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Abstract

We propose a new projection method for linear feasibility problems.
The method is based on the so called residual selection model. We
present numerical results for some test problems.

Keywords: projection method, linear feasibility, residual selection.

2000 Mathematics Subject Classification: 65K05, 90C25.

1. Introduction

In this paper, we consider the linear feasibility problem:
Given a system of linear inequalities

(1) G>x ≤ b,

where G is a matrix of size n × m, x ∈ R
n and b ∈ R

m.
Find a solution x∗ ∈ M0 =

{
x : G>x ≤ b

}
or detect that M0 = ∅.

We use the following notation:

xk – kth element of a sequence (xk),
x>y – the standard scalar product of vectors x, y ∈ R

n,
‖x‖ – the Euclidean norm of a vector x ∈ R

n,
PDx – the metric projection of a point x ∈ R

n onto a closed and convex
subset D ⊂ R

n,
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A+ = (A>A)−1A> – the Moore-Penrose pseudoinverse of a full column
rank matrix A.

We study the projection method for the problem (1) of the form

(2)
x1 ∈ R

n – arbitrary

xk+1 = xk + λktk,

where

tk = P{x:G>
L

k
x≤bL

k
}xk − xk,

and λk ∈ (0, 2).

We denote by GLk
the submatrix of G which consists of the columns

Lk ⊂ J = {1, 2, . . . ,m} and by bLk
the subvector of b which consists of the

coordinates Lk ⊂ J .

In the method (2) we have a problem: how to choose Lk ⊂ J such that
x+

k = P{x:G>
Lk

x≤bL
k
}xk approximates a solution x∗ ∈ M0 essentially better

than xk and such that x+
k can easily be evaluated.

Suppose that GLk
has a full column rank. Then, the equation system

G>
Lk

x = bLk
has a solution and

(3) x′
k = P{x:G>

L
k
x=bL

k
}xk = xk−GLk

(

G>
Lk

GLk

)−1 (

G>
Lk

xk − bLk

)

.

Of course, x′
k is not necessarily equal to x+

k . Nevertheless, it can be shown
that

(4) x′
k = x+

k ⇐⇒ y :=
(

G>
Lk

GLk

)−1 (

G>
Lk

xk − bLk

)

≥ 0.

If G>
Lk

xk ≥ bLk
and

(

G>
Lk

GLk

)−1
≥ 0, then y ≥ 0. Selections of Lk ⊂ J with

such properties were employed for convex feasibility problems or for convex
minimization problems in [1, 2, 3, 4]. We call such a selection an obtuse

cone selection since the columns of a full column rank matrix A generate an

obtuse cone if and only if
(
A>A

)−1
≥ 0. In this paper, we study selections of

Lk ⊂ J such that y ≥ 0 without assuming that G>
Lk

xk ≥ bLk
, for the linear

feasibility problems. Such selections were employed for convex minimization
problems in [5, 6].
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2. Residual selection model

Let be given a system of linear inequalities (1) and an approximation x ∈ R
n

of a solution of this system. We construct sequentially a subset L ⊂ J =
{1, 2, . . . ,m} and, consequently, the matrix GL which has the properties: GL

has a full column rank and y :=
(
G>

LGL

)−1 (
G>

Lxk − bL

)
≥ 0. To simplify

the notation, we denote A
︸︷︷︸

n×l

:= GL, d
︸︷︷︸

l×1

:= bL, where l = |L|.

Let A = [ A1
︸︷︷︸

n×(l−1)

, a
︸︷︷︸

n×1

]. Denote by r the residual vector, i.e.,

(5) r =

[
r1

ρ

]

= A>x − d =

[
A>

1

a>

]

x −

[
d1

δl

]

,

where r1 ∈ R
l−1 and ρ ∈ R.

The following theorem enables a sequential construction of a full column

rank submatrix A of G for which y :=
(
A>A

)−1
r ≥ 0, where the residual

vector r is not necessarily nonnegative. Therefore, we call a model obtained
by such a construction a residual selection model.

Theorem 1. Suppose that there exists z ∈ R
n such that A>z ≤ d. If

(i) A1 has a full column rank,

(ii)
(
A>

1 A1

)−1
r1 ≥ 0,

(iii) A+
1 a ≤ 0,

(iv) (A+
1 a)>r1 < ρ,

then

(I) A has a full column rank,

(II)
(
A>A

)−1
r ≥ 0.

Proof. See [6, Theorem 1].

Corollary 2. Let x ∈ R
n be arbitrary. Suppose that the assumptions of

Theorem 1 are satisfied and let

(6) t = −A
(

A>A
)−1 (

A>x − d
)

.

Then

(7) x+ = x + t = P{x:A>x≤d}x .
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Proof. By (3) and by (6) we have x+ t = P{x:A>x=d}x. By Theorem 1 and
by (4) we obtain equality (7).

3. Projection method with residual selection

In this section, we present a projection method with a residual selection for
the linear feasibility problem presented in Section 1. We do not suppose
that the system (1) is consistent.

Iterative scheme 3.

Choose:

x0 ∈ R
n (starting point), ε ≥ 0 (optimality tolerance).

For xk ∈ R
n:

1. (stopping criterion)

set ik = arg max1≤i≤m{G>
i xk − bi},

where Gi is the ith column of G;

if G>
ik

xk − bik ≤ ε, then terminate;

otherwise

2. (residual selection)

select Lk ⊂ {1, 2, . . . ,m} such that:

ik ∈ Lk, GLk
= [Gi : i ∈ Lk] has a full column rank and

(

G>
Lk

GLk

)−1
rLk

≥ 0,

where rLk
= G>

Lk
xk − bLk,

3. make a Cholesky factorization CLk
C>

Lk
of the matrix G>

Lk
GLk

;

if the Cholesky procedure breaks down, then terminate (
{
x : G>x ≤ b

}
= ∅),

4. evaluate tk = −GLk

(

CLk
C>

Lk

)−1
rLk

,

5. set xk+1 = xk + λktk,

where the relaxation parameter λk ∈ [α, 2 − α], 0 < α < 1.
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Remark 4. We apply sequentially Theorem 1 in order to construct the
subset Lk and, consequently, the matrix GLk

in Step 2.

If the Cholesky procedure detects a linear dependency of the columns
of GLk

in Step 3, then we obtain a contradiction, which proves by Theorem
1 the inconsistency of the system G>x ≤ b. If the inconsistency is not
detected, then the matrix GLk

has a full column rank and, by Corollary 2,
the vector tk determined in Step 4 is the projection vector of xk onto the
subset {x : G>

Lk
x ≤ bLk

}.

Now, we show that any sequence generated by Iterative scheme 3 converges
to a solution x∗ ∈ M0.

Theorem 5. Suppose that there exists z ∈ R
n such that G>z ≤ b. If the

sequence (xk) is generated by Iterative scheme 3, then

(8) max{0, G>
i xk − bi : i = 1, 2, . . . ,m} −→ 0.

Proof. For all z ∈ M0 and k ≥ 0 we have

(z − xk)
>tk ≥ ‖tk‖

2

and, consequently,

‖xk+1− z‖2 = ‖xk + λktk − z‖2 = ‖xk− z‖2− 2λk(z − xk)
>tk + (λk)

2‖tk‖
2

≤ ‖xk− z‖2 − 2λk‖tk‖
2 + (λk)

2‖tk‖
2 = ‖xk − z‖2− λk(2 − λk)‖tk‖

2.

Hence,
∞∑

k=0

‖tk‖
2 < ∞

since λk ∈ [α, 2 − α], 0 < α < 1 and, consequently,

(9) ‖tk‖ −→ 0.

We denote β = maxi=1,2,...,m ‖Gi‖. If Lk = {ik}, then

tk = −
(

G>
ik

xk − bik

) (

Gik/ ‖Gik‖
2
)

.
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Hence, if ik ∈ Lk, then
{
x : G>

Lk
x ≤ bLk

}
⊂

{
x : G>

ik
x ≤ bik

}
and

‖tk‖ ≥
(

G>
ik

xk − bik

)

/‖Gik‖ ≥
(

G>
ik

xk − bik

)

/β.

Consequently,

(10) ‖tk‖ ≥
(

G>
i xk − bi

)

/β,

for all i = 1, 2, . . . ,m. Now, we obtain (8) from (9) and (10).

4. Numerical results

In this section, we present the computation results of the projection method
with a residual selection for linear feasibility problems.

In the numerical experiments we have tested the method for the ran-
domly generated linear feasibility problems

G>x ≤ b,

where G is a matrix of size n × m, x ∈ R
n and b ∈ R

m.

In these problems, the coordinates of columns of matrix G are randomly
generated in the interval (−0.5, 0.5). For i = 1, 2, . . . , l we admit bi = 0 and
for i = l+1, . . . ,m the coordinates of vector b are randomly generated in the
interval (0, 1). We have guaranteed that the system G>x ≤ b is consistent.
The coordinates of the starting point are generated in the interval (0, 1).

Ten examples were solved for each system of parameters n,m, l. In
Tables 1 and 2 we present the average number of iterations ki, i = 1, 2, 3
which are necessary to get an ε-optimal solution. We set the optimality
tolerance ε = 10−6. The method was programmed in Fortran 90 (Lahey
Fortran 90 v.3.5). All floating point calculations were performed with double
precision, allowing the relative accuracy of 2.2 ∗ 10−16.

In Table 1 we present the results of numerical tests for the method
presented in Section 3 (Iterative scheme 3) with relaxation parameter λk = 1
and λk = 1.5. In the last column we present results where we use the so
called largest residuum strategy (l.r.s.) in Step 2 of Iterative scheme 3,
(see [5, Section 3]).
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Table 1

λk = 1 λk = 1.5 λk = 1.5 (l.r.s.)

n × m l k1 k2 k3

20 × 20
12
20

6
7

6
6

5
5

20 × 40
12
24

8
14

7
13

7
11

20 × 80
12
24

11
18

10
14

10
12

50 × 50
30
50

19
33

12
16

10
14

50 × 100
30
60

35
145

19
37

14
28

50 × 200
30
60

69
122

28
37

21
27

100 × 100
60
100

49
77

20
25

17
19

200 × 200
120
200

97
164

34
38

25
30

In Table 2 we present the results of numerical tests for the projection method
with a residual selection (see [6]) for convex minimization problems of the
form

minimize f(x) = max{0, G>
i x − bi : i = 1, 2, . . . ,m}

which is equivalent to the problem (1).

Table 2

λk = 1 λk = 1.5 λk = 1.5 (l.r.s.)

n × m l k1 k2 k3

20 × 20
12
20

10
11

9
10

9
10

50 × 50
30
50

29
51

24
33

24
32

100 × 100
60
100

71
99

49
57

47
54
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We can see that for each system of parameters n,m, l the results for the
projection method with a residual selection for the linear feasibility problem
(Table 1) are better than for the projection method with a residual selec-
tion for the convex minimization problem (Table 2). The influence of the
relaxation parameter λk on the convergence is essential for both methods.
If the parameter l is greater then the solution set M0 =

{
x : G>x ≤ b

}
is

flatter and the number of iterations is greater.
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