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Abstract

We propose a new projection method for linear feasibility problems.
The method is based on the so called residual selection model. We
present numerical results for some test problems.
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1. INTRODUCTION

In this paper, we consider the linear feasibility problem:
Given a system of linear inequalities

(1) Gz <b,

where GG is a matrix of size n x m, z € R™ and b € R™.
Find a solution z* € My = {x Glx < b} or detect that My = 0.

We use the following notation:

xr — kth element of a sequence (zy),
x'y — the standard scalar product of vectors z,y € R,
||z|| — the Euclidean norm of a vector x € R™,
Ppx — the metric projection of a point x € R™ onto a closed and convex

subset D C R",
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At = (ATA)7TAT — the Moore-Penrose pseudoinverse of a full column
rank matrix A.

We study the projection method for the problem (1) of the form

x1 € R™ — arbitrary
(2)

Tht1 = T + Aptp,

where

b = Plo.] a<oy, )%k~ Ths

and A, € (0,2).

We denote by G, the submatrix of G’ which consists of the columns
Ly c J={1,2,...,m} and by by, the subvector of b which consists of the
coordinates L C J.

In the method (2) we have a problem: how to choose Ly C J such that
SCZ = P{x:sz <y, } Tk approximates a solution z* € My essentially better

than z; and such that x; can easily be evaluated.
Suppose that G, has a full column rank. Then, the equation system
szx = by, has a solution and

-1
(B3) 2k = Plag] a=by,yok =t G, (GZkGLk) (Gz,g% - bLk)-

Of course, z}. is not necessarily equal to x;r Nevertheless, it can be shown
that

(4) T =) =y = (GIkGLk)_l (szxk. - bLk> > 0.

If szxk >br, and (G—erGLk> ' > 0, then y > 0. Selections of Ly C J with
such properties were employed for convex feasibility problems or for convex
minimization problems in [1, 2, 3, 4]. We call such a selection an obtuse
cone selection since the columns of a full column rank matrix A generate an
obtuse cone if and only if (A—r A) - > 0. In this paper, we study selections of
Lj C J such that y > 0 without assuming that sz x > br,, for the linear
feasibility problems. Such selections were employed for convex minimization
problems in [5, 6].
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2. RESIDUAL SELECTION MODEL

Let be given a system of linear inequalities (1) and an approximation = € R"
of a solution of this system. We construct sequentially a subset L C J =
{1,2,...,m} and, consequently, the matrix G 1, which has the properties: G,
has a full column rank and y := (GIGL)f1 (szk — bL) > 0. To simplify
the notation, we denote A := G, d :=bp, wherel = |L|.

~— —~—

nxl Ix1

Let A=[ A; ,_a ). Denote by r the residual vector, i.e.,
~

nx(l—1) nx1

o ee[p]eaee [ F ]2

where 71 € RI=! and p € R.

The following theorem enables a sequential construction of a full column
rank submatrix A of G for which y := (ATA)f1 r > 0, where the residual
vector r is not necessarily nonnegative. Therefore, we call a model obtained
by such a construction a residual selection model.

Theorem 1. Suppose that there exists z € R™ such that ATz < d. If
(i) A1 has a full column rank,
(i) (A7 A4) 'r >0,
(iii) Afa <0,
(iv) (Afa)"r < p,
then

(I) A has a full column rank,

(I (ATA) 'r>o0.

Proof. See [6, Theorem 1]. ]

Corollary 2. Let T € R" be arbitrary. Suppose that the assumptions of
Theorem 1 are satisfied and let

(6) t=—A (ATA> o (A% - d) .
Then

(7) 1’+ =T+t= P{J::Angd}f .
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Proof. By (3) and by (6) we have T+t = P, o7,-qy7. By Theorem 1 and
by (4) we obtain equality (7). |

3. PROJECTION METHOD WITH RESIDUAL SELECTION

In this section, we present a projection method with a residual selection for
the linear feasibility problem presented in Section 1. We do not suppose
that the system (1) is consistent.

Iterative scheme 3.

Choose:

xg € R™ (starting point), € > 0 (optimality tolerance).
For x;, € R™:

1. (stopping criterion)

set i, = arg maxlgigm{G;'—xk — bi},
where G; is the ith column of G;
if G;]:xk —b;, < ¢, then terminate;

otherwise
2. (residual selection)

select Ly C {1,2,...,m} such that:

r =0,

~1
ik € L, G, = Gy i € Ly] has a full column rank and (GJ, Gr,.) s

where r, = szxk —br,,

3. make a Cholesky factorization Cp, Czk of the matrix sz Gr,;
if the Cholesky procedure breaks down, then terminate ({x :Glx < b} =0),

4. evaluate t, = -G, <CLI¢CZ}€) "Ly

5. set T 1 = Tk + Atk
where the relazation parameter A\, € [a,2 —al, 0 < a < 1.



PROJECTION METHOD WITH RESIDUAL SELECTION FOR ... 47

Remark 4. We apply sequentially Theorem 1 in order to construct the
subset Lj, and, consequently, the matrix Gz, in Step 2.

If the Cholesky procedure detects a linear dependency of the columns
of G, in Step 3, then we obtain a contradiction, which proves by Theorem
1 the inconsistency of the system G 'z < b. If the inconsistency is not
detected, then the matrix G, has a full column rank and, by Corollary 2,
the vector t; determined in Step 4 is the projection vector of zj onto the
subset {x : szx <bp.}

Now, we show that any sequence generated by Iterative scheme 3 converges
to a solution z* € M.

Theorem 5. Suppose that there exists z € R™ such that GTz < b. If the
sequence (zy) is generated by Iterative scheme 3, then

(8) max{0,G; z, —b; : i =1,2,...,m} — 0.
Proof. For all z € My and k > 0 we have
(2 — ) "t > [t

and, consequently,
21— 2l = lloe + Atk — 2l1° = llor— 2012 = 2X(z — 2%) Tt + ) [l
< lze— 2l = 2Xlltel + ) el = ok — 2017 = (2 = ) llte 1.
Hence,

o0

D ltl? < o0

k=0
since A\ € [@,2 —a], 0 < a <1 and, consequently,
(9) [tk]] — 0.

We denote 8 = max;=1,2,..m ||Gil|. If Ly = {ix}, then

o= (Glax = 0i,) (Gu/ G )
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Hence, if i), € Lg, then {x : szx < bLk} - {:c : G;,:x < bik} and

Il > (Glae = by, ) /Gl = (Gl =3, ) /8.

Consequently,
(10) Il = (G, —bi) /5,
for all i = 1,2,...,m. Now, we obtain (8) from (9) and (10). [

4. NUMERICAL RESULTS

In this section, we present the computation results of the projection method
with a residual selection for linear feasibility problems.

In the numerical experiments we have tested the method for the ran-
domly generated linear feasibility problems

Gz <,

where G is a matrix of size n x m, x € R"™ and b € R™.

In these problems, the coordinates of columns of matrix G are randomly
generated in the interval (—0.5,0.5). For ¢ =1,2,...,] we admit b; = 0 and
fort = 1+1,...,m the coordinates of vector b are randomly generated in the
interval (0,1). We have guaranteed that the system Gz < b is consistent.
The coordinates of the starting point are generated in the interval (0, 1).

Ten examples were solved for each system of parameters n,m,l. In
Tables 1 and 2 we present the average number of iterations k;,¢ = 1,2,3
which are necessary to get an e-optimal solution. We set the optimality
tolerance ¢ = 1075, The method was programmed in Fortran 90 (Lahey
Fortran 90 v.3.5). All floating point calculations were performed with double
precision, allowing the relative accuracy of 2.2 x 10716,

In Table 1 we present the results of numerical tests for the method
presented in Section 3 (Iterative scheme 3) with relaxation parameter A\x = 1
and Ay = 1.5. In the last column we present results where we use the so
called largest residuum strategy (l.r.s.) in Step 2 of Iterative scheme 3,
(see [5, Section 3]).
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Table 1
Me=1 A =15 | =15 (l.r.s.)
nxXm l k1 ko k3
0x2 | 2| 0 : ;
20> 40 ;i 184 173 171
0580 | o0 | gy | 1
050 | 50| gy | g "
503100 | o | n | g "
05200 | 0 | oy | -
100> 100 16000 32 ;g g
20020 | o0 | g5y | g %
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In Table 2 we present the results of numerical tests for the projection method
with a residual selection (see [6]) for convex minimization problems of the

form

minimize

f(z) =max{0,G]x —b; :i=1,2,...,m}

which is equivalent to the problem (1).

Table 2
M=1| A =15] X =15 (l.r.s.)

nxXm l ]{21 ]{52 ]{53
12 10 9 9

20x20 1 5 11 10 10
30 29 21 21

050 g 51 33 39
60 71 19 a7

100>100 14 4 99 57 54
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We can see that for each system of parameters n,m,[ the results for the
projection method with a residual selection for the linear feasibility problem
(Table 1) are better than for the projection method with a residual selec-
tion for the convex minimization problem (Table 2). The influence of the
relaxation parameter Ap on the convergence is essential for both methods.
If the parameter [ is greater then the solution set My = {x Gz < b} is
flatter and the number of iterations is greater.
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