ [S′(τ2) − S′(τ1)][φ(0) − h0(y) − f(0, φ(0))] ‖

+ ‖f(τ2, yτ2) − f(τ2, yτ2)‖

+

∥

∥

∥

∥

lim
λ→∞

∫ τ1−ε

0
[S′(τ2 − s) − S′(τ1 − s)]Bλv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

lim
λ→∞

∫ τ1

τ1−ε
[S′(τ2 − s) − S′(τ1 − s)]Bλv(s)ds

∥

∥

∥

∥

+

∥

∥

∥

∥

lim
λ→∞

∫ τ2

τ1

S′(τ2 − s)Bλv(s)ds

∥

∥

∥

∥

≤ ‖ [S′(τ2) − S′(τ1)][φ(0) − f(0, φ(0))] ‖

+ M∗‖S′(τ2 − τ1 + ε) − S′(ε)‖B(e)‖h0(Bq)‖

+ ‖f(τ2, yτ2) − f(τ2, yτ2)‖

+ M∗‖S′(τ2 − τ1 + ε) − S′(ε)‖B(E)

∫ τ1−ε

0
e−ωshq(s)ds

+ 2M∗

∫ τ1

τ1−ε
e−ωshq(s)ds

+ M∗

∫ τ2

τ1

e−ωshq(s)ds.

Case 2. Let τ1 ≤ ε. For τ2 − τ1 < ε we get

‖h(τ2) − h(τ1)‖ ≤ ‖ [S′(τ2) − S′(τ1)][φ(0) − f(0, φ(0))]‖

+ M‖S′(τ2 − τ1)h0(y) − h0(y)‖

+ ‖f(τ2, yτ2) − f(τ2, yτ2)‖

+ M∗

∫ 2ε

0
e−ωshq(s)ds

+ M∗

∫ ε

0
e−ωshq(s)ds.
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Note that equicontinuity follows since (i). S ′(t), t ≥ 0 is a strongly continu-
ous semigroup, (ii). (4.6.5) and (iii). S ′(t) is compact for t > 0 (so S ′(t) is
continuous in the uniform operator topology for t > 0).

Let 0 < t ≤ T be fixed and let ε be a real number satisfying 0 < ε < t.
For y ∈ Bq and v ∈ SF,y we define

rε(t) = lim
λ→∞

∫ t−ε

0
S′(t− s)Bλv(s)ds

= S′(ε) lim
λ→∞

∫ t−ε

0
S′(t− s− ε)Bλv(s)ds.

Note
{

lim
λ→∞

∫ t−ε

0
S′(t− s− ε)Bλv(s)ds : y ∈ Bq and v ∈ SF,y

}

is a bounded set since
∥

∥

∥

∥

lim
λ→∞

∫ t−ε

0
S′(t− s− ε)Bλv(s)ds

∥

∥

∥

∥

≤M∗

∫ t−ε

0
e−ωshq(s)ds

and now since S ′(t) is a compact operator for t > 0, the set Yε(t) = {rε(t) :
y ∈ Bq and v ∈ SF,y} is relatively compact in E for every ε, 0 < ε < t.
Moreover, for r = r0 we have

‖r(t) − rε(t)‖ ≤M

∫ t

t−ε
e−ωshq(s)ds.

Therefore, the set Y (t) = {r(t) : y ∈ Bq and v ∈ SF,y} is totally bounded.
Hence Y (t) is relatively compact in E.

As a consequence of Steps 2, 3 and the Arzelá-Ascoli theorem we can
conclude that N : C([−r, T ], E) −→ P(C([−r, T ], E)) is completely contin-
uous.

Step 4. N has a closed graph.
Let yn −→ y∗, hn ∈ N(yn) and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).
Now hn ∈ N(yn) means that there exists vn ∈ SF,yn such that

hn(t) = S′(t)[φ(0) − h0(yn) − f(0, φ(0))] + f(t, ynt)

+ lim
λ→∞

∫ t

0
S′(t− s)Bλvn(s)ds, t ∈ J.
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We must prove that there exists v∗ ∈ SF,y∗ such that

h∗(t) = S′(t)[φ(0) − h0(y∗) − f(0, φ(0))] + f(t, y∗t)

+ lim
λ→∞

∫ t

0
S′(t− s)Bλv∗(s)ds, t ∈ J.

Consider the linear continuous operator Γ : L1(J,E) −→ C(J,E) defined by

(Γv)(t) = lim
λ→∞

∫ t

0
S′(t− s)Bλv(s)ds.

We have

‖(hn(t) − S′(t)[φ(0) − h0(yn) − f(0, φ(0))] + f(t, ynt))

−(h∗(t) − S′(t)[φ(0) − h0(y∗) − f(0, φ(0))] + f(t, y∗t))‖ −→ 0

as n −→ ∞. It follows that Γ◦SF is a closed graph operator ([20]). Moreover,
we have

hn(t) − S′(t)[φ(0) − h0(yn) − f(0, φ(0))] + f(t, ynt) ∈ Γ(SF,yn).

Since yn −→ y∗, it follows that

h∗(t) = S′(t)[φ(0) − h0(y∗) − f(0, φ(0))] + f(t, y∗t)

+ lim
λ→∞

∫ t

0
S′(t− s)Bλv∗(s)ds, t ∈ J.

for some v∗ ∈ SF,y∗.

Step 5. The set

M := {y ∈ C([−r, T ], E) : λy ∈ N(y), for some λ > 1}

is bounded.

Let y ∈ M be such that λy ∈ N(y) for some λ > 1. Then

y(t) = λ−1S′(t)[φ(0) − h0(y) − f(0, φ(0))] + λ−1f(t, yt)

+ λ−1 d

dt

∫ t

0
S(t− s)v(s)ds, t ∈ J.
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Thus
‖y(t)‖ ≤M ∗[(1 + c1)‖φ‖D +Q+ c2] + c1‖yt‖D + c2

+ M∗

∫ t

0
e−ωsg(s, ‖ys‖D)ds, t ∈ J.

We consider the function µ defined by

µ(t) := sup {‖y(s)‖ : −r ≤ s ≤ t}, t ∈ [0, T ].

Let t∗ ∈ [−r, t] be such that µ(t) = ‖y(t∗)‖. If t∗ ∈ [0, T ], then by the
previous inequality, we have for t ∈ [0, T ],

(1 − c1)µ(t) ≤M ∗[(1 + c1)‖φ‖D +Q+ c2] + c2 +M∗

∫ t

0
e−ωsg(s, µ(s))ds,

or

µ(t) ≤
M∗

1 − c1

[

(1 + c1)‖φ‖D +Q+ c2 +
c2
M∗

+

∫ t

0
e−ωsg(s, µ(s))ds

]

, t ∈ J.

If t∗ ∈ [−r, 0] then µ(t) ≤ ‖φ‖D + Q and the inequality holds. Let us take
the right-hand side of the above inequality as v(t). Then we have

v(0) =
M∗

1 − c1

[

(1 + c1)‖φ‖D +Q+ c2 +
c2
M∗

]

and

v′(t) =
M∗

1 − c1
e−ωtg(t, µ(t))

≤
M∗

1 − c1
e−ωtg(t, v(t)), t ∈ [0, T ].

This implies that ([19] Theorem 1.10.2) v(t) ≤ r(t) for t ∈ J, and hence
‖y(t)‖ ≤ b′ = supt∈[−r,T ] r(t), t ∈ J0 where b′ depends only on T and on the
function r. This shows that M is bounded.

As a consequence of the Leray-Schauder Alternative for Kakutani maps
[14] we deduce that N has a fixed point which is a solution of (4.3)–(4.4).

Theorem 4.7. Assume that (3.2.2) (i), (3.2.4), (3.2.5), (4.6.1)–(4.6.5) hold.

In addition, suppose that the following condition is satisfied:
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(4.7.1) there exists a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)

for each (t, u) ∈ J ×D

and there exists a constant M∗ > 0 with

(1 − c1)M∗

M∗(1 + c1)‖φ‖D +M∗(c2 +Q) + c2 +M∗ψ(M∗)

∫ T

0
e−ωsp(s) ds

> 1.

Then the IVP (4.3)–(4.4) has at least one integral solution on [−r, T ].

Proof. Define N as in the proof of Theorem 4.6. As in Theorem 4.6 we
can prove that N is completely continuous.

We show there exists an open set U ⊆ C(J,E) with y /∈ λN(y) for λ ∈ (0, 1)
and y ∈ ∂U. Let λ ∈ (0, 1) and let y ∈ λN(y). Then we have

‖y(t)‖ ≤M ∗[(1 + c1)‖φ‖D +Q+ c2] + c1‖yt‖D + c2

+ M∗

∫ t

0
e−ωsp(s)ψ(‖ys‖D)ds, t ∈ J.

We consider the function µ defined by

µ(t) := sup{‖y(s)‖ : −r ≤ s ≤ t}, t ∈ [0, T ].

Let t∗ ∈ [−r, t] be such that µ(t) = ‖y(t∗)‖. If t∗ ∈ [0, T ], then by the
previous inequality, we have for t ∈ [0, T ],

(1 − c1)µ(t) ≤M ∗[(1 + c1)‖φ‖D +Q+ c2] + c2 +M∗

∫ t

0
e−ωsp(s)ψ(µ(s))ds,

or

µ(t) ≤
M∗

1 − c1

[

(1 + c1)‖φ‖D +Q+ c2 +
c2
M∗

+

∫ t

0
e−ωsp(s)ψ(µ(s))ds

]

, t ∈ J.

If t∗ ∈ [−r, 0], then µ(t) ≤ ‖φ‖D +Q and the inequality holds.
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Consequently

(1 − c1)‖y‖

M∗(1 + c1)‖φ‖D +M∗(c2 +Q) + c2 +M∗ψ(‖y‖)

∫ T

0
e−ωsp(s) ds

≤ 1.

Then by (4.7.1), there exists M∗ such that ‖y‖ 6= M∗. Set

U = {y ∈ C(J,E) : ‖y‖ < M∗}.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for λ ∈ (0, 1).
As a consequence of the Leray-Schauder Alternative for Kakutani maps [14]
we deduce that N has a fixed point and therefore the problem (4.3)–(4.4)
has a solution on [−r, T ].

We state also without proof two results concerning the lower semicontinuous
case for nondensely defined operators.

Theorem 4.8. Assume that the conditions (3.2.2) (i), (3.2.4), (3.4.1), (3.4.2)
and (4.6.1)–(4.6.6) are satisfied. Then the problem (4.3)–(4.4) has at least

one integral solution on [−r, T ].

Theorem 4.9. Assume that the conditions (3.2.2) (i), (3.2.4), (3.4.1), (3.4.2),
(4.6.1)–(4.6.5) and (4.7.1) are satisfied. Then the problem (4.3)–(4.4) has at

least one integral solution on [−r, T ].

5. Second order semilinear neutral functional differential

inclusions with nonlocal conditions

In this section, we study the problem (1.3)–(1.4).

Definition 5.1. A function y ∈ C([−r, T ], E) is said to be a mild solution
of (1.3)–(1.4) if y(t) + ht(y) = φ(t), t ∈ [−r, 0], y′(0) + h1(y) = η and there
exists v ∈ L1(J,E) such that v(t) ∈ F (t, y(t)) a.e. on J and

y(t) = C(t)[φ(0) − h0(y)] + S(t)[η − h1(y) − f(0, φ(0))]

+

∫ t

0
C(t− s)f(s, ys)ds+

∫ t

0
S(t− s)v(s)ds, t ∈ J.
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Theorem 5.2. Assume (3.2.4)–(3.2.7), (4.6.4) and the conditions

(5.2.1) the function h1 : C(J,E) → E is continuous and completely contin-

uous and there exists a constant Q1 > 0 such that ‖h1(y)‖ ≤ Q1,
for all y ∈ C(J,E);

(5.2.2) A : D(A) ⊂ E → E is the infinitesimal generator of a strongly

continuous cosine family {C(t) : t ∈ J}, and there exist constants

N1 ≥ 1, and N2 ≥ 1 such that ‖C(t)‖B(E) ≤ N1, ‖S(t)‖B(E) ≤ N2

for all t ∈ R;

(5.2.3) for each bounded B ⊆ C([−r, b], E), and t ∈ J the set

{

C(t)[φ(0) − h0(y)] + S(t)[η − h1(y) − f(0, φ(0))]

+

∫ t

0
C(t− s)f(s, ys)ds+

∫ t

0
S(t− s)v(s)ds, v ∈ SF,B

}

is relatively compact in E, where y ∈ B and SF,B = ∪{SF,y : y ∈ B};

(5.2.4) the problem

v′(t) = N1c1v(t) +N2g(t, v(t)), a.e. t ∈ J,

v(0) = C1,

where

C1 = N1[‖φ‖D +Q] +N2[‖η‖ +Q1 + c1‖φ‖D + c2] +N1c2T,

has a maximal solution r(t);

(5.2.5) given ε > 0, then for any bounded subset D of C([−r, b], E) there

exists a δ > 0 with ‖[C(τ2) − C(τ1)]h0(y)]‖ < ε for all y ∈ D and

τ1, τ2 ∈ [0, δ] and ‖ht(y)− hs(y)‖ < ε for all y ∈ D and t, s ∈ [−r, 0]
with |t− s| < δ;

(5.2.6) given ε > 0, then for any bounded subset D of C([−r, b], E) there

exists a δ > 0 with ‖[S(τ2) − S(τ1)]h1(y)]‖ < ε for all y ∈ D and

τ1, τ2 ∈ [0, δ];

(5.2.7) for every q > 0 the set f(I×Bq(0)) is relatively compact in E, where

Bq(0) denotes the closed ball with center at 0 and radius q > 0,

are satisfied. Then the problem (1.3)–(1.4) has at least one mild solution on

[−r, T ].
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Proof. We transform the problem (1.3)–(1.4) into a fixed point problem.
Consider the multivalued map N : C([−r, T ], E) −→ P(C([−r, T ], E)) de-
fined by

N(y) :=



















































h ∈ C([−r, T ], E) : h(t) =



















































φ(t) − ht(y), if t ∈ [−r, 0]

C(t)[φ(0) − h0(y)]

+S(t)[η − h1(y) − f(0, φ(0))]

+

∫ t

0

C(t− s)f(s, ys)ds

+

∫ t

0

S(t− s)v(s)ds, if t ∈ [0, T ]



















































where v ∈ SF,y. We shall show that N has a fixed point. The proof will be
given in several steps.

Step 1. N(y) is convex for each y ∈ C([−r, T ], E).
This is obvious, since F has convex values.

Step 2. N maps bounded sets into bounded sets in C([−r, b], E).
Let Bq := {y ∈ C([−r, T ], E) : ‖y‖ = supt∈[−r,T ] ‖y(t)‖ ≤ q} be a bounded

set in C([−r, T ], E) and y ∈ Bq. Then for each h ∈ N(y) there exists v ∈ SF,y

such that

h(t) = C(t)[φ(0) − h0(y)] + S(t)[η − h1(y) − f(0, φ(0))]

+

∫ t

0
C(t− s)f(s, ys)ds+

∫ t

0
S(t− s)v(s)ds, t ∈ J.

Thus for each t ∈ J we get

‖h(t)‖ ≤ N1[‖φ‖D +Q] +N2[‖η‖ +Q1 + c1‖φ‖D + c2]

+N1

∫ t

0
[c1‖ys‖ + c2]ds+N2

∫ t

0
‖v(s)‖ds

≤ N1[‖φ‖D +Q] +N2[‖η‖ +Q1 + c1‖φ‖D + c2]

+N1

∫ t

0
[c1‖ys‖ + c2]ds+N2‖hq‖L1 ;
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here hq is chosen as in Definition 2.2. Then for each h ∈ N(Bq) we have

‖h‖≤N1[‖φ‖D+Q]+N2[‖η‖+Q1+c1‖φ‖D+c2]+N1T [c1q+c2]+N2‖hq‖L1:=`.

Step 3. N maps bounded sets into equicontinuous sets of C([−r, T ], E).

We consider Bq as in Step 2 and we fix τ1, τ2 ∈ J with τ2 > τ1. For y ∈ Bq,
we have using Proposition 2.1

‖h(τ2) − h(τ1)‖ ≤ ‖ [C(τ2) − C(τ1)]φ(0)‖ + ‖ [C(τ2) − C(τ1)]h0(y)‖

+ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+ ‖ [S(τ2) − S(τ1)]h1(y)‖

+

∫ τ1

0
‖ [C(τ2 − s) − C(τ1 − s)]f(s, ys)‖ds

+

∫ τ2

τ1

‖C(τ2 − s)‖‖f(s, ys)‖ds

+

∫ τ1

0
‖ [S(τ2 − s) − S(τ1 − s)]v(s)‖ds

+

∫ τ2

τ1

‖S(τ2 − s)‖ ‖v(s)‖ds

≤ ‖ [C(τ2) − C(τ1)]φ(0)‖ + ‖ [C(τ2) − C(τ1)]h0(y)‖

+ ‖ [S(τ2) − S(τ1)][φ(0) − f(0, φ(0)] ‖

+ ‖ [S(τ2) − S(τ1)]h1(y)‖

+

∫ τ1

0
‖ [C(τ2 − s) − C(τ1 − s)]f(s, ys)‖ds

+N1

∫ τ2

τ1

[c1q + c2]ds+

∫ τ1

0

∫ τ2−s

τ1−s
eωxdxv(s)ds

+N2

∫ τ2

τ1

hq(s)ds
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≤ ‖ [C(τ2) − C(τ1)]φ(0)‖ + ‖ [C(τ2) − C(τ1)]h0(y)‖

+ ‖ [S(τ2) − S(τ1)] [φ(0) − h1(y) − f(0, φ(0)] ‖

+

∫ τ1

0
‖ [C(τ2 − s) −C(τ1 − s)]f(s, ys)‖ds

+N1(τ2 − τ1)[c1q + c2]

+ eωb(τ2 − τ1)

∫ τ1

0
hq(s)ds+ N2

∫ τ2

τ1

hq(s)ds.

As a consequence of Steps 2, 3, (5.2.3), (5.2.5), (5.2.6) the strong continuity
of C(t), t ∈ J and the compactness of f, (note for a given ε > 0 we can
choose a δ > 0 such that

‖C(t)f(s, z) − C(t′)f(s, z)‖ < ε, t, t′, s ∈ J, z ∈ Bq(0),

with |t− t′| ≤ δ) and the Arzelá-Ascoli theorem we can conclude that N is
completely continuous.

Step 4. N has a closed graph.

Let yn −→ y∗, hn ∈ N(yn), and hn −→ h∗. We shall prove that h∗ ∈ N(y∗).

Now hn ∈ N(yn) means that there exists vn ∈ SF,yn such that

hn(t) = C(t)[φ(0)− h0(y)] + S(t)[η− h1(y)−f(0, φ)] +

∫ t

0
C(t− s)f(s, yns)ds

+

∫ t

0
S(t− s)vn(s)ds, t ∈ J.

We must prove that there exists v∗ ∈ SF,y∗ such that

h∗(t) = C(t)[φ(0)− h0(y)] + S(t)[η− h1(y)−f(0, φ)] +

∫ t

0
C(t− s)f(s, y∗s)ds

+

∫ t

0
S(t− s)v∗(s)ds, t ∈ J.
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Since f is continuous we have that

∥

∥

∥

(

hn − C(t)[φ(0) − h0(y)] − S(t)[η − h1(y) − f(0, φ)] −

∫ t

0

C(t− s)f(s, yns)ds

)

−

(

h∗ − C(t)[φ(0) − h0(y)] − S(t)[η − h1(y) − f(0, φ)] −

∫ t

0

C(t− s)f(s, y∗s)ds

)

∥

∥

∥
→ 0,

as n −→ ∞.

Consider the linear continuous operator

Γ : L1(J,E) −→ C(J,E)

v 7−→ Γ(v)(t) =

∫ t

0
S(t− s)v(s)ds.

It follows that Γ ◦ SF is a closed graph operator ([20]).

Moreover, we have that

hn(t) − C(t)[φ(0) − h0(y)] − S(t)[η − h1(y) − f(0, φ)]

−

∫ t

0
C(t− s)f(s, yns)ds ∈ Γ(SF,yn).

Since yn −→ y∗, it follows that

h∗(t) − C(t)[φ(0) − h0(y)] − S(t)[η − h1(y) − f(0, φ)]

−

∫ t

0
C(t− s)f(s, y∗s)ds =

∫ t

0
S(t− s)v∗(s)ds

for some v∗ ∈ SF,y∗.

Step 5. Now it remains to show that the set

M := {y ∈ C([−r, T ], E) : λy ∈ N(y), for some λ > 1}

is bounded.
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Let λ > 1 and λy ∈ N(y). Then for t ∈ J

y(t) = λ−1C(t)[φ(0) − h0(y)] + λ−1S(t)[η − h1(y) − f(0, φ)]

+λ−1

∫ t

0
C(t− s)f(s, ys)ds+ λ−1

∫ t

0
S(t− s)v(s)ds, t ∈ J.

This implies by our assumptions that for each t ∈ J we have

‖y(t)‖ ≤ N1[‖φ‖D +Q] +N2[‖η‖ +Q1 + c1‖φ‖D + c2]

+N1

∫ t

0
(c1‖ys‖D + c2)ds+N2

∫ t

0
g(s, ‖ys‖D)ds.

We consider the function µ defined by

µ(t) = sup{‖y(s)‖ : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = ‖y(t∗)‖. If t∗ ∈ J , by the previous
inequality we have for t ∈ J

µ(t) ≤

≤ N1[ ‖φ‖D +Q] +N2[ ‖η‖ +Q1 + c1‖φ‖D + c2] +N1

∫ t∗

0
(c1µ(s) + c2)ds

+N2

∫ t∗

0
g(s, µ(s))ds

≤ N1[ ‖φ‖D +Q] +N2[ ‖η‖ +Q1 + c1‖φ‖D + c2] +N1c1

∫ t

0
µ(s)ds+N1c2T

+N2

∫ t

0
g(s, µ(s))ds

≤ C1 +N1c1

∫ t

0
µ(s)ds+N2

∫ t

0
g(s, µ(s))ds.

If t∗ ∈ J0, then µ(t) ≤ ‖φ‖D +Q and the previous inequality holds.

Let us take the right-hand side of the above inequality as v(t). Then we
have

v(0) = C1
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and

v′(t) = N1c1µ(t) +N2g(t, µ(t))

≤ N1c1v(t) +N2g(t, v(t)), t ∈ [0, T ].

This implies that ([19] Theorem 1.10.2) v(t) ≤ r(t) for t ∈ J, and hence
‖y(t)‖ ≤ b′ = supt∈[−r,T ] r(t), t ∈ J0 where b′ depends only on T and on the
function r. This shows that M is bounded.

As a consequence of the Leray-Schauder Alternative for Kakutani maps
[14] we deduce that N has a fixed point which is a solution of (4.3)–(4.4).

Theorem 5.3. Assume that (3.2.4), (3.2.5), (4.6.4), (5.2.1)–(5.2.3),
(5.2.5)–(5.2.7) hold. In addition, suppose that the following condition is

satisfied:

(5.3.1) there exist a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)

for each (t, u) ∈ J ×D

and there exists a constant M∗ > 0 with

(1 − Tc1N1)M∗

C1 +N2ψ(M∗)

∫ T

0
p(s) ds

> 1,

where C1 is defined in Theorem 5.2 and 1 − Tc1N1 > 0.

Then the IVP (1.3)–(1.4) has at least one mild solution on [−r, T ].

Proof. Define N as in the proof of Theorem 5.2. As in Theorem 5.2 we
can prove that N is completely continuous.

We show there exists an open set U ⊆ C(J,E) with y /∈ λN(y) for λ ∈ (0, 1)
and y ∈ ∂U. Let λ ∈ (0, 1) and let y ∈ λN(y). Then we have

‖y(t)‖ ≤ N1[‖φ‖D +Q] +N2[‖η‖ +Q1 + c1‖φ‖D + c2]

+N1

∫ t

0
(c1‖ys‖D + c2)ds+N2

∫ t

0
p(s)ψ(‖ys‖D)ds.
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We consider the function µ defined by

µ(t) = sup{‖y(s)‖ : −r ≤ s ≤ t}, 0 ≤ t ≤ T.

Let t∗ ∈ [−r, t] be such that µ(t) = ‖y(t∗)‖. If t∗ ∈ J , by the previous
inequality we have for t ∈ J

µ(t) ≤ N1[ ‖φ‖D +Q] +N2[|η| +Q1 + c1‖φ‖D + c2]

+N1c1

∫ t

0
µ(s)ds+N1c2T +N2

∫ t

0
p(s)ψ(µ(s))ds

≤ C1 +N1c1

∫ t

0
µ(s)ds+N2

∫ t

0
p(s)ψ(µ(s))ds.

If t∗ ∈ J0, then µ(t) ≤ ‖φ‖D +Q and the previous inequality holds.
Consequently,

(1 − Tc1N1)‖y‖

C1 +N2ψ(‖y‖)

∫ T

0
p(s) ds

≤ 1.

Then by (5.3.1), there exists M∗ such that ‖y‖ 6= M∗. Set

U = {y ∈ C(J,E) : ‖y‖ < M∗}.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for λ ∈ (0, 1).
As a consequence of the Leray-Schauder Alternative for Kakutani maps [14]
we deduce that N has a fixed point and therefore the problem (1.3)–(1.4)
has a solution on [−r, T ].

For the lower semicontinuous case we state without proof the following
results.

Theorem 5.4. Assume that the conditions (3.2.4), (3.2.6), (3.2.7), (3.4.1),
(3.4.2), (4.6.4), (5.2.1)–(5.2.7) are satisfied. Then the problem (1.3)–(1.4)
has at least one mild solution on [−r, T ].

Theorem 5.5. Assume that the conditions (3.2.4), (3.4.1), (3.4.2), (4.6.4),
(5.2.1)–(5.2.3), (5.2.5) and (5.3.1) are satisfied. Then the problem (1.3)–(1.4)
has at least one mild solution on [−r, T ].
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6. Controllability results

In this section, we study controllability for first and second order semilin-
ear neutral functional differential inclusions with nonlocal conditions. We
consider first the problem

(6.1)
d

dt
[y(t) − f(t, yt)] ∈ Ay(t) + F (t, yt) + Bu(t), t ∈ J := [0, b],

(6.2) y(t) + ht(y) = φ(t), t ∈ [−r, 0]

where f,A, F, φ are as in the problem (1.1)–(1.2) and the control function
u(·) is given in L2(J, U), a Banach space of admissible control functions.
U is a Banach space. Finally, B is a bounded linear operator from U to E.

Definition 6.1. A function y ∈ C([−r, T ], E) is said to be a mild solution
of (6.1)–(6.2) if y(t) + ht(y) = φ(t), t ∈ [−r, 0] and there exists v ∈ L1(J,E)
such that v(t) ∈ F (t, y(t)) a.e. on J, and

y(t) = S(t)[φ(0) − h0(y) − f(0, φ)] + f(t, yt) +

∫ t

0
AS(t− s)f(s, ys) ds

+

∫ t

0
S(t− s)[Bu(s) + v(s)] ds, t ∈ J.

Definition 6.2. The system (6.1)–(6.2) is said to be nonlocally controllable
on the interval J, if for every φ ∈ D and y1 ∈ E there exists a control
u ∈ L2(J, U), such that the mild solution y(t) of (6.1)–(6.2) satisfies y(T ) +
hT (y) = y1.

Theorem 6.3. Assume that the conditions (3.2.1)–(3.2.5) hold. In addition,

assume the following conditions are satisfied:

(6.3.1) the linear operator W : L2(J, U) → E, defined by

Wu =

∫ T

0
S(T − s)Bu(s) ds,

has a bounded invertible operator W−1 : E → L2(J, U) and there

exist positive constants M1,M2 such that ‖B‖ ≤ M1 and

‖W−1‖ ≤M2;
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(6.3.2) there exists a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)

for each (t, u) ∈ J ×D

and there exists a constant M∗ > 0 with

[

1 − (K2 +K4)
T β

β

]

M∗

K1 + (K3 +K5)ψ(M∗)

∫ T

0
p(s)ds

> 1,

where

Λ = M‖φ‖D
{

1 + c1‖(−A)−β‖
}

+MQ+ c2‖(−A)−β‖{M+1}+
C1−βc2T

β

β

+TMM1M2

[

‖y1‖ +M‖φ‖D +M‖(−A)−β‖ [c1‖φ‖D + c2]

+ c2‖(−A)−β‖ +
C1−βc2T

β

β

]

,

K0 = 1 − c1‖(−A)−β‖(1 + TMM1M2) > 0, K1 =
Λ

K0
,

K2 =
TMM1M2C1−βc1

K0
, K3 =

TM2M1M2

K0
, K4 =

M

K0
, K5 =

C1−βc1
K0

,

and

(K2 +K4)
T β

β
< 1.

Then the problem (6.1)–(6.2) is nonlocally controllable on [−r, T ].

Proof. Using hypothesis (6.3.1) for an arbitrary function y(·) define the
control

uy(t) = W−1
[

y1 − S(T )(φ(0) − h0(y) − f(0, φ)) − f(T, yT )

−

∫ T

0
AS(T − s)f(s, ys)ds−

∫ T

0
S(T − s)v(s)ds

]

(t),
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where v ∈ SF,y. Then we must show that when using this control, the
operator N : C([−r, T ], E) −→ P(C([−r, T ], E)) defined by:

N(y) =











































h ∈ C([−r, T ], E) : h(t) =











































φ(t) − hy(y), t ∈ [−r, 0],

S(t)[φ(0) − h0(y) − f(0, φ(0))]

+f(t, yt) +

∫ t

0

AS(t− s)f(s, ys)ds

+

∫ t

0

S(t− s)[Buy(s) + v(s)]ds, t ∈ J,











































where v ∈ SF,y, has a fixed point. As in Theorem 3.2 we can prove that N
is a completely continuous multivalued map, u.s.c. with convex values.

We now show there exists an open set U ⊆ C(J,E) with u /∈ λN(u) for
λ ∈ (0, 1) and u ∈ ∂U.

Let λ ∈ (0, 1) and let u ∈ λNu. Then there exists v ∈ SF,u such that

u(t) = λS(t)[φ(0) − h0(y) − f(0, φ(0))] + λf(t, ut)

+λ

∫ t

0
AS(t− s)f(s, us)ds

+λ

∫ t

0
S(t− s)BW−1

[

y1 − S(T )(φ(0) − h0(y) − f(0, φ)) − f(T, uT )

−

∫ T

0
AS(T − s)f(s, us)ds−

∫ T

0
S(T − s)v(s)ds

]

(η)dη

+λ

∫ t

0
S(t− s)v(s)ds, t ∈ J.

Then

‖u(t)‖ ≤

≤M [ ‖φ‖D +Q] +M‖(−A)−β‖ [c1‖φ‖D + c2] + ‖(−A)−β‖ [c1‖ut‖D + c2]

+

∫ t

0
‖(−A)1−βS(t− s)‖ ‖(−A)βf(s, us)‖ ds

+ TMM1M2

[

‖y1‖ +M‖φ‖D +M‖(−A)−β‖ [c1‖φ‖D + c2]
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+ ‖(−A)−β‖ [c1‖uT ‖D + c2] +

∫ T

0
‖(−A)1−βS(t− s)‖ ‖(−A)βf(s, us)‖ ds

+M

∫ T

0
p(s)ψ(‖us‖D)ds

]

+M

∫ t

0
p(s)ψ(‖us‖D)ds

≤M [‖φ‖D +Q] +M‖(−A)−β‖ [c1‖φ‖D + c2] + ‖(−A)−β‖ [c1‖ut‖D + c2]

+C1−βc1

∫ t

0

‖us‖D
(t− s)1−β

ds+
C1−βc2T

β

β

+ TMM1M2

[

‖y1‖ +M‖φ‖D +M‖(−A)−β‖ [c1‖φ‖D + c2]

+ ‖(−A)−β‖ [c1‖uT ‖D + c2] + C1−βc1

∫ T

0

‖us‖D
(t− s)1−β

ds+
C1−βc2T

β

β

+M

∫ T

0
p(s)ψ(‖us‖D)ds

]

+M

∫ t

0
p(s)ψ(‖us‖D)ds

≤ Λ + c1‖(−A)−β‖‖ut‖D + C1−βc1

∫ t

0

‖us‖D
(t− s)1−β

ds

+ TMM1M2c1‖(−A)−β‖‖uT ‖ + TMM1M2C1−βc1

∫ T

0

‖us‖D
(t− s)1−β

ds

+ TM2M1M2

∫ T

0
p(s)ψ(‖us‖D)ds+M

∫ t

0
p(s)ψ(‖us‖D)ds, t ∈ J.

Put w(t) = max{‖u(s)‖ : −r ≤ s ≤ t}, t ∈ J. Then ‖ut‖D ≤ w(t) for all
t ∈ J and there is a point t∗ ∈ [−r, t] such that w(t) = ‖u(t∗)‖. Hence we
have

w(t) = ‖u(t∗)‖

≤ Λ + c1‖(−A)−β‖‖ut∗‖D + C1−βc1

∫ t∗

0

‖us‖D
(t∗ − s)1−β

ds

+ TMM1M2c1‖(−A)−β‖‖uT ‖D + TMM1M2C1−βc1

∫ T

0

‖us‖

(T − s)1−β
ds

+ TM2M1M2

∫ T

0
p(s)ψ(‖us‖D)ds+M

∫ t∗

0
p(s)ψ(‖us‖D)ds
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≤ Λ + c1‖(−A)−β‖w(t) + C1−βc1

∫ t

0

w(s)

(t− s)1−β
ds

+ TMM1M2c1‖(−A)−β‖w(t) + TMM1M2C1−βc1

∫ T

0

w(s)

(T − s)1−β
ds

+ TM2M1M2

∫ T

0
p(s)ψ(w(s))ds +M

∫ t

0
p(s)ψ(w(s)) ds,

or

w(t) ≤ K1 +K2

∫ T

0

w(s)

(T − s)1−β
ds+K3

∫ T

0
p(s)ψ(w(s)) ds

+ K4

∫ t

0

w(s)

(t− s)1−β
ds+K5

∫ t

0
p(s)ψ(w(s)) ds, t ∈ J.

If t∗ ∈ [−r, 0], then w(t) ≤ ‖φ‖D +Q and the previous inequality holds.

Consequently,

‖u‖ ≤ K1 +K2‖u‖

∫ T

0

ds

(T − s)1−β
+K3ψ(‖u‖)

∫ T

0
p(s)ds

+K4‖u‖

∫ T

0

ds

(T − s)1−β
+K5ψ(‖u‖)

∫ T

0
p(s)ds

≤ K1 + (K2 +K4)
T β

β
‖u‖∞ + (K3 +K5)ψ(‖u‖)

∫ T

0
p(s)ds,

and therefore
[

1 − (K2 +K4)
T β

β

]

‖u‖

K1 + (K3 +K5)ψ(‖u‖)

∫ T

0
p(s)ds

≤ 1.

Then by (3.2.5), there exists M∗ such that ‖u‖ 6= M∗. Set

U = {u ∈ C([−r, T ], E) : ‖u‖ < M∗}.
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From the choice of U there is no u ∈ ∂U such that u ∈ λN(u) for λ ∈ (0, 1).
As a consequence of the Leray-Schauder Alternative for Kakutani maps [14]
we deduce that N has a fixed point and therefore the problem (6.1)–(6.2) is
nonlocally controllable.

For the lower semicontinuous case we state without proof the following re-
sult.

Theorem 6.4. Assume that the conditions (3.2.1)–(3.2.4) (3.4.1), (3.4.2),
(6.3.1) and (6.3.2) are satisfied. Then the problem (6.1)–(6.2) is nonlocally

controllable on [−r, T ].

In the case where A is non densely defined we state without proof the fol-
lowing result:

Theorem 6.5. Assume that the conditions (3.2.2) (i), (3.2.4), (3.2.5),
(4.6.1)–(4.6.5) hold. In addition, assume the following conditions are satis-

fied:

(6.5.1) the linear operator W : L2(J, U) → E, defined by

Wu = lim
λ→∞

∫ b

0
S′(T − s)Bλ(Bu)(s) ds,

has a bounded invertible operator W−1 : E → L2(J, U) and there

exist positive constants M1,M2 such that ‖B‖ ≤ M1 and ‖W−1‖ ≤
M2;

(6.5.2) there exists a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)

for each (t, u) ∈ J ×E

and there exists a constant M ′
∗ > 0 with

(1 − c1 − C2)M
′
∗

C1 + C3ψ(M ′
∗)

∫ T

0
e−ωsp(s)ds+M ∗ψ(M ′

∗)

∫ t

0
e−ωsp(s)ds

> 1,
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where

C1 = M∗[(1 + c1)‖φ‖D +Q+ c2] + c2

+M∗MM1M2T
[

‖y1‖ +M∗(1 + c1)‖φ‖D +Q+M∗c2 + c2

]

,

C2 = M∗MM1M2Tc1,

C3 = M∗2MM1M2T

and

c1 + C2 < 1.

Then the problem (6.1)–(6.2) is nonlocally controllable on [−r, T ].

Consider now the second order functional differential inclusion of the form

(6.3)
d

dt
[y′(t) − f(t, yt)] ∈ Ay(t) + F (t, yt) + (Bu)(t), t ∈ J := [0, T ],

(6.4) y(t) + ht(y) = φ(t), t ∈ [−r, 0], y′(0) + h1(y) = η,

where f, F,A,B, ht, φ are as in the problem (6.1)–(6.2) and η ∈ E.

Definition 6.6. A function y ∈ C([−r, T ], E) is called a mild solution to
the problem (6.3)–(6.4) if y(t) + ht(y) = φ(t), t ∈ [−r, 0], y′(0) + h1(y) = η
and there exists v ∈ L1(J,E) such that v(t) ∈ F (t, yt) a.e. on J and

y(t) = C(t)[φ(0) − h0(y)] + S(t)[η − h1(y) − f(0, φ)] +

∫ t

0
C(t− s)f(s, ys) ds

+

∫ t

0
S(t− s)[(Bu(s) + v(s)] ds, t ∈ J.

Definition 6.7. The system (6.3)–(6.4) is said to be nonlocally controllable
on the interval [−r, T ], if for every continuous initial function φ ∈ D and
every η, y1 ∈ E there exists a control u ∈ L2(J, U), such that the mild
solution y(t) of (6.3)–(6.4) satisfies y(T ) + hT (y) = y1.

Theorem 6.8. Assume that (3.2.4), (3.2.5), (4.6.4), (5.2.1), (5.2.2),
(5.2.5)–(5.2.7) hold and in addition, we suppose that the following condi-

tions are satisfied:
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(6.8.1) the linear operator W : L2(J, U) → E, defined by

Wu =

∫ T

0
S(T − s)Bu(s) ds,

has a bounded invertible operator W−1 : E → L2(J, U) and there

exist positive constants M1,M2 such that ‖B‖ ≤ M1 and ‖W−1‖
≤M2;

(6.8.2) for each bounded B ⊆ C([−r, T ], E), and t ∈ J the set

{

C(t)[φ(0) − h0(y)] + S(t)[η − h1(y) − f(0, φ(0)]

+

∫ t

0
S(t− s)[(Buy)(s) + v(s)]ds, v ∈ SF,B

}

is relatively compact in E, where SF,B = ∪{SF,y : y ∈ B}, and

uy(t) = W−1
[

y1 − C(T )[φ(0) − h0(y)] − S(T )[η − h1(y) − f(0, φ)]

−

∫ T

0
C(T − s)f(s, ys)ds−

∫ T

0
S(T − s)v(s)ds

]

(t);

(6.8.3) there exists a continuous non-decreasing function ψ : [0,∞) −→
(0,∞), p ∈ L1(J,R+) such that

‖F (t, u)‖ := sup{‖v‖ : v ∈ F (t, u)} ≤ p(t)ψ(‖u‖D)

for each (t, u) ∈ J ×D

and there exists a constant M∗ > 0 with

[1 − T (c1N1 + Λ2)]M∗

Λ1 + (Λ3 +N2)ψ(M∗)

∫ T

0
p(s)ds

> 1,
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where

Λ1 = N1[ ‖φ‖D +Q] +N2(|η| +Q1 + c1‖φ‖D + c2) +N1Tc2

+TN2M1M2

[

‖y1‖ +N1[‖φ‖D +Q]

+N2(|η| +Q1 + c1‖φ‖D + c2) +N1Tc2

]

,

Λ2 = TN2M1M2N1,

Λ3 = TN2
2M1M2,

and

T (c1N1 + Λ2) < 1.

Then the problem (6.3)–(6.4) is nonlocally controllable on [−r, T ].

Proof. Using hypothesis (6.8.2) for an arbirtary function y(·) define the
control

uy(t) = W−1
[

y1 − C(T )[φ(0) − h0(y)] − S(T )[η − h1(y) − f(0, φ)]

−

∫ T

0
C(T − s)f(s, ys)ds−

∫ T

0
S(T − s)v(s)ds

]

(t),

where v ∈ SF,y.We shall now show that when using this control, the operator
N : C(J1, E) −→ P(C(J1, E)), J1 := [−r, T ], defined by:

N(y) :=























































h ∈ C(J1, E) : h(t) =























































φ(t) − ht(y), if t ∈ [−r, 0]

C(t)[φ(0) − h0(y)]

+S(t)[η − h1(y) − f(0, φ)]

+

∫ t

0

C(t− s)f(s, ys) ds

+

∫ t

0

S(t− s)[(Buy)(s) + v(s)]ds, if t ∈ J























































where v ∈ SF,y, has a fixed point. This fixed point is then a solution of the
system (6.3)–(6.4).

Clearly, y1 ∈ (Ny)(T ).
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The argument in Theorem 5.2 guarantees that N is completely continuous.
Also as in Theorem 5.2 one can prove that N has bounded, closed, convex
values and is upper semicontinuous.

We now show there exists an open set U ⊆ C(J,E) with y /∈ λNy for
λ ∈ (0, 1) and y ∈ ∂U.

Let λ ∈ (0, 1) and let y ∈ λN(y). Then there exists v ∈ SF,y such that

y(t) = λC(t)[φ(0) − h0(y)] − λS(t)[η − h1(y) − f(0, φ)]

+ λ

∫ t

0
C(t− s)f(s, ys)ds

+ λ

∫ t

0
S(t− s)BW−1

[

y1 − C(T )[φ(0) − h0(y)]

− S(T )[η − h1(y) − f(0, b)]

−

∫ T

0
C(T − s)f(s, ys) ds−

∫ T

0
S(T − s)v(s) ds

]

(η)dη

+ λ

∫ t

0
S(t− s)g(s)ds, t ∈ J.

This implies by our assumptions that for each t ∈ J we have

‖y(t)‖ ≤

≤ N1[‖φ‖D +Q] +N2(‖η‖ +Q1 + c1‖φ‖D + c2) +N1

∫ t

0
(c1‖ys‖D + c2)ds

+ TN2M1M2

[

‖y1‖ +N1{‖φ‖D +Q} +N2(‖η‖ +Q1 + c1‖φ‖D + c2)

+ N1

∫ T

0
(c1‖yT ‖D + c2)ds+N2

∫ T

0
p(s)ψ(‖y‖D)ds

]

+ N2

∫ t

0
p(s)ψ(‖y‖D)ds

≤ Λ1 + c1N1

∫ t

0
‖ys‖Dds+ Λ2

∫ T

0
‖yT ‖Dds

+ Λ3

∫ T

0
p(s)ψ(‖y‖D)ds+N2

∫ t

0
p(s)ψ(‖y‖D)ds.
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We consider the function µ defined by

µ(t) := sup{‖y(s)‖ : −r ≤ s ≤ t}, t ∈ [0, T ].

Let t∗ ∈ [−r, t] be such that µ(t) = ‖y(t∗)‖. If t∗ ∈ [0, T ], then by the
previous inequality, we have for t ∈ [0, T ],

µ(t) ≤ Λ1 + c1N1

∫ t

0
µ(s)ds+ Λ2

∫ T

0
µ(s)ds

+Λ3

∫ T

0
p(s)ψ(µ(s))ds +N2

∫ t

0
p(s)ψ(µ(s))ds.

If t∗ ∈ [−r, 0], then µ(t) ≤ ‖φ‖D +Q and the inequality holds.

Consequently,

‖y‖ ≤ Λ1 + T (c1N1 + Λ2)‖y‖ + (Λ3 +N2)ψ(‖y‖)

∫ T

0
p(s)ds,

and therefore
[1 − T (c1N1 + Λ2)]‖y‖

Λ1 + (Λ3 +N2)ψ(‖y‖)

∫ T

0
p(s)ds

≤ 1.

Then by (6.8.4), there exists M∗ such that ‖y‖ 6= M∗.

Set

U = {y ∈ C(J,E) : ‖y‖ < M∗}.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for λ ∈ (0, 1).
As a consequence of the Leray-Schauder Alternative for Kakutani maps [14]
we deduce that N has a fixed point and therefore the problem (6.3)–(6.4) is
controllable on [−r, T ].

For the lower semicontinuous case we state without proof the following
result.

Theorem 6.9. Assume that the conditions (3.2.4), (3.4.1), (3.4.2), (4.6.4),
(5.2.1), (5.2.2), (5.2.5)–(5.2.7), (6.8.1)–(6.8.3) are satisfied. Then the prob-

lem (6.3)–(6.4) is nonlocally controllable on [−r, T ].
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