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Abstract

The paper presents the Monotone Structural Evolution, a direct
computational method of optimal control. Its distinctive feature is that
the decision space undergoes gradual evolution in the course of opti-
mization, with changing the control parameterization and the number
of decision variables. These structural changes are based on an anal-
ysis of discrepancy between the current approximation of an optimal
solution and the Maximum Principle conditions. Two particular im-
plementations, with spike and flat generations are described in detail
and illustrated with computational examples.

Keywords: optimal control, direct optimization methods.

2000 Mathematics Subject Classification: 49J15, 65K10.

1. INTRODUCTION

General numerical methods of optimal control are divided into direct and
indirect |1, 2, 5|. In the direct methods, approximating finite-dimensional
optimization problems are constructed and solved by nonlinear programming
(NLP) algorithms. The NLP problem can be formulated in two ways. The
simultaneous approach, represented by the direct collocation methods [6],
constructs the decision vector of discretized controls and discretized state
trajectories, thus avoiding the need for numerical integration of the state
equations. It usually leads to large-scale computations. In the sequential
approach only the control functions are discretized and the state variables
are computed by numerical integration [3, 9]. The general, well established
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direct methods feature large areas of convergence but they are rather slow,
especially in the final stage. This approach is not particularly demanding
upon the user and is considered fairly universal. It has many implementa-
tions like SOCS [1, 2|, DIRCOL [18], DIRMUS (Hinsberger), or NUDOCCCS
[11].

Special direct methods are often applied to dynamic optimization prob-
lems with bounded control and the hamiltonian affine in control. The con-
trol parameterization is based on switching times and, possibly, on the end
points of singular or state-constrained arcs, which become the NLP deci-
sion variables. The derivatives of the cost or states with respect to these
variables, obtained from adjoint solutions [13, 16, 19, 20, 21| or by varia-
tional and difference techniques [7, 11, 23|, are used for gradient optimiza-
tion and for the verification of necessary and/or sufficient NLP optimality
conditions [11]. Recently, a similar approach has been applied to hybrid
systems and systems with a nonlinear dependence of the r.h.s. on the con-
trol variable (see, e.g., [17]). Such a parameterization usually results in
a low-dimensional decision space and relatively good convergence, but re-
quires the knowledge of optimal control structure before starting the NLP
computations. Here, as in most of the literature, the control structure is
understood as the sequence of sets of constraints, simultaneously pathwise
active on the pair (control, state trajectory). Note that a different defini-
tion is used in this work (see Section 3). The optimal structure is usually
sought outside the NLP problem by homotopy methods or by ‘try and guess’
procedures. A systematic way to establish the optimal control structure in-
side the NLP problem was proposed in the variable parameterization method
[13, 19, 20, 21].

In the indirect approach, the optimal solution is computed by solving
the boundary value problem obtained from the Maximum Principle. Mul-
tiple shooting is frequently used, with such implementations as BNDSCO
(Oberle and Grimm), MUMUS (Hiltmann et al.) and MUSCOD-II (Diehl).
The collocation methods for indirect computations (e.g., [8]) involve large
systems of algebraic equations requiring specialized algorithms. The rate of
convergence of indirect methods is usually very high, but their area of conver-
gence is small and so they require good initial guesses for the adjoint vector.
Practically, the optimal control structure has to be known beforehand. This
can be achieved by a direct algorithm (see [15]) or using homotopy meth-
ods where a sequence of auxiliary problems is solved by multiple shooting

(e.g., [4]).
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This paper describes the method of Monotone Structural Evolution (MSE),
which is a generalization of the results presented in [19, 20, 21]. The MSE is
a direct computational approach to optimal control problems in systems de-
scribed by ordinary differential equations, with control and state constraints
[22]. Its distinctive feature is that the decision space undergoes gradual
evolution in the course of optimization. This evolution runs according to
pre-selected rules, with changing the control parameterization and the num-
ber of decision variables. Such changes, called structural, are followed by
periods of gradient optimization in a constant decision space. The changes
locally increase efficacy of the gradient optimization procedures. They are
based on an analysis of discrepancy between the current approximation of op-
timal solution and the Maximum Principle conditions, and can be continued
until this discrepancy becomes negligible. The number of decision variables
may thus be kept comparatively small, at least in early stages of optimiza-
tion. The control is preserved by every structural change so that monotone
decrease of the performance index is achieved in the whole algorithm.

The paper is organized as follows. The optimal control problem with
control and state constraints is formulated in Section 2. Sections 3 and 4
explain the MSE philosophy and introduce basic notions. The general algo-
rithm of the MSE is described in Section 5. Sections 6, 7 and 8 are devoted
to two particular implementations. The technique of spike generations is
described in Section 6 and illustrated with an example of forced linear oscil-
lator. Section 7 presents the technique of optimal control approximation by
interval cubic polynomials and flat generations. It is illustrated in Section 8
with a problem of optimal ascent of the F-15 aircraft. The paper ends with
conclusions.

2. OPTIMAL CONTROL PROBLEM
Consider a control system
(2.1) @ = f(z,u), te[0,T], =z(0)=a°
where the state x(t) € R™. The controls u are right-continuous, piecewise-
continuous functions taking values in U, a given set in R™. The horizon T’

is fixed or free, T' > 0. The performance functional

(2.2) S(u,T) = @(x(T),T)
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is minimized on the trajectories of (2.1) subject to equality terminal condi-
tions

(2.3) hi(x(T)) =0, i=1,...,n
and inequality state constraints valid for every ¢ € [0, 7]
(2.4) gi(z(t)) <0, i=1,...,no.

It is assumed that the functions f, ¢, h; and g; are continuously differen-
tiable. The constraints (2.3) and (2.4) are treated by the exterior penalty
method. To this end, introduce state variables y;, ¢ = 1,...,no such that

L 2

25) 50 =5 @) w0 =0 i=1.m

and a family of auxiliary performance functionals (py;, p2; > 0)
1 ni n2
(2.6) Spr,pa(u, T) = o(z(T),T) + 3 Zl prihi(x(T))? + §P2iyz‘(T)

which are minimized on the trajectories of (2.1), (2.5). It is assumed that
the optimal solution of the state-unconstrained problem (2.1), (2.5), (2.6)
tends to the optimal solution of the state-constrained problem (2.1)-(2.4) as
all the coefficients py;, po; tend to infinity.

In the MSE method the control « may be determined on some subset @
of [0,T] in a state-dependent form u(t) = P(x(t),t) where P : R" x [0,T] —
U is a given function of class C' w.r.t. its first argument and piecewise
continuous w.r.t. the second. We then define

. fla,u), t¢O
(2.7) fla,ut) =

f(z, P(z,t)), t€®O.
More generally, it may happen that on some subintervals of [0, T'] only certain
components of u are predetermined functions of state, time and, possibly,

other control components. We can then formally substitute f(x,u,t) =
f(z, P(x,u,t)) for t € ©, with an appropriately defined P.

Introduce the hamiltonian

28) HW(O.a(0).u(0).t) = 6(0) Ha(t)u(t)t) = 33 poi (((0)+)*
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The adjoint vector 1 is a continuous solution of the adjoint boundary prob-
lem

(2.9) D(t) = =V H((b), 2(t),u(t),t), te[0,T]
(2.10) W(T) = =Vaop(x(T),T) =Y prihi(a(T))Vhy(z(T)).
i=1

Here V, is the operator of derivative w.r.t. state.

The celebrated Maximum Principle of Pontryagin states a necessary op-
timality condition for the problem under consideration. Assume that an
admissible pair u, 7' minimizes the functional S,, ,, subject to (2.1), (2.5).
Then

(2.11) H((t),z(t),u(t),t) > H((t),z(t),v,t) Vte[0,T] YvelU

where z and v satisfy (2.1), (2.9) and (2.10). In the free-horizon problem,
additionally

0

(2.12) HW((T),z(T),w(T-),T-) = T (a(

7),7).

3. CONTROL STRUCTURE

The controls used in the MSE method have structures. The control structure
is a sequence of procedures P;, i = 1,2,..., N that determine the control u(t)
in successive time intervals [r;,_1,7;[ , u(t) = P;(x(t), t, p;) where z is the
solution of (2.1) generated by u and p; is a vector of real-valued parameters.
If a procedure is independent of some argument, we may skip this argument
in the notation. The points 79, 71,...,7n are called structural nodes, 0 =
7 < 17 < ... <78y = T. The procedures P, are taken from a fixed,
finite set P. The choice of the elements of P may be suggested by general
techniques of numerical approximation and, which is particularly important,
by expected properties of the optimal control following from the Maximum
Principle. The procedures, their number, order and parameters, as well
as the nodes 71,...,7ny_1 and, possibly, 7 are decision variables in the
optimization algorithm. The restrictions of control to intervals [r;_1, ;[ are
called arcs. If 7, = 7,1, we say that the i-th arc is of zero length.
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A convenient way of defining a structure for a multidimensional control is to
determine a structure for each control component separately. Let us give a
few examples of typical procedures P;, for a single control component or a
scalar control wu.

(i) Let U = [tmin, Umax] and f(z,u) = fO(x)+f(z)u. It is then reasonable to
define two constant procedures without parameters Py = Umin and Ppax =
Umax, and put {Pupin, Pmax} C P. The respective control arcs are called
boundary (arcs that are not boundary, are called interior).

(ii) For U and f as above define the switching function ¢ =1 f* and denote
by ¢ its i-th Lie derivative w.r.t. 2 along f. Suppose that the equation
") (x,1p,u) = 0 can be explicitly solved with respect to u, u = w(zx, 1)) €
U, and all the Lie derivatives ¢(i), 1 < r are constant in u. Assume also
that 1 in the expression w(z,) can be eliminated by solving the equations
¢ (z,,u) =0,i=0,1,...,r —1 wr.t. 9. The resulting expression for u
defines a control procedure in a state-feedback form, u(t) = P(z(t)). The
respective control arc is called a candidate singular arc.

(iii) In the situation described in (ii) suppose that a complete elimination
of the components of ¢ from w(z, ) is impossible. Still, we may construct
a candidate singular control procedure in a feedback form with parameters,
u(t) = P(z(t),t,p). The parameter p, to be determined by optimization may
be interpreted as a vector of adjoint variables at an appropriately selected
moment of time.

(iv) Consider a scalar state constraint g(z) < 0. Let g be the i-th Lie
derivative of g. Assume that the equation ¢(") (x,u) = 0 can be explicitly
solved with respect to u, u = P(z) € U, and all the Lie derivatives ¢, i < r
are constant in u. The resulting expression for u defines a control procedure
in a state-feedback form, u(t) = P(x(t)). The respective control arc is called
a candidate constrained arc.

(v) Assume that v is a hamiltonian maximizer

u(t) = arg max H(t),z(t),w,t) = P(x(t),t,¥(to))
with ¢y fixed. One may then define a control procedure in feedback form,
u(t) = P(z(t),t,p). The parameter vector p is a decision variable of the opti-
mization process. General and attractive as it may look, this technique leads
to poor optimization algorithms with extremely small areas of convergence.
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(vi) Interior control procedures are frequently created by means of typical,
general approximation techniques, e.g., u(t) = P(t,p) with P being a poly-
nomial in ¢ of a given degree and p, the vector of its coefficients. Of course,
functions other than polynomials may also be used.

4. STRUCTURAL CHANGES

An optimal control approximation in the direct approach is a value of an
approzimation mapping A : D, — U, from the admissible set D, in a finite-
dimensional space of decision variables D, D, C D into a functional control
space U. Once D, D, C D and A are chosen, the performance functional
(2.6) may be redefined as a function of the decision vector

(4.1) 5(d) = Spy p»(A(d),T), d€ D,

We assume that 3 is continuously differentiable.

It is well known that the decision space most suitable for the optimal
control approximation can only be chosen if certain properties of the optimal
solution are known, a condition which is seldom satisfied in the beginning of
optimization. At the same time, the performance of optimization algorithms
rapidly worsens with a growing dimension of the decision space. These two
premises motivate the construction of methods in which the decision space
in the course of optimization is gradually adapted to the accumulated knowl-
edge on the optimal solution. Optimization is started in a decision space of a
small dimension, and the dimension is increased only when this is necessary
for improving the approximation of the optimal solution. The adjustment
of the decision space proceeds in a series of steps called structural changes,
separated by periods of gradient optimization in a constant space.

Gradient optimization in a constant decision space D usually produces
a sequence of points asymptotically convergent to some stationary point dy.
A characteristic property of this process is that the rate of improvement of
the performance index ¥(d) slows down more and more when d approaches
deo- While the point d, typically fulfills the necessary optimality conditions
in D (e.g., the KKT conditions), the corresponding control us, = A(dso)
is frequently far from satisfying the optimality conditions of the Maximum
Principle. In such a case, the optimization procedure crawling towards deo
may be given a new impulse by appropriately changing the decision space
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so that the image of the current decision vector d is far from any stationary
point in the new space D.

For more formal definitons, consider a family A of decision spaces D
where every D € A is a real vector space of finite dimension. In general,
different spaces in A have different dimensions. To every D € A, an admis-
sible set D, and an approximation mapping A depending on D are assigned.
Each structural change is determined by a mapping (D,d) — (D, d) where
deD,cD, de D, c D, D,De A. Assume that the approximation
mappings A and A are assigned to D and D, respectively. It is required that
the condition of control preservation holds

(4.2) A(d) = A(d), deD,, deD,.

The interpretation is that d is a point reached in a (constant) decision space
D, and it is estimated that further optimization in another space D will be
more effective. Optimization is then continued in D, starting from an appro-
priately determined point d € D. In the MSE, this change of decision space
implies a change of the sequence of procedures P;. Thanks to condition (4.2)
the control (as an element of U) is not immediately affected, and in con-
sequence the performance index monotonously decreases during the overall
optimization. Typically, only few selected elements of the structure can be
affected by a structural change. For example, one or two new procedures
P; are introduced with inserting the corresponding new nodes, or one of the
procedures P; is modified. The new arcs are often of zero length.

Two kinds of structural changes are typical for the MSE: generations and
reductions. The dimension of the decision space increases in a generation,
and is diminished in a reduction.

In the MSE, the structural changes aimed at speeding up the optimiza-
tion are effected by driving generations. To explain their construction, define
the efficiency of a generation. Assume that the generation changes the de-
cision space from D to D. Let dyg € D and dy € D be the decision vectors
immediately before and after the generation. Let also X(d) for d € D be
given by (4.1), and X(d) = Sy, p,(A(d),T) for d € D. Denote the anti-
gradients —V X (dg) and —V X(dg) by v and 7, respectively. If v and 7 are
admissible, that is, point to the interior of the respective admissible sets in D
and D, the efficiency of the generation is defined as the difference of squared
Euclidean norms

(4.3) E =717 = I
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Such a definition is justified in two ways. First, the squared norm of the
gradient, multiplied by —1, is equal to the derivative of the performance
index w.r.t. the line search parameter in the steepest descent direction

(44)  V.B(do+29)am0+ = ~[II%, VE(do + 27)]m0r = — 7.

The efficiency thus determines the increase of steepness of the performance
index. Secondly, the efficiency so defined does not depend on those com-
ponents of the gradient of performance index that are not affected by the
generation, which simplifies computations. In the general case, the antigra-
dients in (4.3) are replaced by their orthogonal projections onto the local
conical approximations of the admissible sets.

The driving generation takes place if its relative efficiency E/||7y||* (de-
fined for 7y # 0) exceeds a given threshold. By choosing the threshold one
can control the trade-off between the dimension of decision space and gra-
dient magnitude. The number of simultaneously generated nodes is limited
by additional rules (e.g., one or two per arc, solely at local maximizers of
relative efficiency), to avoid an undesirable increase of the number of decision
variables. Additional requirements can be imposed on generations to obtain
controls with pre-selected regularity properties, like continuity or smooth-
ness. The choice of particular generations is also subject to the condition
that optimization should converge to the optimal control in the strong sense.

Besides the driving generations, the MSE method admits saturation gen-
erations, enforced by the requirement that at the moment of gradient compu-
tation each control arc has to be either purely boundary or purely interior.
They are performed when the optimization process transforms an interior
arc into one that contains a subarc with an active control constraint. The
corresponding time interval is then divided by introducing new structural
nodes.

A typical reduction consists in eliminating an arc of zero length when
it is not promising. More precisely, every arc of zero length is subject to
reduction if the directional derivative of the performance index w.r.t. its
boundaries is nonnegative for all admissible directions. At the same time
the decision variables that describe this control arc are eliminated, including
at least one of the respective nodes. Such a reduction occurs each time when
one of the constraints 79 < 71 < ... < 75 becomes active after the line
search of the gradient optimization algorithm. Another typical reduction
occurs when two adjacent arcs described by identical procedures are unified.
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5. GENERAL ALGORITHM

The basic algorithm of the MSE consists of the following steps.

19 Selection of initial decision space D and starting point d € D, C D.
20 Termination, if optimality conditions in I/ are satisfied.

3% Generation, if it is sufficiently promising or needed.

49 Tteration of gradient optimization in current decision space D.

5° Reduction, if necessary.

6° Return to 2°.

The optimality conditions verified in step 2° may be of two types, used
jointly.

(i) Necessary conditions of the Mazimum Principle. These conditions are
always included in the MSE method, though in different forms. If T is fixed,
the requirement of sufficient accuracy of hamiltonian maximization may be
expressed by an inequality [|x|[, < 7m0 where || - ||, denotes the norm in
LP(0,T) for some p € {1,2,...,00}, no > 0 is a threshold, and

X(t) = sup{H (¢¥(t), z(t),v,t) — H((t),z(t),u(t),t),v e U}, te€]0,T].

If T is a decision variable, then condition (2.12) should also be satisfied with
sufficient accuracy. Other termination conditions of this type, valid under
special assumptions may be formulated with the use of the derivative V,H
or the switching function ¢. It is also possible to express the termination con-
dition 2° as a condition of the existence of appropriately efficient generations
in step 3°.

(ii) Necessary conditions following from a lower bound on performance func-
tional. Assume that Spmin = inf{S,, j,(u,T) : u,T admissible} can be evalu-
ated. The termination condition has the form S, ,,(u,T) — Smin < m1 where
71 > 0 is a threshold.

Step 3% is distinctive for the MSE algorithms and crucial for their con-
vergence. The changes of structure are mainly performed to speed up op-
timization when a stationary point in the current decision space is being
approached.

This algorithm should be equipped with special procedures for gradient
computation and evaluation of efficiency of generations. These procedures
are based on the solutions of the adjoint boundary problems (2.9), (2.10).
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While the gradients VX(d) can also be computed by other techniques, like
variational equations or discrete numerical approximation, the adjoint tra-
jectories are indispensable for the estimation of accuracy of fulfillment of the
Maximum Principle conditions, as well as for effectively choosing generations
with satisfactory efficiency.

To treat state constraints, an outer loop of penalty modification has to
be added. In the gradient optimization of step 4%, the bounds on structural
nodes and control constraints may be respected due to an appropriate or-
ganization of line search. Numerical solutions of differential equations can
be conveniently obtained by the RK4 method with mesh adjusted so as to
include all discontinuity points.

6. TECHNIQUE OF SPIKE GENERATIONS

The technique of spike generations will be explained with an example of
forced linear oscillator. Consider the system

T1 =
(6.1) e

To9 = —x1 + U,

deifined in [0, T, with initial conditions

The horizon is fixed, T' = 4.4. The performance index

(62) Sw) = 5 lle(T)P.

The controls are bounded, |u| < 2, and the state is subject to a constraint
(6.3) g(z(t)) = x2(t) — 0.5 <0, t€][0,T].

We employ the penalty method described in Section 2 with

(6.4) §(0) = 5 (22— 05,7, 9(0) =0

(6.5) Sp(w) = 32T +pu(T), p>0.
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Three procedures are used to compute control values. Two of them produce
boundary control arcs, Py(t) = £2 and one, candidate constrained arcs:
Peon(x) = x1. This last formula follows from equating g(l)(x,u) = fg =
—x1 + u to zero. Note that any candidate constrained arc becomes also
singular in the optimal solution of the penalized problem (6.1), (6.4), (6.5).
For a given control structure, the internal structural nodes are the only
decision variables, d = (71,...,7ny-1). The hamiltonian and the adjoint
boundary problem are given by (2.8)-(2.10). Denote the functional (6.5) as
a function of the decision vector by . It is well known [16, 22| that its
partial derivatives are given by

VnE(d) =¢(m)" (f(@(n), u(rit)) — f(2(n), u(ri—)))
= ¢()(u(r+) —u(r—)), i=1,...,N—1

(6.6)

if 7,1 <7 < Tiy1. Here ¢ = )9 is the switching function. In the MSE we
have to generalize the formula (6.6) so that it covers also cases of arcs of
zero length. For a control structure determined by a sequence of procedures
(P1,...,PyN), denote the value of the procedure P; at time ¢ by v;(¢). Then

VaS(d) =9(n)" (f(x(n), viq1 (1) — fa(n),vi(m))
= ¢(7;)(Vig1 (1) —vi()), i=1,...,N—1.

(6.7)

If (6.6) is applicable, (6.7) yields the same results. If 7,1 = 7, < 741,
0 < i < N, then (6.7) determines the right partial derivative, and if 7;,_1 <
7 = Tir1, 0 < @ < N, it determines the left partial derivative. The case
Ti—1 = T; = Ti+1 18 excluded from consideration.

In this example we only use spike generations, in which the new control
arcs are of zero length. To explain the rules for generations, assume that

the control structure is defined by a sequence of procedures (Py,..., Py),
P, # P_yfori=2...,N, P, € {P.,P_,Peon} for i = 1,...,N. The
respective structural nodes satisfy 0 = 79 < 71 < ... < 7y = T'. For every

7€ [0, T)\{71,...,7n_1}, define Poq(7) € {Py, P_, Peon }:

(i) if ¢(1) > 0 and u(r) < Peon(2(1)) < Py(7), then Pag(T) = Peon,
(i) if ¢(r) < 0 and P_() < Peon(2(r)) < u(r), then Paq(r) = Pron,
(i) i 6(7) > 0 u(r) < P4 (r) a0d Pn(a(r)) ¢ Ju(r) Po(7)], then

Paa(r) = P+,
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(iv) if ¢(7) <0, P_(7) < u(r) and Peon(z(7)) ¢ |P-(7),u(7)] , then
Py(1) = P_,

(v) if none of the above conditions is fulfilled then P,q(7) = P;, where
T E [Ti—lﬂ'i]; i=1,...,N.

Suppose first that 7 € ]rj_1,7;[ and consider a generation in which the
control structure is changed to (Pi,...,Pn42), P, = P; for i < j, Pjy1 =
P,i(7), and P; = P,_5 for ¢ > j + 1. The new structural nodes are 7;,

1=0,...., N+2, 7 =1 fori<j, Tj=Tjy1=T,and T; = T;_2 for i > j+1.
The efficiency (4.3) of this generation is equal to

(6.8) B(r) = 2¢(7)* (041(7) — vj(7))?

where 041(7) is the value of the procedure Pji; at time 7.

Let now 7 = 0 and let (151, ... ,PN+1) be the control structure after the
generation, P, = P,q(0) and P; = P;_; for i > 1. The new structural nodes
are 7;,1=0,..., N+ 1, 7p =0 and 7; = 7;_1 for i > 1. The efficiency equals
(6.9) E(0) = ¢(0)*(01(0) — v1(0))*.

Consider now a spike generation at the horizon, 7 = T'. The structure after
the generation is given by (P,..., Pnyi1), Pvy1 = Paa(T) and P; = P; for
1 < N. The new structural nodes are 7;, ¢ = 0,...,N 4+ 1, 741 = T and
7; = 1; for i < N. The efficiency is

(6.10) E(T) = ¢(T)*(on41(T) — on(T)).

The generations made thus far have only been hypothetical, and served the
purpose of determining the function E : [0, T|\{71,...,7v-1} — R. In order
to describe the generations actually used in the optimization algorithm define

. sB(r), T¢{0,T}
E(r) =

E(r), 7€{0,T}.
The factor % is introduced to give some preference to inserting spikes at 0
and T since the number of decision variables is then increased only by one.

Let I be the set of all integers ¢ in {1,..., N} such that F has a maximum
in [1;-1,7)\{71,...,7n-1}, attained at some 7;, and this maximum satisfies

E(7) > elly]*.
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Here 7 is the gradient of ¥ immediately before the generation and >0, a
given relative efficiency threshold. The control structure immediately after
the generation is determined in the following way. Let 6 and 6 be strictly
increasing sequences constructed of all elements of the sets {7; : i € I} and
{7i i € I}\{0,T}, respectively. To obtain the sequence of the new struc-
tural nodes (7, ...,75), sort the concatenation of sequences (79, ...,7n), 0
and fp in a nondecreasing order. The new control structure (P, ..., Pyg)
which includes all the procedures P;, i € {1,...,N} and Py(7;), i € I is
characterized as follows. Let j € {1,...,N}. If 7,_1 = 7; = % for some
i € I, then p] = Pad('f_i), Pj,1 = P, for j > 1, and pj+1 = P, for j < N.
Otherwise, there is exactly one i in {1,...,N} such that 7, = 7,. Then
Pj = P;, and Pj+1 =P for j < N.

Figure 6.1. First generation (boundary)

The computations are started with an optimal control approximation u = 2,
that is, a one-element control structure P, and a (sufficiently) large p. The
first generation (Figure 6.1) inserts a boundary spike, and the new structure
is (Py,P_,Py). After a few BFGS iterations we obtain the situation in
Figure 6.2, where conditions for inserting two spikes are satisfied. The first
of the generated arcs (boundary) is reduced after several iterations, and
the second, a candidate constrained arc grows up (Figure 6.3) to reach the
optimal solution shown in Figures 6.4 and 6.5.
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Figure 6.2. Second generation (boundary and constrained)
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Figure 6.3. After a few more iterations
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Figure 6.4. Optimal control

Figure 6.5. Optimal trajectories
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7. INTERVAL CUBIC POLYNOMIALS AND FLAT GENERATIONS

7.1. Control approximation

Assume that the horizon T is fixed, U = R, and the admissible controls are
interval Hermite interpolation polynomials

u(t) = p_Vo(t, im1,7:) + py_Vo(t, i, 7i-1)
(7.1) +pt VAt Tic1,7i) + pr Vit 7, Tio1),
telr-1,nl, i=1,...,N
where

(t —b)%(2t + b — 3a)

(t—b)*(t—a)
b—aP |

(b—a)?

(7.2)  Vp(t,a,b) = Vi(t,a,b) =
For every fixed ¢, the r.h.s. of (7.1) is a polynomial of degree not higher
than three. The advantage of this control representation is that all decision
variables have obvious geometric interpretations, and it is easy to formulate
continuity requirements on control and its derivative at structural nodes.
Note that u(r_1+) = pY 1, W(ri1+) = pr_y, u(ri—) = pY_, u(r,—) = p;_
for e =1,...,N. The time moments 7y, 7q,..., 7n may be interpreted as
the structural nodes in the general formulation of the MSE. The decision
vector consists of the variables 7y, 79,...,7ny_1 and pzo_l, p}_l, p?_, pil_ for
i =1,...,N. The nodes are subject to constraints: 0 = 79 < 7 < ... <
7y = T. Conditions of continuity of control and/or its derivative may be
imposed at certain nodes, p{ = pf_ Vi € K,, s € {0,1} where K and K are
given subsets of {1,..., N —1}.

7.2. Derivatives of performance functional

Define
b
Js(a,b) = —/ h(t)Vs(t,a,b)dt if a #b, Js(a,a) =0

where h(t) = V,H((t), z(t),u(t)). For s = 0,1, calculate the derivatives of
the performance index ¥ w.r.t. p; and p;_

(7.3) VS = Jy(rimit), i€ {0, N —1]\K,
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(74:) foiE: —Js(Ti,Tl'fl), 1€ {1,,N}\Ks
(7.5) VI,;E = Js(Ti7Ti+1) — JS(TZ‘,TZ‘_l), 1€ KS.
The derivatives w.r.t. the nodes 7;, ¢ =1,..., N — 1 can be computed from

Ti+1

V% = AH; - / h(t)0:(t)dt
Ti—1

where
AH; = H(y(r;),2(r;), p}) — H(¥(r:), 2(7:), p}_)
Vi(t) = pY_ Vo, Volt, rim1, 1) + 00V Vo(t, 7, 7ie1)
+ pi Ve Vilt, Tt )pr Ve Vit 1, Tic1),  t< T
0i(t) = pIVr,Volt, 7o, Tig1) + 0311 Ve Volt, Tig1, 73)
+pi Ve Vit i, i) + piy Ve Vit T, 1), t> T
Equivalently,
-6 V.Y =AH; + Jo(m, Tl-,l)p}, + J1 (75, mim1)ii(Ti—)
o — Jo(7i, Tir1)p} — Ji (7, T i (Tit).

Direct calculation yields

_ SOy —pl) | 2pis 200

(Tz - Ti—1)2 Ti — Ti—1
ii(i+) = _6(sz —pgﬂf) B 2(2p} +p}+17)
‘ (Tit1 — 73)? Tiv1—Ti

7.3. Flat generation

Consider the generation of a new structural node 7 € |r,_1,7.[, for some
z € {1,...,N}. After the generation the nodes constitute a nondecreasing
sequence Tg,...,7y where N =N+ 1, 7 =7 fori <z, 7. =7, 7 = 741
for ¢ > z. The set of indices of all the nodes at which the s-th derivative is
required to be continuous after the generation, is denoted by K, s = 0, 1.
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Of course, K;N{1,...,2—1} = K,N{l,...,z—1} and K;N{z+1,...,
N+1} = (K;n{z...,ND)+1.

The control before the generation has the form (7.1), and after the gen-
eration it is given by

u(t) =p)_ Volt, 71, 7) + DY_Vo(t, Ti, Tiz1)
(7.7) +pt Vit Tic1,7i) + DL VA(E, Ty Tic1)

telri-1,ml, i=1,...,N.

Since (7.1) and (7.7) are identical functions of time, the following relation-
ships between the coefficients are valid for s =0, 1

S

(78) pf = pfa ﬁf_ =Di— for i < z

Dit1 =0;, Diy1. =pi fori>z

(7.9) P =pi_ =ul(r)

where the superscript (s) denotes the s-th dervitative w.r.t. time

(7 10) u(S) (T) = pgfl‘/()(S) (7—7 Tz—1, Tz) + pS,VYO(S) (’T, Tz, ’7'271)
+ pl’*l‘/l(S) (T’ Tz—1; Tz) + pl«,‘/l(s) (7', Tz, Tzfl).

Let ¥ denote the performance index after the generation. The derivatives
of ¥ w.r.t. the decision variables 7;, i € {1,...,N — 1} and p; ;, P},
i € {1,..., N} are determined by equalities analogous to those in Section 7.2.
To use (7.6), a reindexing of the hamiltonian jumps is needed: AH; = AH;
fori < z, AH; = AH;_; for i > z, and AH, = 0. The values of derivatives,
immediately before the generation and after it satisfy the relationships

VS =V, ViZ=V.3 fori<z-1

vﬁfﬂizvpfz fori>zori=z z¢ K,
Vps =V, ¥ fori<z, i¢ K,
Vi, 2=Vp B fori>z i¢ K

Vﬂ.ﬂi =V.,X fori>z.
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It follows from (7.6)
V.2 =VaS = (Jo(r, 7om1) — Jo(7,7.))0(7)

+ (J1 (7, Tom1) — J1(7,72)) (7).

7.4. Efficiency of a flat generation

Let 7 € |1;_1, 7. Denote by E(7) the efficiency of a flat generation at 7,
understood as the difference of squared norms of gradients of the performance
index immediately before the generation and after it, E(r) = ||[VZ|> —
|[VX|[|2. This efficiency can be written as a sum

(7.11) E(t)=-e(1) 4+ ei—1(1) + ei(7)

where e is the sum of squared derivatives of the performance index at the new
node, and e;_1 and e; are the increments of squared norms of the derivatives
of the performance index w.r.t. the decision subvectors corresponding to the
nodes 7;_1 and 7;, respectively. The value of 7 € |7;_1, ;[ should be chosen
in such a way that the expression (7.11) is positive, and sufficiently large
with respect to ||[V3||2.

Determine the efficiency of generation assuming that the decision vector
before the generation and after it is inside the admissible set. The component
related to the new node is given by

. = 1
e(1) = (V,5) +Z{ (Var 2 Zi?}+2(v

Calculate now the component corresponding to the node 7;_1. If i > 1, then
T;—1 is a decision variable and

eir1(1) = (V7 2)? = (Ve ) + Z < (v”f—lz)z)'

If : =1, then 7;_1 is not a decision variable and so

1
eia(T) =) ((V — (Vp2)?).

s=0

Finally, consider the term corresponding to ;. If ¢ < N, then 7; = 7,41 is a
decision variable and
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( ) = (v’ 2)2 - (V 2)2 + i (vpf+172)2 - (fofz)Q’i ¢ K
€\T) = Ti+1 Ti — (V 2)2 _ (foz)z, ic Ks .

Piy
If i = N, then 7; = ;41 is not a decision variable and

1

ei(r) = > (Vg £ = (Vg 0?).

s=0

The efficiency E has a right and a left limit at every node 73, i =1,..., N —1.
These limits are equal to each other at 7;, if AH; = 0.

7.5. On calculation of integrals

The integrals Jg(7,7;) and Js(7;, 7) are necessary to determine derivatives of
Yand ¥, for s =0,1,i=1,2,...,N, 7 € [0,T]. Define

(7.12) hyi(7) :—/ ()t — ) dt, j=0,1,2,3.

Denoting 52 =T; — Ti—1, Ajl'(’T) = hjl'(T) — hji('rifl) we have

)

)
(7.13)
)+ 0i(Ai(T) + hyi—1(T))
)

+ 6; (A2 (T) + 2h2i—1(T) — dih1 i—1(T)).
To express Jq(7;,7) by Js(7,7;) we use the identities

Vo(t,a,b) + Vo(t,b,a) =1

Vl(t’a’ b) + ‘/l(ta b’ (Z) = (b - a’)‘/(](ta a, b) +t—0b.

Substituting ¢ = 7 and b = 7;, multiplying both sides by h and integrating
from 7 to 7;, obtain

Jo(7i,7) = hoi(T) — Jo(1,73)
(7.14)
Jl(Tz‘,T) = hlz‘(T) + (Tz‘ — T)JQ(T, Tz‘) — Jl(T, Ti).
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The integrals Js(7, 7;) are computed by virtue of (7.2)

2h3i( ) 3hai(7)
5 (i —7)2

th(T)

Jo(7,7i) = i 7)
(7.15) s ()

3i\T

Ji(r, 1) =
W = e

It is convenient to compute the derivatives of the performance index and the
efficiency when solving backwards the adjoint equations. To determine the
efficiency in the whole interval [0, 7], the nodes excluded, compute the inte-
grals Js(7,7), Js(7,7-1), Js(7i,7) and Js(7;—1,7), s = 0,1 in the intervals
Ti—1 < 7 < 7y, successively for i = N, N —1,...,1. For a fixed i, perform
the following steps.

(i) By numerical integration, calculate hj;(7), j =0,1,2,3, 1,1 <7 < ;.
(ii) Using (7.13) calculate hj;—1(7), 7 =0,1,2,3, 7,1 <7 < 3.
(iii) Calculate Jg4(7,7;), s=0,1, 7,1 < 7 < 7 from (7.15).

) Calculate Jg(7,7i-1), s =0,1, 7,1 < 7 < 7; from (7.15).
(v) Calculate Jg(7;,7) and Js(75-1,7), s =0,1, 7,1 < 7 < 7; from (7.14).

(iv

If we only wish to determine the gradient of X in the current decision space,
we skip steps (ii) and (iv), calculate hj;(7;—1), j = 0,1,2,3 in step (i), cal-
culate Js(7;-1,7;), s = 0,1 in step (iii), and calculate Js(7;,7;—1), s = 0,1 in
step (v).

8. MAXIMUM RANGE ASCENT OF F-15 AIRCRAFT

We consider ascent of the F-15 aircraft from level flight at small altitude
(5 m) with takeoff velocity (228.5 m/s) and initial mass 20244 kg, to level
flight envelope. The goal is to maximize the range of flight in a given time.
The longitudinal dynamics of the aircraft is described by a state equation
i = f(x,u) with x(t) € R?,

©—-D U — COS I3

fi =xzsinzs, fo=—— —sinz3, f3=
X4 €2

fi=a0, f5=u1x5co8x3

and with scaled state variables: altitude z1, velocity xo, flight path angle
3, mass x4, and range x5. The vertical load factor u is the control signal.
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The aircraft engines are in maximum afterburner at all conditions and the
throttle setting is identically one. The thrust © and drag D are functions
of state and control. The model of thrust, based on experimental data [12]
reads

5
O(z1, M) = Ogs_1(z1, M) exp(Oss(x1, M))
s=1

where ©,, p = 1,...,10 are quadratic polynomials of two variables. The
Mach number is a function of altitude and velocity
T2

M = .
Vasr$ + agx? + ayz1 + ag

The model of drag [10, 14] is given by
D =dy + (ux4)?dy
dy = C(M)z3et®@) | dy = K(M)xy%e9®1)
a(z1) = qo(e*®) — 1) + qrz1,  2(21) = 242} + 2373 + 2027 + 2179

c1aM* + c13M3 + c1oaM? + 11 M + c1o
M4+ CQ3M3 + CQQMQ + a1 M + coo

K(M) = k1aM* + ki3 M3 + k1o M? + ki M + k1o
BYE + k24M4 + k23M3 + k22M2 + kot M + kQO.

C(M) =

The flight range x5(T) is to be maximized, for a fixed horizon T' = 235 s.
Thus
S(u) = —z5(T).

The terminal conditions read
hi(z(T)) = (© = D)|izgy=1 = 0, ha(x(T)) = z3(T) = 0.
The dynamic pressure must not exceed a given limit during the whole flight

g(z) =x2 —Q(71) <0
Q(z1) = bexp(—3q(z1)), b>0.
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The problem is reformulated using penalty functions
§ =73 ((r2 = Q(x1))+)*, y(0) =0
Sp(u) = —5(T) + 5p1 (0 = D)?|,_y,_y + 5p223(T)* + psy(T)
p1s P2, p3 > 0.

A straightforward computation shows that the hamiltonian (2.8) is maxi-
mized by
Y3z
u=———"—¢el
2¢2$4K

To seek the optimal control, we use the technique of cubic Hermite poly-
nomials and flat generations described in Section 7. Thus, all control arcs
are interior. Continuity of control and its derivative is required at all in-
ternal nodes 7,...,7n_1, that is, control approximations are smooth and
Ky=K; ={1,...,N —1}. In every generation, only one node is added at
a local maximizer of efficiency.

The optimization is started with penalty coefficients p; = 0.01, p2 = 1
and ps = 0.0001. The initial control structure has only two nodes 7p = 0
and 71 = T, and one procedure P;. The corresponding control is identically
equal to one. There are four decision variables p8, p(l], p{_, p}_. The control
obtained after a period of gradient optimization, together with scaled effi-
ciency of a potential flat generation is shown in Figure 8.1. There are two
inherited nodes (blank circles) and one newly generated (filled circle) located
at the maximum of efficiency (dashed line). The dimension of the decision
space after the generation is equal to 7. Further optimization leads to the
situation shown in Figure 8.2 where the efficiency exhibits two maxima, one
at a node 7 and one in |1, 72[. To stay within the theoretical framework of
Section 7, we choose the second maximum for the next generation.

The structural evolution continues until the number of nodes reaches 12.
All the penalty coefficients are then increased to 10. The final approximation
resulting from optimization with the new penalty coefficients is shown in
Figure 8.3 along with the exact optimal control obtained with an indirect
method (dashed line). Note that the discrepancy between these curves may
be arbitrarily reduced by adding more nodes. The final values of the terminal
constraint functions hi(z(T)) and ho(x(T)) are of order 107 and 104,
respectively. The function g(z(t)) plotted against time in Figure 8.4 indicates
that there are two state-constrained arcs in the optimal solution.
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1 1
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Figure 8.3. Final approximation of optimal control
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Figure 8.4. State constraint function for final approximation
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Observe that the technique applied in this example has not directly produced
the optimal control structure. It can be shown that even admitting the
generation of candidate constrained arcs would not necessarily lead to the
optimal structure, other than in the example of Section 6. This is explained
by the fact that here the optimal control is continuous, and so the efficiencies
of flat generations of interior arcs and candidate constrained arcs are similar.
This difficulty cannot be resolved in the framework of penalty methods,
and needs an approach with an explicit representation of pathwise state
constraints.

9. CONCLUSIONS

The general idea of the MSE approach to control and state constrained
problems of dynamic optimization has been presented, together with two
computational implementations using spike and flat generations. Although
the method of spike generations has been shown effective on a rather simple
example, that result is in agreement with wider experience related to prob-
lems with discontinuous optimal controls. The flat generations and interval
cubic control representations have been tested on a more complex problem
where a good approximation of the optimal solution has been obtained in a
computationally economical way.
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