Discussiones Mathematicae
Differential Inclusions, Control and Optimization 27 (2007) 119-134

EFFICIENT CALCULATION OF SENSITIVITIES
FOR OPTIMIZATION PROBLEMS

ANDREAS KOWARZ AND ANDREA WALTHER

Institute of Scientific Computing
TU Dresden, 01062 Dresden, Germany

Abstract

Sensitivity information is required by numerous applications such
as, for example, optimization algorithms, parameter estimations or real
time control. Sensitivities can be computed with working accuracy
using the forward mode of automatic differentiation (AD).

ADOL-C is an AD-tool for programs written in C or C++. Origi-
nally, when applying ADOL-C, tapes for values, operations and loca-
tions are written during the function evaluation to generate an inter-
nal function representation. Subsequently, these tapes are evaluated
to compute the derivatives, sparsity patterns etc., using the forward
or reverse mode of AD. The generation of the tapes can be completely
avoided by applying the recently implemented tapeless variant of the
forward mode for scalar and vector calculations. The tapeless forward
mode enables the joint computation of function and derivative values
directly from main memory within one sweep. Compared to the orig-
inal approach shorter runtimes are achieved due to the avoidance of
tape handling and a more effective, joint optimization for function and
derivative code.

Advantages and disadvantages of the tapeless forward mode pro-
vided by ADOL-C will be discussed. Furthermore, runtime compar-
isons for two implemented variants of the tapeless forward mode are
presented. The results are based on two numerical examples that re-
quire the computation of sensitivity information.

Keywords: automatic differentiation, sensitivities, forward mode.
2000 Mathematics Subject Classification: 65D25, 656K05, 68Q25.

120 A. KOwARZ AND A. WALTHER

1. INTRODUCTION

Automatic Differentiation (AD) offers an efficient way of calculating deriva-
tive information with machine accuracy for a function given as source code in
a supported programming language. The reverse mode [6] of AD yields the
exact gradient of a given scalar-valued function at a cost of w times the func-
tion evaluation, with w € [3,4]. This means, in particular, that in contrast
to the application of Finite Differences the costs for evaluating the gradi-
ent are independent of its dimension. Despite the good complexity measure
for the reverse mode many applications benefit from the forward mode of
AD, e.g., if the minimization of a given optimization problem only requires
certain gradient information. Furthermore, compression techniques may be
used in practice, when handling sparse Jacobian matrices. Frequently, com-
puting a compressed matrix makes the forward mode attractive and com-
petitive. Other important applications are parameter estimation problems
or the computation of complete Jacobians. Using the vector forward mode
of AD one only needs one sweep to compute the n columns of the Jaco-
bian in machine accuracy at a cost of w times the function evaluation, with
w € [14+n,1+ 1.5n] (see [6, Section 3.2]).

Two different implementation strategies have been frequently used for
the Automatic Differentiation of source codes. One approach concentrates
on the development of special compilers which analyze the given program,
build optimized dependency trees and finally create appropriate derivative
codes. This so-called “Source-to-Source” transformation that is applied, e.g.,
by TAF [4] and Tapenade [8], will not be discussed in this paper. Currently,
the special AD-enabled compilers are mainly available for the FORTRAN
programming language.

The other approach is characterized by the usage of the Operator Over-
loading abilities offered by most modern high level programming languages.
The mechanism of overloading allows for extending or changing the mean-
ing of operators and functions by replacing them by user defined source
codes. Applying this facility within the AD context results in modified
codes, able to jointly compute function and derivative information using the
forward mode or to produce an internal function representation that serves
for the required derivative calculations, especially the reverse mode differen-
tiation. Operator Overloading is used by numerous tools, e.g., ADOL-C [5],
CppAD [1] and FADBAD [2]. Due to the overloading on the level of oper-
ations and intrinsic functions, most branch and loop information as well as

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 121

subroutine calls cannot be included into the internal function representation.
This fact enforces a complete unrolling of the program that can result in a
very large internal representation. If the required derivative information can
be computed using the forward mode of AD, the generation of the internal
representation can be avoided by computing function and derivative values
jointly within one sweep. In this paper, we present a new work mode for
the AD-tool ADOL-C, based on this strategy.

The structure of this paper is the following: In Section 2, we present the
new mode of ADOL-C. This includes an analysis of the implemented deriva-
tive handling as well as a description of the interface extensions. At the end
of the section, we present a short implementation example to demonstrate
the demands on the user. Two numerical examples using the new work
mode are presented in Section 3. We start with the Medical Akzo Nobel
Problem as an academic example to demonstrate some results concerning
the basic implementation strategies as well as the tapeless vector forward
mode. We close the section with numerical results for a sensitivity compu-
tation of an optimal turnaround maneuver performed by an industrial robot
as a more realistic application. Finally, conclusions and an outlook are given
in Section 4.

2. TAPELESS COMPUTATIONS USING ADOL-C

Compared to the Source-to-Source approach, an implementation of the Au-
tomatic Differentiation based on Operator Overloading has to deal with
certain additional difficulties. Since most control information is not avail-
able at the operation level an internal representation of the program, i.e.,
an operation trace, has to be used to enable derivative calculations based on
the forward and reverse mode of AD. However, as mentioned in Section 1
applying the reverse mode of AD is not always the most efficient way of
computing the required derivatives. In the case of Jacobians that are square
matrices or a small number of required sensitivities the forward mode of
AD is advantageous in terms of runtime and memory requirement. Un-
der abandonment of the higher flexibility provided by the internal function
representation one can compute function and derivative information jointly
within one forward sweep. Necessary changes for a tapeless work mode in
ADOL-C are discussed in the following subsection.

122 A. KOwARZ AND A. WALTHER

Implementation Details

Assuming that derivative information is propagated along with the function
evaluation the implementation strategy is quite obvious. It must be ensured
that the codes for computing the function and the derivative value are both
executed within the operation’s scope. The new ADOL-C work mode Tape-
less uses the well established active class adouble with an implementation
as described below. The basic layout of the class is the following:

class adouble {
double val;
double ad_val;

s

In this class all basic operations are overloaded to compute the normal op-
eration as well as the corresponding derivative value, e.g.:

adouble adouble::operator + (const adouble &a) {
adouble res;
res.val = val + a.val;
res.ad_val = ad_val + a.ad_val;
return res;

}s

This approach is well known from the AD theory [6] and is sometimes said
to be the trivial solution. However, for the class of problems mentioned, it
is a very promising way for an efficient implementation.

The type of the variable ad_val can be changed from double to a vector
of double values for applying the vector version of the forward mode. The
dimension of the vector is selected at compile time and therefore yields a
fixed spatial complexity. Nevertheless, the propagation of all directional
derivatives in the forward mode can be avoided at runtime by calling the
special function setNumDir (int), as described below in more detail.

Another important question concerns code maintainability and speed.
The tape-based part of ADOL-C is provided as shared library. The main
advantage of such an approach is the reduction of binary size for all programs
using the library. Additionally, the provided code is better maintainable
since bug fixes within the library are automatically a part of the programs
that use this library. However, applying the shared library approach for the
implementation of a tapeless mode would mean to separate the often small

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 123

function code from the derivative code. A good optimization by the compiler
is not very likely in this case. Therefore, we decided to implement the
tapeless version as a completely inlined code. This avoids a lot of subroutine
calls that correspond to jumps into and back from a library. Furthermore,
the compiler gets the source code that contains the computations only. The
downside is the code maintainability, which is reduced to a level comparable
to the usage of static libraries.

To illustrate the demands on the user, we demonstrate the application
of the new functionality of ADOL-C in the following subsection.

Implementation Examples

Assume that we want to evaluate for a given function F' : IR™ — IR™ the
Jacobian x vector product

y=F'(z)*d teR"yeR" F(x)e R™".

Applying the new tapeless scalar forward mode of ADOL-C results in a
source code similar to the one shown in Figure 1. Most of the AD-related
changes to the original source code are common to both, the tape-based

1 #define ADOLC_TAPELESS

2 | #include <adolc.h>

3 1 ...

4 | adouble *xa=new adouble[n], *ya=new adouble[m];
5 | for (int ©=0; i<n; ++i) {

6 | zal[i]=<double value>; // set T
7 | zal[i].setdDValue (<double value>); // set &
8 |}

9 I ...

10 | < evaluate ya = F(za) >

11 | .

12 | for (int ©=0; i<m; ++i) {

13 | cout << yal[i].getValue(); /7 get y
14 | cout << yali].getADValue(); // get y
15 1}

Figure 1. Tapeless derivative computation using ADOL-C

124 A. KOwARZ AND A. WALTHER

and the tapeless forward mode in ADOL-C. The first important step is
to define the preprocessor macro ADOLC_TAPELESS. This has to be done
before including the header file adolc.h. Furthermore, all intermediate
variables that depend on the input variables xza and that are required for
the computation of F'(za) must be declared of type adouble. As done in
line 7 of Figure 1, the user has to provide the actual direction & by call-
ing the function setADValue(..) for every independent variable. After
evaluation of the function the derivative values are accessible by calling the
function getADValue () for the dependent variables of interest. Hence, the
Jacobianxvector product F’(x)z is computed together with the function
evaluation.

Whenever one needs several directional derivatives, i.e., a Jacobianx
matrix product of the form

Y =Fl(z)« X X e R™P)Y € R™P F'(z) € R™",

one can either execute the scalar forward mode several times or benefit
from the vector version of the forward mode of AD. The advantage of the
latter approach is that the function values and common intermediate val-
ues as well as the local partial derivatives need to be computed only once.
Then, the derivative values can be computed for all directions, simulta-
neously, using this information. This approach calls for a higher memory
requirement but reduces the overall runtime considerably. Compared to the
tapeless scalar forward mode in ADOL-C only a small number of changes
have to be made for the vector version. First, the maximal number of direc-
tions to be propagated must be supplied by defining the preprocessor macro
NUMBER_DIRECTIONS. This has to be done before including the ADOL-C
header, for example in the following way:

#define ADOLC_TAPELESS
#tdefine NUMBER_DIRECTIONS 10
#include <adolc.h>

Second, for the vector version of the forward mode the type of ad_val
changes from a single double into a vector of doubles. The function for
setting these values must be changed from

setADValue(double value)
to
setADValue (double *valueVector) or
setADValue(int index, double value).

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 125

Correspondingly, derivative values can be accessed using the functions

double *getADValue() or
double getADValue(int index).

In addition, the function setNumDir (int number) can be used at runtime
to set the actual number of computed directions to the value of number
which has to be less than or equal to NUMBER _DIRECTIONS. Due to the size
determination for adouble variables at compile time the storage size remains
a multiple of NUMBER_ DIRECTIONS, even for smaller values of number. Prop-
erties of the tapeless vector forward mode of ADOL-C are discussed as part
of the numerical experiments in the following section.

3. NUMERICAL EXAMPLES

To demonstrate the new tapeless forward mode contained in the current
version 1.10.0 of ADOL-C, we use an academic example to demonstrate some
basic results concerning the implementation strategy and the vector mode.
Subsequently, we consider the sensitivity computation for an industrial robot
as a more realistic application.

All results are based on the following two test systems:

Test system P3: Test system PM:
e Pentium-IITE 700MHz e Pentium-M 725 1,6 GHz
(Coppermine) (Dothan)

e 16 KB L1-Data-Cache 32 KB L1-Data-Cache

e 256 KB L2-Cache 2 MB L2-Cache

e 378 MB Main Memory e 1 GB Main Memory

e GCC Version 3.2 e GCC Version 3.4.4

Medical Akzo Nobel Problem

The following problem was formulated by the Akzo Nobel research labo-
ratories during their studies of the penetration of radio-labeled antibodies
into a tumor infected tissue. It can be derived from the following two partial

126 A. KOwARZ AND A. WALTHER

differential equations

o _ o
ot Ox2 w
ov

E——kuv.

Semi-discretization leads to a stiff ODE of the form

d
d—if:f(t,y), y(0) =g ye RN, 0<t<20,ge R>™
with g = (0,vp,0,v,...,0,v9)T and the grid constant N as a user supplied
parameter. In addition, one has y_1(t) = ¢(t) and yan+1 = yon—1 with

) 2 forte(0,5],
o(t) _{ 0 forte (5,20].

The function f is given by

fajo1 = oy PRI 4 gy VUSRIV, sy,
1<j<N
Joj = —ky2j-1Y25,
with the coefficients defined by
2(jAC —1)° (JA¢ - 1) 1

Throughout the numerical tests the constants £ = 100, vg = 1 and ¢ = 4
have been used. The problem under consideration was contributed to the
Test Set for Initial Value Problems by R. van der Hout from the Akzo Nobel
Central Research. For a more detailed description see [9, II-4].

For our basic analysis we only used the right-hand side of the ODE, i.e.,
the function f. Since we were less interested in a good approximation of the
solution of the problem itself but in information about the behavior of the
tapeless code we used the vector mode for 10 directions X € R2N*10 to com-
pute derivatives F’ (x)X at a given argument x. However, to minimize the
influence of operating system processes we averaged the time measurements
for the combined function-derivative calculation over a loop of 50 iterations.
Furthermore, we tested the code as both inlined and library version.

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 127

Table 1. Code sizes for the Medical Akzo Nobel Problem

double version: 5981 Byte
adouble version (tapeless): | 12096 Byte
adouble version (library): | 25227 Byte

As summarized in Table 1, the practical studies do not completely confirm
our theoretical assumptions. The double version has the smallest size as
expected. However, the size of the library version is significantly higher than
the size of the inlined version. Obviously, the code for calling the derivative
functions within the library has a larger size than the code of the function
itself.

Table 2. Runtimes for the Medical Akzo Nobel Problem

| System | T, (double) | T, (adouble) | T,/T, | Theory

inlined version

P3 0.1011s | 2.8809s | 28.50 | 11-16
library version

0.1011s | 3.5067s | 34.69 | 11-16
inlined version

PM 0.0257s | 0.7072s | 27.52 | 11-16
library version

0.0257s | 09139s | 35.56 | 11-16

Another important aspect concerns the runtime of the specific binaries. Ta-
ble 2 illustrates the observed execution times. For all binaries we used the
GNU Compiler Collection applying optimization level “O3” and appropriate
CPU-based special optimization for the target system. As can be seen from
the practical results, a smaller runtime could be achieved for the derivative
computation when using the inlined version in comparison to the usage of the
library-based version. This observation fulfills our theoretical assumption.
To proceed with theory—practice comparisons, we analyze the runtime ratio
of the double version and the specific adouble version. For this ratio an
upper bound, denoted by w, is available due to the complexity theory of the
Automatic Differentiation. One has

w € [1+p, 1+ 1.5p]

128 A. KOwARZ AND A. WALTHER

for the propagation of p directions within one sweep (see [6, Section 3.2]). In
our example with p = 10 the theoretical upper bound of the runtime ratio
is w € [11,16] as stated in column 5 of Table 2. Comparing this theoretical
measure with our practical results we observe a higher runtime ratio than
expected. This result is hardly surprising since one of the basic assumptions
for the theory (see [6, Section 2.5]) is a flat memory model that may not
reflect the practical circumstances.

A more interesting observation can be received from the theory of the
vector mode itself. For every elementary function

v; = @i(vj) with v;,v; € R,

evaluated to compute F(z), i.e., for every operator or function that gets

overloaded, we denote the elementary partials gfj (vj) by ¢;ij. In the scalar

mode, the derivative values have to be computed as
U; = cij x 0 with 95,05 € IR.
For the vector mode the derivative formula changes to
Vi:cl-j*"/j with VZ,VJ € IR?.

The basic idea of the vector mode is to reuse the elementary partials for
computing the scalar vector product instead of recomputing them for all
directions when using p scalar sweeps. Obviously, the runtime ratio double
code to adouble code is the better the more impact the reusable fraction of
the computation has. To demonstrate this aspect we use a modified version
of the Medical Akzo Nobel Problem where we replace the formula for 3; by

3; = tan (7(]AC - 1)4) :

c2

Then, the code structure is nearly the same but we increase the impact of
the reusable fraction of the code. This means we add the computational
expensive quotient Wl() to the set of elementary partials {c;;} that gets
evaluated only once for the propagation of p = 10 directions.

The averaged runtimes for the modified Medical Akzo Nobel Problem
are summarized in Table 3. A first interesting observation concerns the high

computational costs for computing the trigonometrical functions. In the case

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 129

Table 3. Runtimes for the modified Medical Akzo Nobel Problem

| System | T (double) | T,, (adouble) | T,/T; | Theory |

inlined version

P3 03031s | 3.2965s | 10.88 | 11-16
library version

03031s | 3.9230s | 12.94 | 11-16
inlined version

PM 0.0989s | 09139s | 924 | 11-16
library version

0.0989 s | 1.0791s | 1091 | 11-16

of the double version the addition of the tangent leads to an increase in
the runtime by factor 3 for test system P3 and by factor 4 for test system
PM, respectively, whereas the runtime of the adouble version increases only
by a small fraction. Accordingly, the runtime ratio is much better than in
the original version and it now nicely complies to the theory. Results for
the tapeless scalar mode are discussed in the following subsection in more

detail.

Optimal Turn-around Maneuver of an Industrial Robot

The numerical example that serves here to illustrate the runtime effects
of the tapeless scalar forward mode of ADOL-C is an industrial robot as

depicted in Figure 2 that has
to perform a fast turn-around
We denote by
q = (q1,92,93) the angular
coordinates of the robot’s
joints, ¢ referring to the
angle between the base and
the two-arm system. The
robot is controlled via three
control functions u; through
ug, denoting the respective
angular momentum applied
to the joints (from bottom
to top) by electrical motors.

maneuver.

Figure 2. Industrial robot ABB IRB 6400

130 A. KOwARZ AND A. WALTHER

The control problem under consideration is to minimize the energy-related
objective

J(q,u) = /Otf [ul(t)Q + ug(t)Q + ug(t)2] dt,

where the final time ¢y is given. The robot’s dynamics obey a system of
three differential equations of second order:

M(Q) q = U(Qu Q) + w(Q) + 7—friction(q‘) + Treset(q) +u

where M(q) is a 3 x 3 symmetric positive definite matrix containing moments
of inertia, called a generalized mass matrix. The vector v is composed
of centrifugal and Coriolis force entries, and w contains the gravitational
influence. Finally, we allow for forces induced by dry friction and reset
forces by means of Tgiction and Treset, respectively. The complete equations
of motion can be found in [10]. The robot’s task to perform a turn-around
maneuver is expressed by means of initial and terminal conditions as well as
control constraints [7]. To compute an approximation of the corresponding
trajectory, we apply the standard Runge-Kutta method of order 4 for the
integration resulting in about 800 lines of code.

Optimizing the target function J as done in the original problem is not
the objective of our example. Here, we are interested in the sensitivities of
the optimal trajectory with respect to perturbations of specific elements of
the parameter vector p. Therefore, we need partial derivatives of the target
function J with respect to the parameters in question which may be, e.g.,
the start position of the object the robot works on, the weight of the object
and so on. Since only a small number of sensitivities are needed, the forward
mode of the Automatic Differentiation is the instrument of choice for our
example.

Table 4 summarizes the runtime results for one evaluation of J in the
double case as well as J and 0J/0p; in the adouble case. Throughout
our experiments we used the values 100, 500, 1000, 5000 for the number
of time steps [, thus enforcing different increments for the Runge-Kutta
scheme. According to the number of time steps the memory requirements
for the adouble version are roughly 10 KB, 50 KB, 100 KB and 500 KB,
respectively, and half the size for the double version.

As in the vector case a runtime ratio w based on a flat memory model
is given by AD theory [6, Section 3.2]. One gets:

w e [2,2.5].

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 131

Table 4. Runtimes for the robot example

| System | # steps | T, (double) | T,, (adouble) | T, /T, | Theory

100 0.0046 s 0.0097 s 2.11

P3 200 0.0353 s 0.0728 s 2.06 2-2.5
1000 0.1006 s 0.2086 s 2.07
5000 4.1695 s 18.1271 s 4.35
100 0.0017 s 0.0030 s 1.76

PM 500 0.0102 s 0.0225 s 2.21 2-2.5
1000 0.0292 s 0.0610 s 2.09
5000 0.4064 s 1.5230 s 3.75

As can be seen, the values of Table 4 fulfill the theoretical expectations for
all test cases apart from the case [= 5000.

A reason for the higher runtime ratio in the test case I = 5000 on system
P3 may be the small L2 cache of the processor that cannot hold all program
data at the same time. As a result, expensive main memory accesses are
necessary that burden the runtime of the adouble version. However, the
same assumption cannot explain the result of the test case [= 5000 on
system PM. The L2 cache of this system is large enough to hold all data for
the specific test case. Obviously, a deeper insight into the real behavior of
the code is necessary. Figure 3 summarizes some results we collected during
our extended test runs.

We increased the number of test cases by varying the number of time
steps [from 100 to 7000 with an increment of 100. The first four plots shown
in Figure 3 depict the corresponding runtimes for all experiments as well as
the resulting runtime ratio for the two test systems. Especially, the results
for system PM clarify the runtime ratio of the case [= 5000. Investigating
the runtimes, we can see a strong increase at [= 2800 for the adouble
version and at [= 5600 for the double version. Between these two points
the runtime ratio consequently jumps to a much higher level. The fourth
test case depicted in Table 4 is clearly affected by this jump.

In the case of test system P3 a more complicated situation occurs since
the small L2 cache of the processor has to be taken into account. To get
more information about the practical code behavior, we use a modified Linux
version that is able to capture hardware performance data through the PAPI
system [3]. As expected, the increase in the L2 cache miss rate depicted in
Figure 3 leads to a higher runtime that results in the higher ratio. Again, as

132

time (s)

ratio

misses

misses

P3: Runtime
40 . . .
+ double version
35 x___adouble version B
30 T 1
25 1
20 1
15 r 1
10 +
5t xxxxxxxx . #n”“ 4
0 o e X
1000 2000 3000 4000 5000 6000 7000
number of steps
P3: Runtime Ratio
10 = = T T T
+___runtime ratio
8 T —
6 - ‘++ PR 1
4t T e 4
*++**++H+ﬂ
2 Frrrrretitet 1
1000 2000 3000 4000 5000 6000 7000
number of steps
P3: L2 Data Cache Misses
2e+08 = T T
+ double version X
1.8e+08 | « adouble version 2
1.6e+08 Sl
Pl
1.4e+08 | * R
1.2e+08 i 1
1e+08)XX‘ b
8e+07 | el 4
% o,
6e+07 | o Bl
4e+07 p o ,
2e+07 | T |
st g L
1000 2000 3000 4000 5000 6000 7000
number of steps
P3: Instruction TLB Misses
200000 double version x
180000 x___adouble version xx"’e‘]
160000 e 1
o L
140000 . .
120000 It 1
100000 xxx)” 1
80000 X 1
60000 1
40000 1
20000 1

1000 2000 3000 4000 5000 6000 7000
number of steps

time (s)

ratio

misses

misses

A. KOwARZ AND A. WALTHER

PM: Runtime
3 T T T
+ double version
x___adouble version
25
2L
15 r
%% o
ir xXxx -+ ++*’+++
e
05 <
e e
1000 2000 3000 4000 5000 6000 7000
number of steps
PM: Runtime Ratio
10 = = T T T
+___runtime ratio
8|
6L
4r bbb
2 Lttt et -+ g
1000 2000 3000 4000 5000 6000 7000
number of steps
PM: L2 Data Cache Misses
3e+06 = T T
+ double version .
266406 x___adouble version
2e+06
1.5e+06
1e+06
500000
1000 2000 3000 4000 5000 6000 7000
number of steps
PM: Instruction TLB Misses
180000
+ double version
160000 x___adouble version
140000 + ,x*“x
120000 | o
100000)XXXX(
80000 | xx«*‘“
60000
40000 |
20000 -

1000 2000 3000 4000 5000 6000 7000
number of steps

Figure 3. Detailed measurements for the two test systems

EFFICIENT CALCULATION OF SENSITIVITIES FOR ... 133

for the test system PM we observe a strange behavior between [= 2800 and
I = 5600 that is not sufficiently described by L2 cache misses. The depicted
results are based on the interaction of the cache misses and the jump in the
runtime ratio already known from the system PM.

However, the results discussed so far do not explain the jumps in the
runtime, especially for test system PM. The last two plots of Figure 3 sum-
marize the Translation Lookaside Buffer (TLB) miss rate for the double
and the adouble version of the code. The TLB contains pairs of vir-
tual addresses, our program works with, and physical addresses, the caches
work with. Using these fast buffers, the processor can avoid the expen-
sive translation between the two kinds of addresses. Whenever a TLB miss
occurs the mentioned translation is invoked by the processor. As a very
likely result, operations are delayed thus causing an increase in the run-
time. Unfortunately, the processors of our test systems do not offer facilities
to capture all TLB misses but only Instruction-TLB misses. Control mea-
surements on an AMD platform that also creates the runtime jumps in
question show an analog behavior of the Data-TLB miss rates compared
to Instruction-TLB miss rates. On our test systems we can observe a
drastic increase, i.e., a jump, in the TLB miss rates for the two test sys-
tems at exactly the positions where the corresponding runtimes perform
a jump. We can conclude that the jumps in the runtimes for [= 2800
and [= 5600 and hence also the jumps in the runtime ratio are caused
by the high penalty for the TLB misses. Further investigations concern-
ing the reasons for the jumps in the TLB miss rates are possible but re-
quire at least a code insight at assembler level what is far beyond the scope
of this paper.

4. CONCLUSION AND OUTLOOK

We presented a new functionality for the AD-tool ADOL-C based on the
tapeless evaluation of derivatives for function codes given in C/C++. This
standalone forward mode should be applied to compute sensitivities for a
small number of independents or for computing square sized Jacobians. Our
practical results confirm good runtime ratios comparable to the assumptions
of the AD theory.

Although first order derivatives suffice for many applications we want to
provide support for more complicated derivative computations. Therefore,
we plan to implement a tapeless forward version for computing higher order

134 A. KOwARZ AND A. WALTHER

derivatives based on Taylor arithmetic. An equivalent mode already exists
in ADOL-C for tape-based computations.

REFERENCES

[1] M.B. Bell, CppAD: A package for C++ Algorithmic Differentiation, COIN-OR
foundation, Available at http://www.coin-or.org/CppAD

[2] C.Bendtsen and O. Stauning, FADBAD, a flexible C++ package for automatic
differentiation, Department of Mathematical Modelling, Technical University
of Denmark, 1996, Available at http://www.imm.dtu.dk/fadbad.html

[3] J. Dongarra, S. Moore, P. Mucci, K. Seymour, D. Terpstra, Q. Xia and H. You,
Performance Application Programming Interface, Innovative Computing Lab-
oratory, Department of Computer Science, University of Tennessee, Available
at http://icl.cs.utk.edu/papi

[4] R. Giering and T. Kaminski, Recipes for Adjoint Code Construction, ACM
Trans. Math. Software 24 (1998), 437-474. URL: http://www.fastopt.com

[5] A. Griewank, A. Kowarz and A. Walther, Documentation of ADOL-C, Avail-
able at http://www.math.tu-dresden.de/~adol-c, Updated Version of: A.
Griewank, D. Juedes, J. Utke J, ADOL-C: A package for the automatic dif-
ferentiation of algorithms written in C/C++. ACM Trans. Math. Software 22
(1996), 131-167.

[6] A.Griewank A, Evaluating Derivatives: Principles and Techniques of Algorith-
mic Differentiation, Number 19 in Frontiers in Appl. Math. STAM, Philadel-
phia, 2000.

[7] R. Griesse and A. Walther, Parametric sensitivities for optimal control prob-
lems using automatic differentiation, Optimal Control Applications and Meth-
ods 24 (2003), 297-314.

[8] L. Hascoét and V. Pascual, Tapenade 2.1 user’s guide. Tech. rep. 300, INRIA,
2004.

[9] F. Mazzia F and F. Tavernaro, Test Set for Initial Value Problem Solvers,
Entire test set description, Department of Mathematics, University of Bari,
August 2003, Available at http://www.pitagora.dm.uniba.it/ testset

[10] M. Knauer and C. Biiskens, Real-Time Trajectory Planning of the Industrial
Robot IRB6400, PAMM. 3 (2003), 515-516.

Received 21 March 2006

