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Abstra
t

The paper presents the Monotone Stru
tural Evolution, a dire
t


omputational method of optimal 
ontrol. Its distin
tive feature is that

the de
ision spa
e undergoes gradual evolution in the 
ourse of opti-

mization, with 
hanging the 
ontrol parameterization and the number

of de
ision variables. These stru
tural 
hanges are based on an anal-

ysis of dis
repan
y between the 
urrent approximation of an optimal

solution and the Maximum Prin
iple 
onditions. Two parti
ular im-

plementations, with spike and �at generations are des
ribed in detail

and illustrated with 
omputational examples.

Keywords: optimal 
ontrol, dire
t optimization methods.

2000 Mathemati
s Subje
t Classi�
ation: 49J15, 65K10.

1. Introdu
tion

General numeri
al methods of optimal 
ontrol are divided into dire
t and

indire
t [1, 2, 5℄. In the dire
t methods, approximating �nite-dimensional

optimization problems are 
onstru
ted and solved by nonlinear programming

(NLP) algorithms. The NLP problem 
an be formulated in two ways. The

simultaneous approa
h, represented by the dire
t 
ollo
ation methods [6℄,


onstru
ts the de
ision ve
tor of dis
retized 
ontrols and dis
retized state

traje
tories, thus avoiding the need for numeri
al integration of the state

equations. It usually leads to large-s
ale 
omputations. In the sequential

approa
h only the 
ontrol fun
tions are dis
retized and the state variables

are 
omputed by numeri
al integration [3, 9℄. The general, well established
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dire
t methods feature large areas of 
onvergen
e but they are rather slow,

espe
ially in the �nal stage. This approa
h is not parti
ularly demanding

upon the user and is 
onsidered fairly universal. It has many implementa-

tions like SOCS [1, 2℄, DIRCOL [18℄, DIRMUS (Hinsberger), or NUDOCCCS

[11℄.

Spe
ial dire
t methods are often applied to dynami
 optimization prob-

lems with bounded 
ontrol and the hamiltonian a�ne in 
ontrol. The 
on-

trol parameterization is based on swit
hing times and, possibly, on the end

points of singular or state-
onstrained ar
s, whi
h be
ome the NLP de
i-

sion variables. The derivatives of the 
ost or states with respe
t to these

variables, obtained from adjoint solutions [13, 16, 19, 20, 21℄ or by varia-

tional and di�eren
e te
hniques [7, 11, 23℄, are used for gradient optimiza-

tion and for the veri�
ation of ne
essary and/or su�
ient NLP optimality


onditions [11℄. Re
ently, a similar approa
h has been applied to hybrid

systems and systems with a nonlinear dependen
e of the r.h.s. on the 
on-

trol variable (see, e.g., [17℄). Su
h a parameterization usually results in

a low-dimensional de
ision spa
e and relatively good 
onvergen
e, but re-

quires the knowledge of optimal 
ontrol stru
ture before starting the NLP


omputations. Here, as in most of the literature, the 
ontrol stru
ture is

understood as the sequen
e of sets of 
onstraints, simultaneously pathwise

a
tive on the pair (
ontrol, state traje
tory). Note that a di�erent de�ni-

tion is used in this work (see Se
tion 3). The optimal stru
ture is usually

sought outside the NLP problem by homotopy methods or by `try and guess'

pro
edures. A systemati
 way to establish the optimal 
ontrol stru
ture in-

side the NLP problem was proposed in the variable parameterization method

[13, 19, 20, 21℄.

In the indire
t approa
h, the optimal solution is 
omputed by solving

the boundary value problem obtained from the Maximum Prin
iple. Mul-

tiple shooting is frequently used, with su
h implementations as BNDSCO

(Oberle and Grimm), MUMUS (Hiltmann et al.) and MUSCOD-II (Diehl).

The 
ollo
ation methods for indire
t 
omputations (e.g., [8℄) involve large

systems of algebrai
 equations requiring spe
ialized algorithms. The rate of


onvergen
e of indire
t methods is usually very high, but their area of 
onver-

gen
e is small and so they require good initial guesses for the adjoint ve
tor.

Pra
ti
ally, the optimal 
ontrol stru
ture has to be known beforehand. This


an be a
hieved by a dire
t algorithm (see [15℄) or using homotopy meth-

ods where a sequen
e of auxiliary problems is solved by multiple shooting

(e.g., [4℄).
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This paper des
ribes the method of Monotone Stru
tural Evolution (MSE),

whi
h is a generalization of the results presented in [19, 20, 21℄. The MSE is

a dire
t 
omputational approa
h to optimal 
ontrol problems in systems de-

s
ribed by ordinary di�erential equations, with 
ontrol and state 
onstraints

[22℄. Its distin
tive feature is that the de
ision spa
e undergoes gradual

evolution in the 
ourse of optimization. This evolution runs a

ording to

pre-sele
ted rules, with 
hanging the 
ontrol parameterization and the num-

ber of de
ision variables. Su
h 
hanges, 
alled stru
tural, are followed by

periods of gradient optimization in a 
onstant de
ision spa
e. The 
hanges

lo
ally in
rease e�
a
y of the gradient optimization pro
edures. They are

based on an analysis of dis
repan
y between the 
urrent approximation of op-

timal solution and the Maximum Prin
iple 
onditions, and 
an be 
ontinued

until this dis
repan
y be
omes negligible. The number of de
ision variables

may thus be kept 
omparatively small, at least in early stages of optimiza-

tion. The 
ontrol is preserved by every stru
tural 
hange so that monotone

de
rease of the performan
e index is a
hieved in the whole algorithm.

The paper is organized as follows. The optimal 
ontrol problem with


ontrol and state 
onstraints is formulated in Se
tion 2. Se
tions 3 and 4

explain the MSE philosophy and introdu
e basi
 notions. The general algo-

rithm of the MSE is des
ribed in Se
tion 5. Se
tions 6, 7 and 8 are devoted

to two parti
ular implementations. The te
hnique of spike generations is

des
ribed in Se
tion 6 and illustrated with an example of for
ed linear os
il-

lator. Se
tion 7 presents the te
hnique of optimal 
ontrol approximation by

interval 
ubi
 polynomials and �at generations. It is illustrated in Se
tion 8

with a problem of optimal as
ent of the F-15 air
raft. The paper ends with


on
lusions.

2. Optimal 
ontrol problem

Consider a 
ontrol system

(2.1) ẋ = f(x, u), t ∈ [0, T ], x(0) = x0

where the state x(t) ∈ R
n
. The 
ontrols u are right-
ontinuous, pie
ewise-


ontinuous fun
tions taking values in UUU , a given set in R
m
. The horizon T

is �xed or free, T > 0. The performan
e fun
tional

(2.2) S(u, T ) = ϕ(x(T ), T )
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is minimized on the traje
tories of (2.1) subje
t to equality terminal 
ondi-

tions

(2.3) hi(x(T )) = 0, i = 1, . . . , n1

and inequality state 
onstraints valid for every t ∈ [0, T ]

(2.4) gi(x(t)) ≤ 0, i = 1, . . . , n2.

It is assumed that the fun
tions f , ϕ, hi and gi are 
ontinuously di�eren-

tiable. The 
onstraints (2.3) and (2.4) are treated by the exterior penalty

method. To this end, introdu
e state variables yi, i = 1, . . . , n2 su
h that

(2.5) ẏi(t) =
1

2
(gi(x(t))+)2 , yi(0) = 0, i = 1, . . . , n2

and a family of auxiliary performan
e fun
tionals (ρ1i, ρ2i > 0)

(2.6) Sρ1,ρ2
(u, T ) = ϕ(x(T ), T ) +

1

2

n1
∑

i=1

ρ1ihi(x(T ))2 +

n2
∑

i=1

ρ2iyi(T )

whi
h are minimized on the traje
tories of (2.1), (2.5). It is assumed that

the optimal solution of the state-un
onstrained problem (2.1), (2.5), (2.6)

tends to the optimal solution of the state-
onstrained problem (2.1)�(2.4) as

all the 
oe�
ients ρ1i, ρ2i tend to in�nity.

In the MSE method the 
ontrol u may be determined on some subset Θ

of [0, T ] in a state-dependent form u(t) = P (x(t), t) where P : R
n × [0, T ] →

UUU is a given fun
tion of 
lass CCC1
w.r.t. its �rst argument and pie
ewise


ontinuous w.r.t. the se
ond. We then de�ne

(2.7) f̂(x, u, t) =

{

f(x, u), t /∈ Θ

f(x, P (x, t)), t ∈ Θ.

More generally, it may happen that on some subintervals of [0, T ] only 
ertain

omponents of u are predetermined fun
tions of state, time and, possibly,

other 
ontrol 
omponents. We 
an then formally substitute f̂(x, u, t) =
f(x, P (x, u, t)) for t ∈ Θ, with an appropriately de�ned P .

Introdu
e the hamiltonian

(2.8) H(ψ(t), x(t), u(t), t) = ψ(t)⊤f̂(x(t), u(t), t) −
1

2

n2
∑

i=1

ρ2i (gi(x(t))+)2.



Evolution of stru
ture for dire
t 
ontrol optimization 169

The adjoint ve
tor ψ is a 
ontinuous solution of the adjoint boundary prob-

lem

(2.9) ψ̇(t) = −∇xH(ψ(t), x(t), u(t), t), t ∈ [0, T ]

(2.10) ψ(T ) = −∇xϕ(x(T ), T ) −

n1
∑

i=1

ρ1ihi(x(T ))∇hi(x(T )).

Here ∇x is the operator of derivative w.r.t. state.

The 
elebrated Maximum Prin
iple of Pontryagin states a ne
essary op-

timality 
ondition for the problem under 
onsideration. Assume that an

admissible pair u, T minimizes the fun
tional Sρ1,ρ2
subje
t to (2.1), (2.5).

Then

(2.11) H(ψ(t), x(t), u(t), t) ≥ H(ψ(t), x(t), v, t) ∀t ∈ [0, T [ ∀v ∈ UUU

where x and ψ satisfy (2.1), (2.9) and (2.10). In the free-horizon problem,

additionally

(2.12) H(ψ(T ), x(T ), u(T−), T−) =
∂

∂T
ϕ(x(T ), T ).

3. Control stru
ture

The 
ontrols used in the MSE method have stru
tures. The 
ontrol stru
ture

is a sequen
e of pro
edures Pi, i = 1, 2, . . . , N that determine the 
ontrol u(t)
in su

essive time intervals [τi−1, τi[ , u(t) = Pi(x(t), t, pi) where x is the

solution of (2.1) generated by u and pi is a ve
tor of real-valued parameters.

If a pro
edure is independent of some argument, we may skip this argument

in the notation. The points τ0, τ1, . . . , τN are 
alled stru
tural nodes, 0 =
τ0 ≤ τ1 ≤ . . . ≤ τN = T . The pro
edures Pi are taken from a �xed,

�nite set PPP . The 
hoi
e of the elements of PPP may be suggested by general

te
hniques of numeri
al approximation and, whi
h is parti
ularly important,

by expe
ted properties of the optimal 
ontrol following from the Maximum

Prin
iple. The pro
edures, their number, order and parameters, as well

as the nodes τ1, . . . , τN−1 and, possibly, τN are de
ision variables in the

optimization algorithm. The restri
tions of 
ontrol to intervals [τi−1, τi[ are

alled ar
s. If τi = τi−1, we say that the i-th ar
 is of zero length.
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A 
onvenient way of de�ning a stru
ture for a multidimensional 
ontrol is to

determine a stru
ture for ea
h 
ontrol 
omponent separately. Let us give a

few examples of typi
al pro
edures Pi, for a single 
ontrol 
omponent or a

s
alar 
ontrol u.

(i) LetUUU = [umin, umax] and f(x, u) = f0(x)+f1(x)u. It is then reasonable to
de�ne two 
onstant pro
edures without parameters Pmin = umin and Pmax =
umax, and put {Pmin, Pmax} ⊂ PPP . The respe
tive 
ontrol ar
s are 
alled

boundary (ar
s that are not boundary, are 
alled interior).

(ii) For UUU and f as above de�ne the swit
hing fun
tion φ = ψ⊤f1
and denote

by φ(i)
its i-th Lie derivative w.r.t. x along f . Suppose that the equation

φ(r)(x, ψ, u) = 0 
an be expli
itly solved with respe
t to u, u = w(x, ψ) ∈
UUU , and all the Lie derivatives φ(i)

, i < r are 
onstant in u. Assume also

that ψ in the expression w(x, ψ) 
an be eliminated by solving the equations

φ(i)(x, ψ, u) = 0, i = 0, 1, . . . , r − 1 w.r.t. ψ. The resulting expression for u
de�nes a 
ontrol pro
edure in a state-feedba
k form, u(t) = P (x(t)). The

respe
tive 
ontrol ar
 is 
alled a 
andidate singular ar
.

(iii) In the situation des
ribed in (ii) suppose that a 
omplete elimination

of the 
omponents of ψ from w(x, ψ) is impossible. Still, we may 
onstru
t

a 
andidate singular 
ontrol pro
edure in a feedba
k form with parameters,

u(t) = P (x(t), t, p). The parameter p, to be determined by optimization may

be interpreted as a ve
tor of adjoint variables at an appropriately sele
ted

moment of time.

(iv) Consider a s
alar state 
onstraint g(x) ≤ 0. Let g(i)
be the i-th Lie

derivative of g. Assume that the equation g(r)(x, u) = 0 
an be expli
itly

solved with respe
t to u, u = P (x) ∈ UUU , and all the Lie derivatives g(i)
, i < r

are 
onstant in u. The resulting expression for u de�nes a 
ontrol pro
edure

in a state-feedba
k form, u(t) = P (x(t)). The respe
tive 
ontrol ar
 is 
alled
a 
andidate 
onstrained ar
.

(v) Assume that u is a hamiltonian maximizer

u(t) = arg max
w∈UUU

H(ψ(t), x(t), w, t) = P (x(t), t, ψ(t0))

with t0 �xed. One may then de�ne a 
ontrol pro
edure in feedba
k form,

u(t) = P (x(t), t, p). The parameter ve
tor p is a de
ision variable of the opti-

mization pro
ess. General and attra
tive as it may look, this te
hnique leads

to poor optimization algorithms with extremely small areas of 
onvergen
e.
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(vi) Interior 
ontrol pro
edures are frequently 
reated by means of typi
al,

general approximation te
hniques, e.g., u(t) = P (t, p) with P being a poly-

nomial in t of a given degree and p, the ve
tor of its 
oe�
ients. Of 
ourse,

fun
tions other than polynomials may also be used.

4. Stru
tural 
hanges

An optimal 
ontrol approximation in the dire
t approa
h is a value of an

approximation mapping A :DDDa → U , from the admissible set DDDa in a �nite-

dimensional spa
e of de
ision variables DDD, DDDa ⊂DDD into a fun
tional 
ontrol

spa
e U . On
e DDD, DDDa ⊂ DDD and A are 
hosen, the performan
e fun
tional

(2.6) may be rede�ned as a fun
tion of the de
ision ve
tor

(4.1) Σ(d) = Sρ1,ρ2
(A(d), T ), d ∈DDDa.

We assume that Σ is 
ontinuously di�erentiable.

It is well known that the de
ision spa
e most suitable for the optimal


ontrol approximation 
an only be 
hosen if 
ertain properties of the optimal

solution are known, a 
ondition whi
h is seldom satis�ed in the beginning of

optimization. At the same time, the performan
e of optimization algorithms

rapidly worsens with a growing dimension of the de
ision spa
e. These two

premises motivate the 
onstru
tion of methods in whi
h the de
ision spa
e

in the 
ourse of optimization is gradually adapted to the a

umulated knowl-

edge on the optimal solution. Optimization is started in a de
ision spa
e of a

small dimension, and the dimension is in
reased only when this is ne
essary

for improving the approximation of the optimal solution. The adjustment

of the de
ision spa
e pro
eeds in a series of steps 
alled stru
tural 
hanges,

separated by periods of gradient optimization in a 
onstant spa
e.

Gradient optimization in a 
onstant de
ision spa
e DDD usually produ
es

a sequen
e of points asymptoti
ally 
onvergent to some stationary point d∞.

A 
hara
teristi
 property of this pro
ess is that the rate of improvement of

the performan
e index Σ(d) slows down more and more when d approa
hes

d∞. While the point d∞ typi
ally ful�lls the ne
essary optimality 
onditions

in DDD (e.g., the KKT 
onditions), the 
orresponding 
ontrol u∞ = A(d∞)
is frequently far from satisfying the optimality 
onditions of the Maximum

Prin
iple. In su
h a 
ase, the optimization pro
edure 
rawling towards d∞
may be given a new impulse by appropriately 
hanging the de
ision spa
e
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so that the image of the 
urrent de
ision ve
tor d̄ is far from any stationary

point in the new spa
e D̄DD.

For more formal de�nitons, 
onsider a family ∆ of de
ision spa
es DDD
where every DDD ∈ ∆ is a real ve
tor spa
e of �nite dimension. In general,

di�erent spa
es in ∆ have di�erent dimensions. To every DDD ∈ ∆, an admis-

sible setDDDa and an approximation mapping A depending onDDD are assigned.

Ea
h stru
tural 
hange is determined by a mapping (DDD, d) 7→ (D̄DD, d̄) where

d ∈ DDDa ⊂ DDD, d̄ ∈ D̄DDa ⊂ D̄DD, DDD,D̄DD ∈ ∆. Assume that the approximation

mappings A and Ā are assigned toDDD and D̄DD, respe
tively. It is required that

the 
ondition of 
ontrol preservation holds

(4.2) Ā(d̄) = A(d), d ∈DDDa, d̄ ∈ D̄DDa.

The interpretation is that d is a point rea
hed in a (
onstant) de
ision spa
e

DDD, and it is estimated that further optimization in another spa
e D̄DD will be

more e�e
tive. Optimization is then 
ontinued in D̄DD, starting from an appro-

priately determined point d̄ ∈ D̄DD. In the MSE, this 
hange of de
ision spa
e

implies a 
hange of the sequen
e of pro
edures Pi. Thanks to 
ondition (4.2)

the 
ontrol (as an element of U) is not immediately a�e
ted, and in 
on-

sequen
e the performan
e index monotonously de
reases during the overall

optimization. Typi
ally, only few sele
ted elements of the stru
ture 
an be

a�e
ted by a stru
tural 
hange. For example, one or two new pro
edures

P̄i are introdu
ed with inserting the 
orresponding new nodes, or one of the

pro
edures Pi is modi�ed. The new ar
s are often of zero length.

Two kinds of stru
tural 
hanges are typi
al for the MSE: generations and

redu
tions. The dimension of the de
ision spa
e in
reases in a generation,

and is diminished in a redu
tion.

In the MSE, the stru
tural 
hanges aimed at speeding up the optimiza-

tion are e�e
ted by driving generations. To explain their 
onstru
tion, de�ne

the e�
ien
y of a generation. Assume that the generation 
hanges the de-


ision spa
e from DDD to D̄DD. Let d0 ∈ DDD and d̄0 ∈ D̄DD be the de
ision ve
tors

immediately before and after the generation. Let also Σ(d) for d ∈ DDD be

given by (4.1), and Σ̄(d̄) = Sρ1,ρ2
(Ā(d̄), T ) for d̄ ∈ D̄DD. Denote the anti-

gradients −∇Σ(d0) and −∇Σ̄(d̄0) by γ and γ̄, respe
tively. If γ and γ̄ are

admissible, that is, point to the interior of the respe
tive admissible sets inDDD
and D̄DD, the e�
ien
y of the generation is de�ned as the di�eren
e of squared

Eu
lidean norms

(4.3) E = ‖γ̄‖2 − ‖γ‖2.



Evolution of stru
ture for dire
t 
ontrol optimization 173

Su
h a de�nition is justi�ed in two ways. First, the squared norm of the

gradient, multiplied by −1, is equal to the derivative of the performan
e

index w.r.t. the line sear
h parameter in the steepest des
ent dire
tion

(4.4) ∇zΣ(d0 + zγ)|z=0+ = −‖γ‖2, ∇zΣ̄(d̄0 + zγ̄)|z=0+ = −‖γ̄‖2.

The e�
ien
y thus determines the in
rease of steepness of the performan
e

index. Se
ondly, the e�
ien
y so de�ned does not depend on those 
om-

ponents of the gradient of performan
e index that are not a�e
ted by the

generation, whi
h simpli�es 
omputations. In the general 
ase, the antigra-

dients in (4.3) are repla
ed by their orthogonal proje
tions onto the lo
al


oni
al approximations of the admissible sets.

The driving generation takes pla
e if its relative e�
ien
y E/‖γ‖2
(de-

�ned for γ 6= 0) ex
eeds a given threshold. By 
hoosing the threshold one


an 
ontrol the trade-o� between the dimension of de
ision spa
e and gra-

dient magnitude. The number of simultaneously generated nodes is limited

by additional rules (e.g., one or two per ar
, solely at lo
al maximizers of

relative e�
ien
y), to avoid an undesirable in
rease of the number of de
ision

variables. Additional requirements 
an be imposed on generations to obtain


ontrols with pre-sele
ted regularity properties, like 
ontinuity or smooth-

ness. The 
hoi
e of parti
ular generations is also subje
t to the 
ondition

that optimization should 
onverge to the optimal 
ontrol in the strong sense.

Besides the driving generations, the MSE method admits saturation gen-

erations, enfor
ed by the requirement that at the moment of gradient 
ompu-

tation ea
h 
ontrol ar
 has to be either purely boundary or purely interior.

They are performed when the optimization pro
ess transforms an interior

ar
 into one that 
ontains a subar
 with an a
tive 
ontrol 
onstraint. The


orresponding time interval is then divided by introdu
ing new stru
tural

nodes.

A typi
al redu
tion 
onsists in eliminating an ar
 of zero length when

it is not promising. More pre
isely, every ar
 of zero length is subje
t to

redu
tion if the dire
tional derivative of the performan
e index w.r.t. its

boundaries is nonnegative for all admissible dire
tions. At the same time

the de
ision variables that des
ribe this 
ontrol ar
 are eliminated, in
luding

at least one of the respe
tive nodes. Su
h a redu
tion o

urs ea
h time when

one of the 
onstraints τ0 ≤ τ1 ≤ . . . ≤ τN be
omes a
tive after the line

sear
h of the gradient optimization algorithm. Another typi
al redu
tion

o

urs when two adja
ent ar
s des
ribed by identi
al pro
edures are uni�ed.
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5. General algorithm

The basi
 algorithm of the MSE 
onsists of the following steps.

1

0
Sele
tion of initial de
ision spa
e DDD and starting point d ∈DDDa ⊂DDD.

2

0
Termination, if optimality 
onditions in U are satis�ed.

3

0
Generation, if it is su�
iently promising or needed.

4

0
Iteration of gradient optimization in 
urrent de
ision spa
e DDD.

5

0
Redu
tion, if ne
essary.

6

0
Return to 2

0
.

The optimality 
onditions veri�ed in step 2

0
may be of two types, used

jointly.

(i) Ne
essary 
onditions of the Maximum Prin
iple. These 
onditions are

always in
luded in the MSE method, though in di�erent forms. If T is �xed,

the requirement of su�
ient a

ura
y of hamiltonian maximization may be

expressed by an inequality ‖χ‖p ≤ η0 where ‖ · ‖p denotes the norm in

L
p(0, T ) for some p ∈ {1, 2, . . . ,∞}, η0 ≥ 0 is a threshold, and

χ(t) = sup{H(ψ(t), x(t), v, t) −H(ψ(t), x(t), u(t), t), v ∈ UUU}, t ∈ [0, T ].

If T is a de
ision variable, then 
ondition (2.12) should also be satis�ed with

su�
ient a

ura
y. Other termination 
onditions of this type, valid under

spe
ial assumptions may be formulated with the use of the derivative ∇uH
or the swit
hing fun
tion φ. It is also possible to express the termination 
on-

dition 2

0
as a 
ondition of the existen
e of appropriately e�
ient generations

in step 3

0
.

(ii) Ne
essary 
onditions following from a lower bound on performan
e fun
-

tional. Assume that Smin = inf{Sρ1,ρ2
(u, T ) : u, T admissible} 
an be evalu-

ated. The termination 
ondition has the form Sρ1,ρ2
(u, T )−Smin ≤ η1 where

η1 ≥ 0 is a threshold.

Step 3

0
is distin
tive for the MSE algorithms and 
ru
ial for their 
on-

vergen
e. The 
hanges of stru
ture are mainly performed to speed up op-

timization when a stationary point in the 
urrent de
ision spa
e is being

approa
hed.

This algorithm should be equipped with spe
ial pro
edures for gradient


omputation and evaluation of e�
ien
y of generations. These pro
edures

are based on the solutions of the adjoint boundary problems (2.9), (2.10).
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While the gradients ∇Σ(d) 
an also be 
omputed by other te
hniques, like

variational equations or dis
rete numeri
al approximation, the adjoint tra-

je
tories are indispensable for the estimation of a

ura
y of ful�llment of the

Maximum Prin
iple 
onditions, as well as for e�e
tively 
hoosing generations

with satisfa
tory e�
ien
y.

To treat state 
onstraints, an outer loop of penalty modi�
ation has to

be added. In the gradient optimization of step 4

0
, the bounds on stru
tural

nodes and 
ontrol 
onstraints may be respe
ted due to an appropriate or-

ganization of line sear
h. Numeri
al solutions of di�erential equations 
an

be 
onveniently obtained by the RK4 method with mesh adjusted so as to

in
lude all dis
ontinuity points.

6. Te
hnique of spike generations

The te
hnique of spike generations will be explained with an example of

for
ed linear os
illator. Consider the system

(6.1)

ẋ1 = x2

ẋ2 = −x1 + u,

dei�ned in [0, T ], with initial 
onditions

x1(0) = 3, x2(0) = −3.

The horizon is �xed, T = 4.4. The performan
e index

(6.2) S(u) =
1

2
‖x(T )‖2.

The 
ontrols are bounded, |u| ≤ 2, and the state is subje
t to a 
onstraint

(6.3) g(x(t)) = x2(t) − 0.5 ≤ 0, t ∈ [0, T ].

We employ the penalty method des
ribed in Se
tion 2 with

(6.4) ẏ(t) =
1

2
((x2 − 0.5)+)2, y(0) = 0

(6.5) Sρ(u) =
1

2
‖x(T )‖2 + ρy(T ), ρ > 0.
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Three pro
edures are used to 
ompute 
ontrol values. Two of them produ
e

boundary 
ontrol ar
s, P±(t) = ±2 and one, 
andidate 
onstrained ar
s:

P

on

(x) = x1. This last formula follows from equating g(1)(x, u) = ẋ2 =
−x1 + u to zero. Note that any 
andidate 
onstrained ar
 be
omes also

singular in the optimal solution of the penalized problem (6.1), (6.4), (6.5).

For a given 
ontrol stru
ture, the internal stru
tural nodes are the only

de
ision variables, d = (τ1, . . . , τN−1). The hamiltonian and the adjoint

boundary problem are given by (2.8)�(2.10). Denote the fun
tional (6.5) as

a fun
tion of the de
ision ve
tor by Σ. It is well known [16, 22℄ that its

partial derivatives are given by

(6.6)

∇τi
Σ(d) = ψ(τi)

⊤ (f(x(τi), u(τi+)) − f(x(τi), u(τi−)))

= φ(τi)(u(τi+) − u(τi−)), i = 1, . . . , N − 1

if τi−1 < τi < τi+1. Here φ = ψ2 is the swit
hing fun
tion. In the MSE we

have to generalize the formula (6.6) so that it 
overs also 
ases of ar
s of

zero length. For a 
ontrol stru
ture determined by a sequen
e of pro
edures

(P1, . . . , PN ), denote the value of the pro
edure Pj at time t by vj(t). Then

(6.7)

∇τi
Σ(d) = ψ(τi)

⊤ (f(x(τi), vi+1(τi)) − f(x(τi), vi(τi)))

= φ(τi)(vi+1(τi) − vi(τi)), i = 1, . . . , N − 1.

If (6.6) is appli
able, (6.7) yields the same results. If τi−1 = τi < τi+1,

0 < i < N , then (6.7) determines the right partial derivative, and if τi−1 <
τi = τi+1, 0 < i < N , it determines the left partial derivative. The 
ase

τi−1 = τi = τi+1 is ex
luded from 
onsideration.

In this example we only use spike generations, in whi
h the new 
ontrol

ar
s are of zero length. To explain the rules for generations, assume that

the 
ontrol stru
ture is de�ned by a sequen
e of pro
edures (P1, . . . , PN ),
Pi 6= Pi−1 for i = 2, . . . , N , Pi ∈ {P

+

, P−, P
on} for i = 1, . . . , N . The

respe
tive stru
tural nodes satisfy 0 = τ0 < τ1 < . . . < τN = T . For every

τ ∈ [0, T ]\{τ1, . . . , τN−1}, de�ne Pad(τ) ∈ {P+, P−, P
on}:

(i) if φ(τ) > 0 and u(τ) < P

on

(x(τ)) < P
+

(τ), then P
ad

(τ) = P

on

,

(ii) if φ(τ) < 0 and P−(τ) < P

on

(x(τ)) < u(τ), then P
ad

(τ) = P

on

,

(iii) if φ(τ) > 0, u(τ) < P
+

(τ) and P

on

(x(τ)) /∈ ]u(τ), P+(τ)[ , then
P
ad

(τ) = P
+

,
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(iv) if φ(τ) < 0, P−(τ) < u(τ) and P

on

(x(τ)) /∈ ]P−(τ), u(τ)[ , then
P
ad

(τ) = P−,

(v) if none of the above 
onditions is ful�lled then P
ad

(τ) = Pi, where

τ ∈ [τi−1, τi], i = 1, . . . , N .

Suppose �rst that τ ∈ ]τj−1, τj[ and 
onsider a generation in whi
h the


ontrol stru
ture is 
hanged to (P̄1, . . . , P̄N+2), P̄i = Pi for i ≤ j, P̄j+1 =
P
ad

(τ), and P̄i = Pi−2 for i > j + 1. The new stru
tural nodes are τ̄i,
i = 0, . . . , N + 2, τ̄i = τi for i < j, τ̄j = τ̄j+1 = τ , and τ̄i = τi−2 for i > j+ 1.
The e�
ien
y (4.3) of this generation is equal to

(6.8) E(τ) = 2φ(τ)2(v̄j+1(τ) − vj(τ))
2

where v̄j+1(τ) is the value of the pro
edure P̄j+1 at time τ .
Let now τ = 0 and let (P̄1, . . . , P̄N+1) be the 
ontrol stru
ture after the

generation, P̄1 = P
ad

(0) and P̄i = Pi−1 for i > 1. The new stru
tural nodes

are τ̄i, i = 0, . . . , N + 1, τ̄0 = 0 and τ̄i = τi−1 for i ≥ 1. The e�
ien
y equals

(6.9) E(0) = φ(0)2(v̄1(0) − v1(0))
2.

Consider now a spike generation at the horizon, τ = T . The stru
ture after
the generation is given by (P̄1, . . . , P̄N+1), P̄N+1 = P

ad

(T ) and P̄i = Pi for

i ≤ N . The new stru
tural nodes are τ̄i, i = 0, . . . , N + 1, τ̄N+1 = T and

τ̄i = τi for i ≤ N . The e�
ien
y is

(6.10) E(T ) = φ(T )2(v̄N+1(T ) − vN (T ))2.

The generations made thus far have only been hypotheti
al, and served the

purpose of determining the fun
tion E : [0, T ]\{τ1, . . . , τN−1} → R. In order

to des
ribe the generations a
tually used in the optimization algorithm de�ne

Ê(τ) =

{

1
2E(τ), τ /∈ {0, T}

E(τ), τ ∈ {0, T}.

The fa
tor

1
2 is introdu
ed to give some preferen
e to inserting spikes at 0

and T sin
e the number of de
ision variables is then in
reased only by one.

Let I be the set of all integers i in {1, . . . , N} su
h that Ê has a maximum

in [τi−1, τi]\{τ1, . . . , τN−1}, attained at some τ̂i, and this maximum satis�es

Ê(τ̂i) > ε‖γ‖2.
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Here γ is the gradient of Σ immediately before the generation and ε>0, a
given relative e�
ien
y threshold. The 
ontrol stru
ture immediately after

the generation is determined in the following way. Let θ and θ0 be stri
tly

in
reasing sequen
es 
onstru
ted of all elements of the sets {τ̂i : i ∈ I} and

{τ̂i : i ∈ I}\{0, T}, respe
tively. To obtain the sequen
e of the new stru
-

tural nodes (τ̄0, . . . , τ̄N̄ ), sort the 
on
atenation of sequen
es (τ0, . . . , τN ), θ
and θ0 in a nonde
reasing order. The new 
ontrol stru
ture (P̄1, . . . , P̄N̄ )
whi
h in
ludes all the pro
edures Pi, i ∈ {1, . . . , N} and P

ad

(τ̂i), i ∈ I is


hara
terized as follows. Let j ∈ {1, . . . , N̄}. If τ̄j−1 = τ̄j = τ̂i for some

i ∈ I, then P̄j = P
ad

(τ̂i), P̄j−1 = Pi for j > 1, and P̄j+1 = Pi for j < N̄ .

Otherwise, there is exa
tly one i in {1, . . . , N} su
h that τ̄j = τi. Then

P̄j = Pi, and P̄j+1 = Pi+1 for j < N̄ .
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Figure 6.1. First generation (boundary)

The 
omputations are started with an optimal 
ontrol approximation u ≡ 2,
that is, a one-element 
ontrol stru
ture P

+

and a (su�
iently) large ρ. The
�rst generation (Figure 6.1) inserts a boundary spike, and the new stru
ture

is (P
+

, P−, P+). After a few BFGS iterations we obtain the situation in

Figure 6.2, where 
onditions for inserting two spikes are satis�ed. The �rst

of the generated ar
s (boundary) is redu
ed after several iterations, and

the se
ond, a 
andidate 
onstrained ar
 grows up (Figure 6.3) to rea
h the

optimal solution shown in Figures 6.4 and 6.5.
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Figure 6.2. Se
ond generation (boundary and 
onstrained)
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Figure 6.3. After a few more iterations
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Figure 6.4. Optimal 
ontrol
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7. Interval 
ubi
 polynomials and flat generations

7.1. Control approximation

Assume that the horizon T is �xed, UUU = R, and the admissible 
ontrols are

interval Hermite interpolation polynomials

(7.1)

u(t) = p0
i−1V0(t, τi−1, τi) + p0

i−V0(t, τi, τi−1)

+ p1
i−1V1(t, τi−1, τi) + p1

i−V1(t, τi, τi−1),

t ∈ [τi−1, τi[, i = 1, . . . , N

where

(7.2) V0(t, a, b) =
(t− b)2(2t+ b− 3a)

(b− a)3
, V1(t, a, b) =

(t− b)2(t− a)

(b− a)2
.

For every �xed i, the r.h.s. of (7.1) is a polynomial of degree not higher

than three. The advantage of this 
ontrol representation is that all de
ision

variables have obvious geometri
 interpretations, and it is easy to formulate


ontinuity requirements on 
ontrol and its derivative at stru
tural nodes.

Note that u(τi−1+) = p0
i−1, u̇(τi−1+) = p1

i−1, u(τi−) = p0
i−, u̇(τi−) = p1

i−

for i = 1, . . . , N . The time moments τ0, τ1, . . . , τN may be interpreted as

the stru
tural nodes in the general formulation of the MSE. The de
ision

ve
tor 
onsists of the variables τ1, τ2, . . . , τN−1 and p0
i−1, p

1
i−1, p

0
i−, p

1
i− for

i = 1, . . . , N . The nodes are subje
t to 
onstraints: 0 = τ0 ≤ τ1 ≤ . . . ≤
τN = T . Conditions of 
ontinuity of 
ontrol and/or its derivative may be

imposed at 
ertain nodes, ps
i = ps

i− ∀i ∈ Ks, s ∈ {0, 1} where K0 and K1 are

given subsets of {1, . . . , N − 1}.

7.2. Derivatives of performan
e fun
tional

De�ne

Js(a, b) = −

∫ b

a

h(t)Vs(t, a, b)dt if a 6= b, Js(a, a) = 0

where h(t) = ∇uH(ψ(t), x(t), u(t)). For s = 0, 1, 
al
ulate the derivatives of
the performan
e index Σ w.r.t. ps

i and ps
i−

(7.3) ∇ps
i
Σ = Js(τi, τi+1), i ∈ {0, . . . , N − 1}\Ks
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(7.4) ∇ps
i−

Σ = −Js(τi, τi−1), i ∈ {1, . . . , N}\Ks

(7.5) ∇ps
i
Σ = Js(τi, τi+1) − Js(τi, τi−1), i ∈ Ks.

The derivatives w.r.t. the nodes τi, i = 1, . . . , N − 1 
an be 
omputed from

∇τi
Σ = ∆Hi −

∫ τi+1

τi−1

h(t)ϑi(t)dt

where

∆Hi = H(ψ(τi), x(τi), p
0
i ) −H(ψ(τi), x(τi), p

0
i−)

ϑi(t) = p0
i−1∇τi

V0(t, τi−1, τi) + p0
i−∇τi

V0(t, τi, τi−1)

+ p1
i−1∇τi

V1(t, τi−1, τi)p
1
i−∇τi

V1(t, τi, τi−1), t < τi

ϑi(t) = p0
i∇τi

V0(t, τi, τi+1) + p0
i+1−∇τi

V0(t, τi+1, τi)

+ p1
i∇τi

V1(t, τi, τi+1) + p1
i+1−∇τi

V1(t, τi+1, τi), t > τi.

Equivalently,

(7.6)

∇τi
Σ = ∆Hi + J0(τi, τi−1)p

1
i− + J1(τi, τi−1)ü(τi−)

− J0(τi, τi+1)p
1
i − J1(τi, τi+1)ü(τi+).

Dire
t 
al
ulation yields

ü(τi−) =
6(p0

i−1 − p0
i−)

(τi − τi−1)2
+

2(p1
i−1 + 2p1

i−)

τi − τi−1

ü(τi+) = −
6(p0

i − p0
i+1−)

(τi+1 − τi)2
−

2(2p1
i + p1

i+1−)

τi+1 − τi
.

7.3. Flat generation

Consider the generation of a new stru
tural node τ ∈ ]τz−1, τz[ , for some

z ∈ {1, . . . , N}. After the generation the nodes 
onstitute a nonde
reasing

sequen
e τ̄0, . . . , τ̄N̄ where N̄ = N + 1, τ̄i = τi for i < z, τ̄z = τ , τ̄i = τi−1

for i > z. The set of indi
es of all the nodes at whi
h the s-th derivative is

required to be 
ontinuous after the generation, is denoted by K̄s, s = 0, 1.
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Of 
ourse, K̄s ∩ {1, . . . , z − 1} = Ks ∩ {1, . . . , z − 1} and K̄s ∩ {z + 1, . . . ,
N + 1} = (Ks ∩ {z, . . . ,N}) + 1.

The 
ontrol before the generation has the form (7.1), and after the gen-

eration it is given by

(7.7)

u(t) = p̄0
i−1V0(t, τ̄i−1, τ̄i) + p̄0

i−V0(t, τ̄i, τ̄i−1)

+ p̄1
i−1V1(t, τ̄i−1, τ̄i) + p̄1

i−V1(t, τ̄i, τ̄i−1)

t ∈ [τ̄i−1, τ̄i[, i = 1, . . . , N̄ .

Sin
e (7.1) and (7.7) are identi
al fun
tions of time, the following relation-

ships between the 
oe�
ients are valid for s = 0, 1

(7.8) p̄s
i = ps

i , p̄s
i− = ps

i− for i < z

p̄s
i+1 = ps

i , p̄s
i+1− = ps

i− for i ≥ z

(7.9) p̄s
z = p̄s

z− = u(s)(τ)

where the supers
ript (s) denotes the s-th dervitative w.r.t. time

(7.10)

u(s)(τ) = p0
z−1V

(s)
0 (τ, τz−1, τz) + p0

z−V
(s)
0 (τ, τz , τz−1)

+ p1
z−1V

(s)
1 (τ, τz−1, τz) + p1

z−V
(s)
1 (τ, τz, τz−1).

Let Σ̄ denote the performan
e index after the generation. The derivatives

of Σ̄ w.r.t. the de
ision variables τ̄i, i ∈ {1, . . . , N̄ − 1} and p̄s
i−1, p̄

s
i−,

i ∈ {1, . . . , N̄} are determined by equalities analogous to those in Se
tion 7.2.

To use (7.6), a reindexing of the hamiltonian jumps is needed: ∆H̄i = ∆Hi

for i < z, ∆H̄i = ∆Hi−1 for i > z, and ∆H̄z = 0. The values of derivatives,
immediately before the generation and after it satisfy the relationships

∇p̄s
i
Σ̄ = ∇ps

i
Σ, ∇τ̄i

Σ̄ = ∇τi
Σ for i < z − 1

∇p̄s
i+1

Σ̄ = ∇ps
i
Σ for i > z or i = z, z /∈ Ks

∇p̄s
i−

Σ̄ = ∇ps
i−

Σ for i < z, i /∈ Ks

∇p̄s
i+1−

Σ̄ = ∇ps
i−

Σ for i > z, i /∈ Ks

∇τ̄i+1
Σ̄ = ∇τi

Σ for i > z.
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It follows from (7.6)

∇τ Σ̄ ≡ ∇τ̄z
Σ̄ = (J0(τ, τz−1) − J0(τ, τz))u̇(τ)

+ (J1(τ, τz−1) − J1(τ, τz))ü(τ).

7.4. E�
ien
y of a �at generation

Let τ ∈ ]τi−1, τi[ . Denote by E(τ) the e�
ien
y of a �at generation at τ ,
understood as the di�eren
e of squared norms of gradients of the performan
e

index immediately before the generation and after it, E(τ) = ||∇Σ̄||2 −
||∇Σ||2. This e�
ien
y 
an be written as a sum

(7.11) E(τ) = e(τ) + ei−1(τ) + ei(τ)

where e is the sum of squared derivatives of the performan
e index at the new

node, and ei−1 and ei are the in
rements of squared norms of the derivatives

of the performan
e index w.r.t. the de
ision subve
tors 
orresponding to the

nodes τi−1 and τi, respe
tively. The value of τ ∈ ]τi−1, τi[ should be 
hosen

in su
h a way that the expression (7.11) is positive, and su�
iently large

with respe
t to ||∇Σ||2.
Determine the e�
ien
y of generation assuming that the de
ision ve
tor

before the generation and after it is inside the admissible set. The 
omponent

related to the new node is given by

e(τ) = (∇τ Σ̄)2 +
1

∑

s=0

{

(∇p̄s
i−

Σ̄)2, i /∈ K̄s

0, i ∈ K̄s

}

+
1

∑

s=0

(∇p̄s
i
Σ̄)2.

Cal
ulate now the 
omponent 
orresponding to the node τi−1. If i > 1, then
τi−1 is a de
ision variable and

ei−1(τ) = (∇τ̄i−1
Σ̄)2 − (∇τi−1

Σ)2 +

1
∑

s=0

(

(∇p̄s
i−1

Σ̄)2 − (∇ps
i−1

Σ)2
)

.

If i = 1, then τi−1 is not a de
ision variable and so

ei−1(τ) =
1

∑

s=0

(

(∇p̄s
0
Σ̄)2 − (∇ps

0
Σ)2

)

.

Finally, 
onsider the term 
orresponding to τi. If i < N , then τi = τ̄i+1 is a

de
ision variable and
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ei(τ) = (∇τ̄i+1
Σ̄)2 − (∇τi

Σ)2 +

1
∑

s=0

{

(∇p̄s
i+1−

Σ̄)2 − (∇ps
i−

Σ)2, i /∈ Ks

(∇p̄s
i+1

Σ̄)2 − (∇ps
i
Σ)2, i ∈ Ks

}

.

If i = N , then τi = τ̄i+1 is not a de
ision variable and

ei(τ) =

1
∑

s=0

(

(∇p̄s
N+1−

Σ̄)2 − (∇ps
N−

Σ)2
)

.

The e�
ien
y E has a right and a left limit at every node τi, i = 1, . . . , N−1.
These limits are equal to ea
h other at τi, if ∆Hi = 0.

7.5. On 
al
ulation of integrals

The integrals Js(τ, τi) and Js(τi, τ) are ne
essary to determine derivatives of

Σ and Σ̄, for s = 0, 1, i = 1, 2, . . . , N , τ ∈ [0, T ]. De�ne

(7.12) hji(τ) = −

∫ τi

τ

h(t)(t− τi)
j
dt, j = 0, 1, 2, 3.

Denoting δi = τi − τi−1, ∆ji(τ) = hji(τ) − hji(τi−1) we have

(7.13)

h0,i−1(τ) = ∆0i(τ)

h1,i−1(τ) = ∆1i(τ) + δih0,i−1(τ)

h2,i−1(τ) = ∆2i(τ) + δi(∆1i(τ) + h1,i−1(τ))

h3,i−1(τ) = ∆3i(τ) + δi(∆2i(τ) + 2h2,i−1(τ) − δih1,i−1(τ)).

To express Js(τi, τ) by Js(τ, τi) we use the identities

V0(t, a, b) + V0(t, b, a) = 1

V1(t, a, b) + V1(t, b, a) = (b− a)V0(t, a, b) + t− b.

Substituting a = τ and b = τi, multiplying both sides by h and integrating

from τ to τi, obtain

(7.14)

J0(τi, τ) = h0i(τ) − J0(τ, τi)

J1(τi, τ) = h1i(τ) + (τi − τ)J0(τ, τi) − J1(τ, τi).
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The integrals Js(τ, τi) are 
omputed by virtue of (7.2)

(7.15)

J0(τ, τi) =
2h3i(τ)

(τi − τ)3
+

3h2i(τ)

(τi − τ)2

J1(τ, τi) =
h3i(τ)

(τi − τ)2
+
h2i(τ)

τi − τ
.

It is 
onvenient to 
ompute the derivatives of the performan
e index and the

e�
ien
y when solving ba
kwards the adjoint equations. To determine the

e�
ien
y in the whole interval [0, T ], the nodes ex
luded, 
ompute the inte-

grals Js(τ, τi), Js(τ, τi−1), Js(τi, τ) and Js(τi−1, τ), s = 0, 1 in the intervals

τi−1 ≤ τ ≤ τi, su

essively for i = N,N − 1, . . . , 1. For a �xed i, perform
the following steps.

(i) By numeri
al integration, 
al
ulate hji(τ), j = 0, 1, 2, 3, τi−1 ≤ τ ≤ τi.

(ii) Using (7.13) 
al
ulate hj,i−1(τ), j = 0, 1, 2, 3, τi−1 ≤ τ ≤ τi.

(iii) Cal
ulate Js(τ, τi), s = 0, 1, τi−1 ≤ τ < τi from (7.15).

(iv) Cal
ulate Js(τ, τi−1), s = 0, 1, τi−1 < τ ≤ τi from (7.15).

(v) Cal
ulate Js(τi, τ) and Js(τi−1, τ), s = 0, 1, τi−1 < τ < τi from (7.14).

If we only wish to determine the gradient of Σ in the 
urrent de
ision spa
e,

we skip steps (ii) and (iv), 
al
ulate hji(τi−1), j = 0, 1, 2, 3 in step (i), 
al-


ulate Js(τi−1, τi), s = 0, 1 in step (iii), and 
al
ulate Js(τi, τi−1), s = 0, 1 in

step (v).

8. Maximum range as
ent of F-15 air
raft

We 
onsider as
ent of the F-15 air
raft from level �ight at small altitude

(5 m) with takeo� velo
ity (228.5 m/s) and initial mass 20244 kg, to level

�ight envelope. The goal is to maximize the range of �ight in a given time.

The longitudinal dynami
s of the air
raft is des
ribed by a state equation

ẋ = f(x, u) with x(t) ∈ R
5
,

f1 = x2 sinx3, f2 =
Θ −D

x4
− sinx3, f3 =

u− cosx3

x2

f4 = αΘ, f5 = x2 cos x3

and with s
aled state variables: altitude x1, velo
ity x2, �ight path angle

x3, mass x4, and range x5. The verti
al load fa
tor u is the 
ontrol signal.
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The air
raft engines are in maximum afterburner at all 
onditions and the

throttle setting is identi
ally one. The thrust Θ and drag D are fun
tions

of state and 
ontrol. The model of thrust, based on experimental data [12℄

reads

Θ(x1,M) =

5
∑

s=1

Θ2s−1(x1,M) exp(Θ2s(x1,M))

where Θp, p = 1, . . . , 10 are quadrati
 polynomials of two variables. The

Ma
h number is a fun
tion of altitude and velo
ity

M =
x2

√

a3x
3
1 + a2x

2
1 + a1x1 + a0

.

The model of drag [10, 14℄ is given by

D = d1 + (ux4)
2d2

d1 = C(M)x2
2e

q(x1), d2 = K(M)x−2
2 e

−q(x1)

q(x1) = q0(e
z(x1) − 1) + q1x1, z(x1) = z4x

4
1 + z3x

3
1 + z2x

2
1 + z1x1

C(M) =
c14M

4 + c13M
3 + c12M

2 + c11M + c10
M4 + c23M3 + c22M2 + c21M + c20

K(M) =
k14M

4 + k13M
3 + k12M

2 + k11M + k10

M5 + k24M4 + k23M3 + k22M2 + k21M + k20
.

The �ight range x5(T ) is to be maximized, for a �xed horizon T = 235 s.

Thus

S(u) = −x5(T ).

The terminal 
onditions read

h1(x(T )) = (Θ −D)|t=T,u=1 = 0, h2(x(T )) = x3(T ) = 0.

The dynami
 pressure must not ex
eed a given limit during the whole �ight

g(x) = x2 −Q(x1) ≤ 0

Q(x1) = b exp(−1
2q(x1)), b > 0.
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The problem is reformulated using penalty fun
tions

ẏ = 1
2 ((x2 −Q(x1))+)2 , y(0) = 0

Sρ(u) = −x5(T ) + 1
2ρ1 (Θ −D)2

∣

∣

t=T,u=1
+ 1

2ρ2x3(T )2 + ρ3y(T )

ρ1, ρ2, ρ3 > 0.

A straightforward 
omputation shows that the hamiltonian (2.8) is maxi-

mized by

u =
ψ3x2

2ψ2x4K
e

q.

To seek the optimal 
ontrol, we use the te
hnique of 
ubi
 Hermite poly-

nomials and �at generations des
ribed in Se
tion 7. Thus, all 
ontrol ar
s

are interior. Continuity of 
ontrol and its derivative is required at all in-

ternal nodes τ1, . . . , τN−1, that is, 
ontrol approximations are smooth and

K0 = K1 = {1, . . . , N − 1}. In every generation, only one node is added at

a lo
al maximizer of e�
ien
y.

The optimization is started with penalty 
oe�
ients ρ1 = 0.01, ρ2 = 1
and ρ3 = 0.0001. The initial 
ontrol stru
ture has only two nodes τ0 = 0
and τ1 = T , and one pro
edure P1. The 
orresponding 
ontrol is identi
ally

equal to one. There are four de
ision variables p0
0, p

1
0, p

0
1−, p

1
1−. The 
ontrol

obtained after a period of gradient optimization, together with s
aled e�-


ien
y of a potential �at generation is shown in Figure 8.1. There are two

inherited nodes (blank 
ir
les) and one newly generated (�lled 
ir
le) lo
ated

at the maximum of e�
ien
y (dashed line). The dimension of the de
ision

spa
e after the generation is equal to 7. Further optimization leads to the

situation shown in Figure 8.2 where the e�
ien
y exhibits two maxima, one

at a node τ1 and one in ]τ1, τ2[. To stay within the theoreti
al framework of

Se
tion 7, we 
hoose the se
ond maximum for the next generation.

The stru
tural evolution 
ontinues until the number of nodes rea
hes 12.

All the penalty 
oe�
ients are then in
reased to 10. The �nal approximation

resulting from optimization with the new penalty 
oe�
ients is shown in

Figure 8.3 along with the exa
t optimal 
ontrol obtained with an indire
t

method (dashed line). Note that the dis
repan
y between these 
urves may

be arbitrarily redu
ed by adding more nodes. The �nal values of the terminal


onstraint fun
tions h1(x(T )) and h2(x(T )) are of order 10−7
and 10−4

,

respe
tively. The fun
tion g(x(t)) plotted against time in Figure 8.4 indi
ates

that there are two state-
onstrained ar
s in the optimal solution.
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Figure 8.2. Se
ond generation
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Figure 8.3. Final approximation of optimal 
ontrol
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Figure 8.4. State 
onstraint fun
tion for �nal approximation
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Observe that the te
hnique applied in this example has not dire
tly produ
ed

the optimal 
ontrol stru
ture. It 
an be shown that even admitting the

generation of 
andidate 
onstrained ar
s would not ne
essarily lead to the

optimal stru
ture, other than in the example of Se
tion 6. This is explained

by the fa
t that here the optimal 
ontrol is 
ontinuous, and so the e�
ien
ies

of �at generations of interior ar
s and 
andidate 
onstrained ar
s are similar.

This di�
ulty 
annot be resolved in the framework of penalty methods,

and needs an approa
h with an expli
it representation of pathwise state


onstraints.

9. Con
lusions

The general idea of the MSE approa
h to 
ontrol and state 
onstrained

problems of dynami
 optimization has been presented, together with two


omputational implementations using spike and �at generations. Although

the method of spike generations has been shown e�e
tive on a rather simple

example, that result is in agreement with wider experien
e related to prob-

lems with dis
ontinuous optimal 
ontrols. The �at generations and interval


ubi
 
ontrol representations have been tested on a more 
omplex problem

where a good approximation of the optimal solution has been obtained in a


omputationally e
onomi
al way.
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