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Abstract

In this paper, some ideas for the numerical realization of the hybrid
proximal projection algorithm from Solodov and Svaiter [22] are pre-
sented. An example is given which shows that this hybrid algorithm
does not generate a Fejér-monotone sequence. Further, a strategy is
suggested for the computation of inexact solutions of the auxiliary
problems with a certain tolerance. For that purpose, ε-subdifferentials
of the auxiliary functions and the bundle trust region method from
Schramm and Zowe [20] are used. Finally, some numerical results
for non-smooth convex optimization problems are given which com-
pare the hybrid algorithm to the inexact proximal point method from
Rockafellar [17].
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1. Introduction

Let (H, ‖ · ‖) be a real Hilbert space with the topological dual H’ and the
duality pairing 〈·, ·〉 between H and H′. The following variational inequality
problem (VI) is considered:

(VI)
Find x∗ ∈ X and v∗ ∈ T (x∗) with

〈v∗, x − x∗〉 ≥ 0 ∀x ∈ X
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assuming that X ⊆ H is a closed, convex set and T : H → 2H
′

is a set-
valued maximal monotone operator. We suppose that domT ∩ intX 6= ∅,
where domT := {x ∈ H : T (x) 6= ∅} and intX denotes the interior of the set
X. Let NX denote the normality operator to X. Then the operator

T̂ := T + NX

is maximal monotone (see [18], Theorem 1), and problem (VI) is equivalent
to the following inclusion problem:

Find x∗ ∈ H with 0 ∈ T̂ (x∗).(IP)

The classical proximal point algorithm (PPA) for solving maximal mono-
tone inclusions goes back to Martinet [15] and was further developed by
Rockafellar [17], who considered the inexact version. Starting with an ar-
bitrary x0 ∈ H the inexact PPA solves the following auxiliary problem in
each iteration k:

(1)
Find xk+1 ∈ H and vk+1 ∈ T̂ (xk+1) with

ek = vk+1 + µk(x
k+1 − xk),

where xk is the current iterate, ek is an error vector, and µk > 0 is a
regularization parameter. Rockafellar proved a weak global convergence of
the sequence {xk} towards a solution of (IP) under the conditions that the
solution set is not empty, the sequence {µk} of the positive regularization
parameters is bounded from above, and each error vector ek satisfies the
condition

‖ek ‖≤ σkµk, ∀k, and

∞
∑

k=0

σk < ∞.(2)

A survey of some recent developments concerning the proximal point method
can be found, e.g., in Kaplan and Tichatschke [9]. Decomposition meth-
ods based on proximal methods are investigated by Chen and Teboulle
[5]. A number of recent papers are devoted to generalized proximal meth-
ods with non-quadratic proximal regularization (see, e.g., Burachik and
Iussem [2], Auslender, Teboulle and Ben-Tiba [1], Kaplan and Tichatschke
[10, 11]). Solodov and Svaiter [22] introduced a hybrid proximal point algo-
rithm (HPPA) in order to weaken the error tolerance criterion of the PPA,
which converges strongly under mild assumptions.
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The paper is organized as follows: Chapter 2 briefly introduces the hybrid
proximal projection algorithm from Solodov and Svaiter [22] and summa-
rizes the theoretical results. In Chapter 3, we present an example which
shows that the HPPA cannot preserve the monotonicity properties which
are valid for the PPA. The implementation of the HPPA and the inexact
PPA is described in Chapter 4. Some numerical examples are summarized
in Chapter 5 and concluding remarks are given in Chapter 6.

2. The hybrid proximal projection algorithm

In this section, the ideas of Solodov and Svaiter will be summarized briefly.
We consider the general problem:

Find x∗ ∈ H with 0 ∈ T (x∗),(P)

where T is a set-valued maximal monotone operator on a Hilbert space
H. In [22] a new definition of inexact solutions of the regularized auxiliary
problems of (P) is used to get a weakened error tolerance criterion for the
corresponding algorithm. A strong convergence of the iterates is achieved
by adding a projection step onto the intersection of two halfspaces which
contain the solution set. The overall method is described in Algorithm 1.

Algorithm 1 (HPPA). Choose an arbitrary x0 ∈ H and σ ∈ [0, 1). Given
xk in iteration k, choose µk > 0 and solve the auxiliary problem

(3)
find yk ∈ H and vk ∈ T (yk) such that

ek = vk + µk(y
k − xk),

where the error vector ek satisfies

(4) ‖ek ‖≤ σ max{‖vk ‖, µk ‖yk − xk ‖}.

Stop if vk = 0 or yk = xk. Otherwise define two halfspaces

Hk = {z ∈ H : 〈z − yk, vk〉 ≤ 0} and

Wk = {z ∈ H : 〈z − xk, x0 − xk〉 ≤ 0}

and perform the projection

xk+1 = PHk∩Wk
(x0).
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The pair (yk, vk) is called an inexact solution to the problem 0 ∈ T (y) +
µk(y − xk) with tolerance σ.

As refers to the convergence analysis of the HPPA, the main result is
given by the following theorem:

Theorem 2 ([22], Corollary 2, Theorem 1). Suppose that the solution set
S of problem (P) is not empty. Then the HPPA generates infinite sequences
{xk}, {yk}, and {vk} such that S ⊆ Hk ∩ Wk for all k. Suppose further
that the sequence {µk} of positive regularization parameters is bounded from
above. Then {xk} converges strongly to x∗ = PS(x0).

3. Monotonicity properties

We consider problem (P) with T = ∂f , where f : H →
�

∪ {+∞} is a
proper, lower semi-continuous and convex function and ∂f denotes the sub-
differential operator of f . Then we can prove the following monotonicity
properties.

Lemma 3. Let f : H →
�

∪ {+∞} be a proper, lower semi-continuous
and convex function and {xk} be generated by the exact PPA (i.e., (1) with
ek = 0 for all k) for problem (P) with T = ∂f . Let S denote the solution
set of problem (P). Then

1. f(xk) ≤ f(xk−1) ∀k ∈ � ,

2. ‖ xk − z ‖<‖ xk−1 − z ‖ ∀z ∈ S, xk−1 /∈ S, i.e., the sequence {xk} is
strictly Fejér-monotone.

Proof.

Inequality 1. Let {µk} be the sequence of regularization parameters used in
the exact PPA. For all k we have that µk−1(x

k−1 − xk) ∈ ∂f(xk). Since f is
convex we get

f(xk−1) − f(xk) ≥ 〈µk−1(x
k−1 − xk), xk−1 − xk〉 ≥ 0.

Inequality 2 follows as a special case of Kaplan and Tichatschke [7], Propo-
sition 8.3.

The function values of the iterates generated by the inexact PPA are also
monotonically decreasing (see, for instance, [7], Theorem 13.9).
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We will now present an example which shows that the above monotonicity
properties are in general not valid for a sequence {xk} generated by the
exact version of the HPPA. Hence, in the case of an inexact version the
same happens.

Example 1. We consider problem (P) with T = ∂f and function f :
� 2 →

�

defined as

f(x) = max{f1(x), f2(x)}, x = (x1, x2) ∈
� 2

with f1(x) = x2
1 + x2

2 −
16
25 and f2(x) = 9

25x2
1. The solution set is

S =

{

x ∈
� 2 : x1 = 0, x2 ∈

[

−
4

5
,
4

5

]}

and the optimal value is f ∗ = 0.

We choose x0 = (128, 1) and present the first eight iterates of the exact
HPPA in Table 1.

k xk f(xk) k xk f(xk)

1
(

64, 2−1
)

4095.61 5
(

4, 2−5
)

15.36

2
(

32, 2−2
)

1023.42 6
(

2, 2−6
)

3.36

3
(

16, 2−3
)

255.37 7
(

1, 2−7
)

0.36

4
(

8, 2−4
)

63.36 8
(

25

34
, 1

)

0.90

Table 1. First iterates of the exact HPPA show violation of monotonicity

properties.

Looking at iterates x7 and x8, it can be seen that the function values are
not monotonically decreasing. Furthermore, if we take z = (0, 2−7) ∈ S, we
get

‖x7 − z ‖= 1 < 1.235 ≈‖x8 − z ‖

showing that the Fejér-monotonicity is violated.
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4. Implementation of the HPPA

We now discuss the numerical realization of the HPPA. The calculation of
the projection PHk∩Wk

(x0) is easy: If the point

z̄ := PHk
(x0) = x0 −

〈vk, x0 − vk〉

‖vk ‖2
vk

is an element of Wk, then PHk∩Wk
(x0) = z̄. Otherwise, we have

PHk∩Wk
(x0) = x0 + λ∗

1v
k + λ∗

2(x
0 − xk)

where λ∗
1, λ

∗
2 are the solutions of the following linear system:

λ1 ‖vk ‖2 +λ2〈v
k, x0 − xk〉 = −〈x0 − yk, vk〉,

λ1〈v
k, x0 − xk〉 + λ2 ‖x0 − xk ‖2= − ‖x0 − xk ‖2 .

For more details see [22] or [6].

The crucial step is to find a practicable rule for the determination of
an inexact solution (yk, vk) with tolerance σ according to (3)–(4). The
requirements in (3)–(4) offer some degrees of freedom. Since the operator
T is set-valued, there is in general more than one possible choice for each
vk ∈ T (yk). Furthermore, from a numerical point of view, there is no
obvious rule for calculating yk and a suitable vk, such that the error tolerance
criterion (4) is satisfied. Of course, it is easy to check requirement (4) if a pair
(yk, vk) is given. But it is not clear how we should proceed if the candidate
(yk, vk) cannot be chosen as an inexact solution with tolerance σ. It can
easily be seen that the error tolerance criterion would always be fulfilled if
we chose σ = 2, but for the convergence of the method it is important to
have σ ∈ [0, 1).

In our implementation we follow the idea to use the error tolerance
condition

‖ek ‖≤ σ max{‖vk ‖, µk ‖yk − xk ‖}

as a stopping criterion for the determination of the vector yk in the aux-
iliary problem (3). That is, we determine yk as an approximate solution
to the auxiliary problem 0 ∈ T (y) + µk(y − xk) with a given accuracy ε.
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Then we choose an element vk in T (yk) and check, whether the error tol-
erance criterion holds. If so, we accept (yk, vk) as an inexact solution with
tolerance σ, otherwise, we increase the accuracy ε and determine a new so-
lution yk. Note that for the determination of the element vk there should
also be an adequate strategy.

4.1. HPPA for unrestricted non-smooth convex Optimization
Problems

To get things more concrete, let us concentrate on a special problem class:
The unrestricted minimization of a max-function, i.e., we consider non-
smooth convex optimization problems with objective functions f :

� n →�
∪ {+∞} of the form

f(x) = max{fi(x) : 1 ≤ i ≤ m}

where the functions fi :
� n →

�
∪ {+∞} (1 ≤ i ≤ m) are convex and

continuously differentiable. In this situation, the subdifferential of f is easy
to calculate in each x ∈

� n:

∂f(x) = conv {∇fi(x) : i ∈ I(x)} ,

where I(x) = {i ∈ {1, . . . ,m} : fi(x) = f(x)}. The corresponding regular-
ized auxiliary problems of the HPPA are according to (3):

(Pk)
Find yk ∈

� n, vk ∈ ∂f(yk) and ek ∈
� n such that

ek = vk + µk(y
k − xk),

where the error tolerance criterion is the same as in (4). Obviously, problem
(Pk) is equivalent to:

Find yk ∈
� n and ek ∈ ∂fk(y

k), where

fk(y) := f(y) +
µk

2
‖y − xk ‖2 .

To find an approximate solution yk of the non-smooth auxiliary problem
(Pk), we implemented the bundle trust region method (BT-method) from
Schramm and Zowe [20] with some modifications concerning the adaptation
of the trust region parameter described by Kiwiel [12].
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The BT-method performs a piecewise linear approximation of the objective
function fk with the help of a bundle (fk(z

i), gi)i∈Js
, where the zi are test-

points from earlier iterations, gi ∈ ∂fk(z
i), and Js is the set of the current

bundle indices. With s we denote the iteration index within the BT-method.
The information in the bundle is weighted with the help of the linearization
errors

αs
i := fk(x

s) − [fk(z
i) + 〈gi, xs − zi〉],

where xs is the current iterate in the BT-method. In each iteration s of the
BT-method a search direction ds is defined as a convex combination of the
subgradients in the bundle:

ds = −ts
∑

i∈Js

λs
i g

i

where ts is the trust region parameter and λs = (λs
i )i∈Js

is the solution to
the following quadratic problem

min
λi

1

2

∥

∥

∥

∑

i∈Js

λig
i
∥

∥

∥

2
+

1

ts

∑

i∈Js

λiα
s
i

s.t.
∑

i∈Js

λi = 1, λi ≥ 0, i ∈ Js.

In our implementation this quadratic problem is solved by the NAG-routine
nag opt qp (e04nfc) of the NAG-library [16]. To determine the next iterate
xs+1 and to improve the subgradient information, the following two cases
are considered in the BT-method:

1. If fk(x
s + ds) is sufficiently smaller than fk(x

s), then either

(a) increase ts and determine a new direction ds, or

(b) make a serious step: xs+1 := zs+1 := xs + ds, compute gs+1 ∈
∂fk(z

s+1), set Js+1 := Js ∪ {s + 1}.

2. If fk(x
s + ds) is not sufficiently smaller than fk(x

s), then either

(a) decrease ts and determine a new direction ds, or

(b) make a null step: xs+1 = xs, compute gs+1 ∈ ∂fk(z
s+1), where

zs+1 = xs + ds, set Js+1 := Js ∪ {s + 1}.
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The set Js is cleaned up from time to time to keep it at a reasonable size.
The iterative process in the BT-method is stopped in iteration ŝ if

(5)

∥

∥

∥

∑

i∈Jŝ

λŝ
i g

i
∥

∥

∥
≤ ε and

∑

i∈Jŝ

λŝ
iα

ŝ
i ≤ ε ,

where ε ≥ 0 is a given accuracy parameter. Then yk := xŝ is an approximate
minimum of the auxiliary function fk (see [20], Lemma 2.2).

Now we are ready to present our ideas to determine an inexact solution
(yk, vk) with tolerance σ. Let yk be calculated by the BT-method with
accuracy ε. We want to discuss two strategies to determine vk ∈ ∂f(yk).

4.1.1. The use of vk = arg min{‖v‖ : v ∈ ∂f(yk)}

The first idea is to take vk as the minimal-norm element of the subdifferen-
tial:

vk = arg min
v∈∂f(yk)

‖v‖ .

For our special problem class this is realized by calculating the solution
λ∗ = (λ∗

i )i∈I(yk) to the following quadratic problem

min
λi

1

2

∥

∥

∥

∑

i∈I(yk)

λi∇fi(y
k)

∥

∥

∥

2

s.t.
∑

i∈I(yk)

λi = 1, λi ≥ 0, i ∈ I(yk),

with I(yk) = {i ∈ {1, . . . ,m} : fi(y
k) = f(yk)}. This λ∗ defines

vk =
∑

i∈I(yk)

λ∗
i∇fi(y

k).

Our numerical experiments show that a pair (yk, vk) calculated in the above
described way often does not fulfill requirement (4). As a consequence, a new
solution yk is determined with the BT-method under an increased accuracy
ε. In the test examples this process is often repeated several times and in
most of the cases the determination of an inexact solution with tolerance σ
has to be stopped, since the accuracy ε cannot be realized any more. So
this strategy does not work very well in practice.
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4.1.2. The use of ek ∈ ∂εf(yk)

The second idea is more promising. Here we use the BT-method to deter-
mine both yk and vk. If the BT-method stops at iteration ŝ we define

ek :=
∑

i∈Jŝ

λŝ
i g

i,(6)

vk := ek − µk(y
k − xk).(7)

Then we get the following relation:

Lemma 4. Let fk be the objective function of the auxiliary problem (Pk),
ε ≥ 0 the chosen accuracy for the BT-method, yk := xŝ the approximate
solution with accuracy ε determined by the BT-method using stopping crite-
rion (5), ŝ the iteration index of the last iteration of the BT-method and J ŝ,
λŝ

i , gi, i ∈ Jŝ, the associated information in the last BT-iteration. Then

fk(y) ≥ fk(y
k) +

〈

∑

i∈Jŝ

λŝ
ig

i, y − yk

〉

− ε ∀y ∈
� n,(8)

i.e.,
∑

i∈Jŝ
λŝ

i g
i ∈ ∂εfk(y

k).

Proof. For gi ∈ ∂fk(z
i), i ∈ Jŝ, we have the subgradient inequality

〈gi, y − zi〉 ≤ fk(y) − fk(z
i) ∀y ∈

� n.

Subtracting 〈gi, yk − zi〉 = fk(y
k) − fk(z

i) − αŝ
i one gets

〈gi, y − yk〉 ≤ fk(y) − fk(y
k) + αŝ

i ∀y ∈
� n, i ∈ Jŝ,

multiplying this inequality with λi and summing up over i, we have

〈

∑

i∈Jŝ

λig
i, y − yk

〉

≤ fk(y) − fk(y
k) +

∑

i∈Jŝ

λiα
ŝ
i , ∀y ∈

� n,

remembering that
∑

i∈Jŝ
λi = 1. Rearranging the terms and using (5) we

get the desired inequality.
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In other words, determining yk and vk with the BT-method in the sug-
gested way makes the error vector ek be an element of the ε-subdifferential
of the function fk. Although, for ε 6= 0, this result differs from the orig-
inal requirement ek ∈ ∂fk(y

k) in the auxiliary problem (Pk), we get good
numerical results. In most of our examples we can accept the first calcu-
lated pair (yk, vk) in iteration k of the HPPA as an inexact solution with
tolerance σ. As a consequence, increasing the accuracy ε is not necessary.
Therefore, we believe that the idea (6)–(7) is a promising strategy for the
numerical realization of the HPPA. In order to achieve conformity in the
limit, one can decrease ε by a constant factor θ1 ∈ (0, 1) in each iteration:
εk = θ1 · εk−1.

With reference to the stopping criterion for the HPPA, we suggest to
choose δ > 0 as a given tolerance and terminate the algorithm if

‖yk − xk ‖< δ or ‖vk ‖< δ.

4.2. Implementation of the inexact PPA

In order to get a glimpse of the numerical performance of the HPPA, we
compare it with the inexact PPA (1). This seems to be natural because for
problems in a finite dimensional space weak and strong convergence coincide.
Therefore, we briefly describe our implementation of the classical inexact
PPA (1) for the same class of unrestricted non-smooth convex optimization
problems. As in the HPPA, in each iteration k, a solution xk+1 of the
auxiliary problem

min
{

f(x) +
µk

2
‖x − xk ‖2 : x ∈

� n
}

is calculated by the BT-method with accuracy εk. The required error toler-
ance criterion (2) is implied by the condition

dist(0, ∂fk(xk+1)) ≤ σkµk,

∞
∑

k=0

σk < ∞(9)

as explained in Rockafellar [17]. Using the BT-method to calculate the
iterates, xk+1 realizes the above condition with ∂fk replaced by ∂εk

fk, as
will be explained now. We update εk and µk according to
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εk = θ1 · εk−1, µk = θ2 · µk−1,

where ε0 > 0, µ0 > 0, θ1 ∈ (0, 1) and θ2 ∈ (0, 1]. With (5) and (8) one gets

dist(0, ∂εk
fk(x

k+1)) ≤
∥

∥

∥

∑

i∈Js

λs
ig

i
∥

∥

∥
≤ εk, with

∞
∑

k=0

σk :=

∞
∑

k=0

εk

µk

=
ε0

µ0

∞
∑

k=0

(

θ1

θ2

)k

< ∞ ⇔ 0 < θ1 < θ2.

5. Numerical Examples

In [6], we tested many self-constructed examples being of the type described
in section 4.1 as well as examples from Shor [21] and Lemarechal [13].

The calculations were done with a C++-implementation of the HPPA
and the inexact PPA. All experiments basically show that in the HPPA
the monotonicity properties are violated and that the iteration numbers
are higher than in the inexact PPA. Here, we are going to present three
examples.

In the tables we give the following information: x0 denotes the start
iterate and ‖x0 − x∗ ‖ gives the distance of the start iterate to the solution.
]iter. means the number of outer iterations. One outer iteration in the
HPPA mainly consists of two parts: the solution of the regularized auxiliary
problem with the BT-method and the projection step. So in each outer iter-
ation there is a number of inner iterations caused by the BT-method. In the
inexact PPA we have the same situation, except that we leave out the pro-
jection step. Therefore, we also give information about the inner iterations:
]in.iter. stands for the total number of BT-iterations needed to solve all
auxiliary problems and ]f/g denotes the number of objective/subgradient
evaluations in a total run of the algorithm. Column x∗ contains the calcu-
lated optimal point of accuracy δ, f(x∗) the corresponding optimal value.

The parameter settings for all examples are summarized in Table 2.
We start with the two-dimensional Example 1 from Section 3 in order to
demonstrate the geometrical behavior of the HPPA and the inexact PPA.
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description parameter Ex1 Shor Maxquad

accuracy of the HPPA/inexact PPA δ 10−4 10−4 10−3

accuracy of the BT-method ε0 10−4 10−4 10−4

changing factor for accuracy εk θ1 0.89 0.89 0.89

regularization parameter µ0 2.0 30.0 1.0

changing factor for parameter µk θ2 0.9 0.9 0.9

tolerance parameter σ 0.8 0.9 0.9

Table 2. Parameter settings for Examples 1–3.

The results are given in Table 3 for different start iterates x0. In each case,
the algorithms converge to different optimal points. Figure 1 shows the
geometrical behavior of the two algorithms. The level sets of function f are
plotted and the corresponding levels are indicated on the lines. The points,
connected by lines, show the iterates xk (k ≥ 7) of the HPPA and the inexact
PPA, respectively, using the start iterate (128,1). The iterates generated by
the HPPA ”jump” up and down from a lower level set to a higher one and
back again. The violation of the monotonicity properties becomes obvious.
In contrast, the iterates of the inexact PPA get closer to the point (0,0) in
each iteration and the monotonicity properties are fulfilled.

HPPA

x0 ‖x0 − x∗ ‖ ]iter. ]in.iter. ]f/g x∗ f(x∗)

( 128

1
) 128.0001 24 299 410 ( 0.0000

0.7999
) 3.22e-10

( −150

100
) 179.8349 82 30748 31498 ( −0.0001

0.7998
) 5.84e-09

( 10

−10000 ) 9999.2 51 815 1141 ( 0.0000

−0.8000 ) 1.90e-09

inexact PPA

x0 ‖x0 − x∗ ‖ ]iter. ]in.iter. ]f/g x∗ f(x∗)

( 128

1
) 128.0001 18 192 225 ( 0.0000

0.0086
) 2.63e-11

( −150

100
) 179.8349 18 210 242 ( −0.0000

0.6489
) 2.54e-11

( 10

−10000
) 9999.2 11 162 185 ( 0.0001

−0.7999
) 3.64e-09

Table 3. Numerical results for Example 1, solution set
S = {x ∈

� 2 : x1 = 0, x2 ∈ [−4/5, 4/5]}, f ∗ = 0.



64 C. Jager

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

x
1

x
2

1 

1 

1 

0.6 

0
.6

0.6

0
.3

 

0
.2

 0
.1

 

0
.0

5
 

0 

2 2 

0
.0

5
 

0
.1

 0
.2

 

0
.3

 

1 

2 
2 

0
.3

6
 

0
.3

6

(a) HPPA
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(b) inexact PPA

Figure 1. Geometrical behavior in Example 1: level sets and iterates.
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Example 2. This example is extracted from Shor [21], p. 138. The function
to be minimized is

f(x) = max{fi(x) : i = 1, . . . , 10}, x ∈
� 5, with

fi(x) = bi

5
∑

j=1

(xj − aij)
2, i = 1, . . . , 10,

(bi) = (1, 5, 10, 2, 4, 3, 1.7, 2.5, 6, 3.5),

(aij)
T =













0 2 1 1 3 0 1 1 0 1
0 1 2 4 2 2 1 0 0 1
0 1 1 1 1 1 1 1 2 2
0 1 1 2 0 0 1 2 1 0
0 3 2 2 1 1 1 1 0 0













.

The optimal set consists of the unique element

x∗ = (1.12434, 0.97945, 1.47770, 0.92023, 1.12429),

the optimal value is f ∗ = 22.60016.

The results of the HPPA and the inexact PPA for Example 2 are shown in
Table 4. As starting points we use

x0
I = (0, 0, 0, 0, 1),

x0
II = (1.5, 1.5, 1.5, 1.5, 1.0),

x0
III = (0.5, 2.5, 1.0, 1.7, 1.0).

We additionally list the number α of monotonicity violations concerning
the function values. Independent of the start iterate and the algorithm,
the calculated solution is (1.1243, 0.9794, 1.4777 0.9202, 1.1242), hence an
approximation of the optimal point with accuracy 10−4.

HPPA inexact PPA

x0 ‖x0 − x∗ ‖ ]iter. ]in.iter. ]f/g α ]iter. ]in.iter. ]f/g α

x0

I 2.2955 83 2873 3842 40 18 536 755 0

x0

II 0.8741 76 2543 3353 37 16 417 628 0

x0

III 1.8850 81 2054 3076 38 15 451 451 0

Table 4. Numerical results for Example 2 (Shor).
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Example 3. Finally, we present the numerical results for the Maxquad
example taken from Lemarechal and Mifflin [13], p.151. The problem data
are as follows:

f(x) = max
{

〈A(k)x, x〉 − 〈bk, x〉 : k = 1, . . . , 5
}

, x ∈
� 10,

A
(k)
ij = exp(i/j) cos(i · j) sin(k), i < j,

A
(k)
ji = A

(k)
ij ,

A
(k)
ii = 0.1 · i · | sin(k)| +

∑

j 6=i

|A
(k)
ij |,

bk
i = exp(i/k) sin(i · k),

i, j = 1, . . . , 10, k = 1, . . . , 5.

The unique optimal point is x∗ = (−0.1263, −0.0346, −0.0067, 0.2668,
0.0673, −0.2786, 0.0744, 0.1387, 0.0839, 0.0385) and the optimal value is
f∗ = −0.8414.

As the start iterates we choose

x0
I = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

x0
II = (0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

x0
III = (−1,−1, 0,−1, 0, 0,−1,−1,−1, 0).

In each case, both algorithms converge to the solution (-0.126, -0.034, -0.006,
0.026, 0.067, -0.278, 0.074, 0.138, 0.084, 0.038), which coincides approxi-
mately with the optimal solution. The number of iterations and monotonic-
ity violations are given in Table 5.

HPPA inexact PPA

x0 ‖x0 − x∗ ‖ ]iter. ]in.iter. ]f/g α ]iter. ]in.iter. ]f/g α

x0

I 3.1885 23 1264 1753 11 3 146 221 0

x0

II 0.3648 11 529 667 5 3 153 194 0

x0

III 2.5412 27 1578 2060 13 3 212 276 0

Table 5. Numerical results for Example 3 (Maxquad).
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Other algorithms for the solution of non-smooth convex optimization prob-
lems can be found, e.g., in [3, 4, 13, 14, 19]. However, a comparison with
the numerical performance of the algorithms described in these references
is not reasonable since we focus here on the comparison of the perfor-
mance of two proximal-based algorithms and especially the influence of the
projection step.

6. Conclusion

It has been shown that the hybrid proximal projection algorithm from
Solodov and Svaiter [22] does not keep up the monotonicity properties, which
are known to be valid for the inexact PPA from Rockafellar [17]. Further, a
possible numerical realization of the HPPA and the inexact PPA has been
suggested, especially, strategies for the computation of inexact solutions with
tolerance σ were discussed. Using the BT-method from Schramm and Zowe
[20] and Kiwiel [12] for the determination of an inexact solution proved to
be adequate, although it works with the ε-subdifferential instead of the sub-
differential of the auxiliary function fk. Numerical examples showed that
the inexact PPA is superior to the HPPA concerning the iteration number.

Acknowledgement

I would like to thank the referee for the valuable hints on this work.

References

[1] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal
method for variational inequalities, Computational Optimization and Applica-
tions 12 (1–3) (1999), 31–40.

[2] R.S. Burachik and A.N. Iusem, A generalized proximal point algorithm for the
variational inequality problem in a Hilbert space, SIAM Journal on Optimiza-
tion 8 (1) (1998), 197–216.

[3] A. Cegielski and R. Dylewski, Selection strategies in projection methods for
convex minimization problems, Discrete Math. 22 (1) (2002), 97–123.

[4] A. Cegielski and R. Dylewski, Residual selection in a projection method for
convex minimization problems, Optimization 52 (2) (2003), 211–220.

[5] G. Chen and M. Teboulle, A proximal-based decomposition method for convex
minimization problems, Mathematical Programming 64 (1994), 81–101.



68 C. Jager

[6] C. Jager, Numerische Analyse eines proximalen Projektions-Algorithmus,
Diploma Thesis, University of Trier 2004.

[7] A. Kaplan and R. Tichatschke, Stable Methods for Ill-Posed Variational
Problems-Prox-Regularization of Elliptic Variational Inequalities and Semi-
Infinite Problems, Akademie Verlag 1994.

[8] A. Kaplan and R. Tichatschke, Multi-step-prox-regularization method for solv-
ing convex variational problems, Optimization 33 (4) (1995), 287–319.

[9] A. Kaplan and R. Tichatschke, A general view on proximal point methods to
variational inequalities in Hilbert spaces—iterative regularization and approx-
imation, Journal of Nonlinear and Convex Analysis 2 (3)(2001), 305–332.

[10] A. Kaplan and R. Tichatschke, Convergence analysis of non-quadratic prox-
imal methods for variational inequalities in Hilbert spaces, Journal of Global
Optimization 22 (1–4) (2002), 119–136.

[11] A. Kaplan and R. Tichatschke, Interior proximal method for variational in-
equalities: case of nonparamonotone operators, Set-Valued Analysis 12 (4)
(2004), 357–382.

[12] K. Kiwiel, Proximity control in bundle methods for convex nondifferentiable
minimization, Mathematical Programming 46 (1990), 105–122.
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