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1. Introduction

This paper deals with the existence of solutions for boundary value problems
(BVP for short), for fractional order differential inclusions

(1) cDαy(t) ∈ F (t, y), a.e. t ∈ J := [0, T ], 0 < α < 1,

(2) ay(0) + by(T ) = c,

where cDα is the Caputo fractional derivative, F : J × R → P(R) is a mul-
tivalued map (P(R) is the family of all nonempty subsets of R), a, b, c are
real constants with a+ b 6= 0. Differential equations of fractional order have
recently proved to be valuable tools in the modeling of many phenomena
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in various fields of science and engineering. Indeed, we can find numerous
applications in viscoelasticity, electrochemistry, control, porous media, elec-
tromagnetics, etc. (see [11, 19, 20, 23, 28, 29, 31, 33]). There has been a
significant development in fractional differential equations in recent years;
see the monographs of Kilbas et al. [26], Miller and Ross [30], Podlubny
[33], Samko et al. [36] and the papers of Delbosco and Rodino [10], Di-
ethelm et al. [11, 12, 13], El-Sayed [15, 16, 17], Kilbas and Marzan [25],
Mainardi [28], Podlubny et al. [35], Yu and Gao [38] and the references
therein. Very recently, some basic theory for initial value problems for
fractional differential equations involving the Riemann-Liouville differen-
tial operator of order α ∈ (0, 1] has been discussed by Lakshmikantham
and Devi [27]. In [4, 6] the authors studied the existence and uniqueness
of solutions of classes of functional differential equations with infinite delay
and fractional order, and in [3] a class of perturbed functional differential
equations involving the Caputo fractional derivative has been considered.
El-Sayed and Ibrahim [18] initiated the study of fractional multivalued dif-
ferential inclusions. In the case where α ∈ (1, 2], existence results for a
fractional boundary value problem and the relaxation theorem were given
by Ouahab [32].

Engineering problems require definitions of fractional derivatives allow-
ing the use of physically interpretable initial conditions, which contain y(0),
y′(0), etc. The same requirements apply to boundary conditions. The Ca-
puto fractional derivative satisfies these demands. For more details on the
geometric and physical interpretation for fractional derivatives of both the
Riemann-Liouville and Caputo types see [22, 34].

In this paper, we shall present two existence results for the problem
(1)–(2), when the right hand side is convex as well as nonconvex valued. The
first result relies on the nonlinear alternative of Leray-Schauder type, while
the other is based upon a fixed point theorem for contraction multivalued
maps due to Covitz and Nadler. These results extend to the multivalued
case some previous results in the literature, and constitute a contribution
of this emerging field. In particular, our results extend to the multivalued
case those considered recently by Benchohra et al. in [5].

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts
that will be used in the remainder of this paper. Let C(J,R) be the Banach
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space of all continuous functions from J into R with the norm

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ T}.

Let L1(J,R) denote the Banach space of functions y : J −→ R that are
Lebesgue integrable with the norm

‖y‖L1 =

∫ T

0
|y(t)|dt.

AC(J,R) is the space of functions y : J → R, which are absolutely continu-
ous. Let (X, ‖ · ‖) be a Banach space. Let Pcl(X) = {Y ∈ P(X) : Y closed},
Pb(X) = {Y ∈ P(X) : Y bounded}, Pcp(X) = {Y ∈ P(X) : Y compact}
and Pcp,c(X) = {Y ∈ P(X) : Y compact and convex}. A multivalued map
G : X → P (X) is convex (closed) valued if G(x) is convex (closed) for all
x ∈ X. G is bounded on bounded sets if G(B) = ∪x∈BG(x) is bounded in
X for all B ∈ Pb(X) (i.e., supx∈B{sup{|y| : y ∈ G(x)}} < ∞). G is called
upper semi-continuous (u.s.c.) on X if for each x0 ∈ X, the set G(x0) is a
nonempty closed subset of X, and if for each open set N of X containing
G(x0), there exists an open neighborhood N0 of x0 such that G(N0) ⊆ N .
G is said to be completely continuous if G(B) is relatively compact for ev-
ery B ∈ Pb(X). If the multivalued map G is completely continuous with
nonempty compact values, then G is u.s.c. if and only if G has a closed
graph (i.e., xn −→ x∗, yn −→ y∗, yn ∈ G(xn) imply y∗ ∈ G(x∗)). G has
a fixed point if there is x ∈ X such that x ∈ G(x). The fixed point set of
the multivalued operator G will be denoted by FixG. A multivalued map
G : J → Pcl(R) is said to be measurable if for every y ∈ R, the function

t 7−→ d(y,G(t)) = inf{|y − z| : z ∈ G(t)}

is measurable. For more details on multivalued maps see the books of Aubin
and Cellina [1], Aubin and Frankowska [2], Deimling [9] and Hu and Papa-
georgiou [21].

Definition 2.1. A multivalued map F : J × R → P(R) is said to be
Carathéodory if

(i) t 7−→ F (t, u) is measurable for each u ∈ R;

(ii) u 7−→ F (t, u) is upper semicontinuous for almost all t ∈ J.
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For each y ∈ C(J,R), define the set of selections of F by

SF,y = {v ∈ L1(J,R) : v(t) ∈ F (t, y(t)) a.e. t ∈ J}.

Let (X, d) be a metric space induced from the normed space (X, | · |). Con-
sider Hd : P(X) ×P(X) −→ R+ ∪ {∞} given by

Hd(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}

,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pb,cl(X),Hd)
is a metric space and (Pcl(X),Hd) is a generalized metric space (see [24]).

Definition 2.2. A multivalued operator N : X → Pcl(X) is called

(a) γ-Lipschitz if and only if there exists γ > 0 such that

Hd(N(x), N(y)) ≤ γd(x, y), for each x, y ∈ X,

(b) a contraction if and only if it is γ-Lipschitz with γ < 1.

When the right hand side is nonconvex valued, the following fixed point
theorem will be used.

Lemma 2.3 [8]. Let (X, d) be a complete metric space. If N : X → Pcl(X)
is a contraction, then FixN 6= ∅.

Definition 2.4 ([26, 33]). The fractional (arbitrary) order integral of the
function h ∈ L1([a, b],R+) of order α ∈ R+ is defined by

Iα
a h(t) =

∫ t

a

(t− s)α−1

Γ(α)
h(s)ds,

where Γ is the gamma function. When a = 0, we write Iαh(t) = h(t)∗ϕα(t),

where ϕα(t) = tα−1

Γ(α) for t > 0, and ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as
α→ 0, where δ is the delta function.

Definition 2.5 ([26, 33]). For a function h given on the interval [a, b],
the αth Riemann-Liouville fractional-order derivative of h, α ∈ (0, 1),
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is defined by

(Dα
a+h)(t) =

dαh(t)

dtα

=
1

Γ(1 − α)

d

dt

∫ t

a

(t− s)−αh(s)ds

=
d

dt
I1−α
a h(t).

Definition 2.6 ([26]). For a function h given on the interval [a, b], the
Caputo fractional-order derivative of h of order α ∈ (0, 1), is defined by

(cDα
a+h)(t) =

1

Γ(1 − α)

∫ t

a

(t− s)−αh′(s)ds.

3. Main results

In this section, we are concerned with the existence of solutions to the prob-
lem (1)–(2) when the right hand side has convex as well as nonconvex values.
Initially, we assume that F is a compact and convex valued multivalued map.

Definition 3.1. A function y ∈ AC(J,R) is said to be a solution of (1)–(2),
if there exists a function v ∈ L1(J,R) with v(t) ∈ F (t, y(t)), for a.e. t ∈ J ,
such that

cDαy(t) = v(t), a.e t ∈ J, 0 < α < 1,

and the function y satisfies condition (2).

For the existence of solutions to the problem (1)–(2), we need the following
auxiliary lemma:

Lemma 3.2 [25]. Let 0 < α < 1 and let h : J → R be continuous. A func-

tion y is a solution of the fractional integral equation

(3) y(t) = y0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

if and only if y is a solution of the initial value problem for the fractional

differential equation
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(4) cDαy(t) = h(t), t ∈ J,

(5) y(0) = y0.

As a consequence of Lemma 3.2 we have the following result which is useful
in what follows.

Lemma 3.3. Let 0 < α < 1 and let h : J → R be continuous. A function y

is a solution of the fractional integral equation

(6)

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1h(s)ds− c

]

if and only if y is a solution of the fractional BVP

(7) cDαy(t) = h(t), t ∈ J,

(8) ay(0) + by(T ) = c.

Proof. Assume y satisfies (7), then Lemma 3.2 implies that

y(t) = c0 +
1

Γ(α)

∫ t

0
(t− s)α−1h(s)ds.

From (8), a simple calculation gives

c0 =
1

a+ b

[

c−
b

Γ(α)

∫ T

0
(T − s)α−1h(s)ds

]

.

Hence we get equation (6). Inversely, it is clear that if y satisfies equation
(6), then equations (7)–(8) hold.

Theorem 3.4 Assume the following hypotheses hold:

(H1) F : J × R −→ Pcp,c(R) is a Carathéodory multi-valued map;
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(H2) there exist p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and

nondecreasing such that

‖F (t, u)‖P ≤ p(t)ψ(|u|) for t ∈ J and each u ∈ R;

(H3) there exists l ∈ L1(J,R+), with Iαl <∞ such that

Hd(F (t, u), F (t, u)) ≤ l(t)|u− u| for every u, u ∈ R,

and

d(0, F (t, 0)) ≤ l(t), a.e. t ∈ J ;

(H4) there exists a number M > 0 such that

(9)
M

ψ(M)‖Iαp‖∞ +
|b|ψ(M)(Iαp)(T )

|a+ b|
+

|c|

|a+ b|

> 1.

Then the BVP (1)–(2) has at least one solution on J.

Proof. Transform the problem (1)–(2) into a fixed point problem. Con-
sider the multivalued operator

N(y) =

=



















h ∈ C(J,R) :

h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T− s)α−1v(s)ds− c

]

, v ∈ SF,y



















.

Remark 3.5. Clearly, from Lemma 3.3, the fixed points of N are solutions
to (1)–(2).

We shall show that N satisfies the assumptions of the nonlinear alternative
of Leray-Schauder type ([14]). The proof will be given in several steps.

Step 1. N(y) is convex for each y ∈ C(J,R).
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Indeed, if h1, h2 belong to N(y), then there exist v1, v2 ∈ SF,y such that for
each t ∈ J we have

hi(t) =
1

Γ(α)

∫ t

0
(t− s)α−1vi(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1vi(s)ds− c

]

, i = 1, 2.

Let 0 ≤ d ≤ 1. Then, for each t ∈ J , we have

(dh1 + (1 − d)h2)(t) =

=
1

Γ(α)

∫ t

0
(t− s)α−1[dv1(s) + (1 − d)v2(s)]ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1[dv1(s) + (1 − d)v2(s)]ds− c

]

.

Since SF,y is convex (because F has convex values), we have

dh1 + (1 − d)h2 ∈ N(y).

Step 2. N maps bounded sets into bounded sets in C(J,R).

Let Bη∗ = {y ∈ C(J,R) : ‖y‖∞ ≤ η∗} be a bounded set in C(J,R) and
y ∈ Bη∗ . Then for each h ∈ N(y), there exists v ∈ SF,y such that for each

h(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v(s)ds− c

]

, t ∈ J.

By (H2) we have for each t ∈ J ,

|h(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|v(s)|ds
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+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1|v(s)| +

|c|

|a+ b|

≤
1

Γ(α)

∫ t

0
(t− s)α−1p(s)ψ(|y(s)|)ds

+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1p(s)ψ(|y(s)|)ds +

|c|

|a+ b|

≤ ψ(η∗)Iα(p)(t) +
|b|ψ(η∗)Iα(p)(T )

|a+ b|
+

|c|

|a+ b|
.

Thus

‖h‖∞ ≤ ψ(η∗)‖Iα(p)‖∞ +
|b|ψ(η∗)Iα(p)(T )

|a+ b|
+

|c|

|a+ b|
:= ` .

Step 3. N maps bounded sets into equicontinuous sets of C(J,R).

Let t1, t2 ∈ J, t1 < t2, Bη∗ be a bounded set of C(J,R) as in Step 2, let
y ∈ Bη∗ and h ∈ N(y), then

|h(t2) − h(t1)| =
∣

∣

∣

1

Γ(α)

∫ t1

0
[(t2 − s)α−1 − (t1 − s)α−1]v(s)ds

+
1

Γ(α)

∫ t2

t1

(t2 − s)α−1v(s)ds
∣

∣

∣

≤
‖p‖∞ψ(η∗)

Γ(α)

∫ t1

0
[(t1 − s)α−1 − (t2 − s)α−1]ds

+
|p‖∞ψ(η∗)

Γ(α)

∫ t2

t1

(t2 − s)α−1ds

≤
‖p‖∞ψ(η∗)

Γ(α+ 1)
[(t2 − t1)

α + tα1 − tα2 ] +
‖p‖∞ψ(η∗)

Γ(α+ 1)
(t2 − t1)

α

≤
‖p‖∞ψ(η∗)

Γ(α+ 1)
(t2 − t1)

α +
‖p‖∞ψ(η∗)

Γ(α+ 1)
(tα1 − tα2 ) .
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As t1 −→ t2, the right-hand side of the above inequality tends to zero. As
a consequence of Steps 1 to 3 together with the Arzelá-Ascoli theorem, we
can conclude that N : C(J,R) −→ P(C(J,R)) is completely continuous.

Step 4. N has a closed graph.

Let yn → y∗, hn ∈ N(yn) and hn → h∗. We need to show that h∗ ∈ N(y∗).
hn ∈ N(yn) means that there exists vn ∈ SF,yn

such that, for each t ∈ J ,

hn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1vn(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1vn(s)ds− c

]

.

We have to show that there exists v∗ ∈ SF,y∗ such that, for each t ∈ J ,

h∗(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v∗(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v∗(s)ds− c

]

.

Since F (t, ·) is upper semicontinuous, then for every ε > 0, there exists
n0(ε) ≥ 0 such that for every n ≥ n0, we have

vn(t) ∈ F (t, yn(t)) ⊂ F (t, y∗(t)) + εB(0, 1), a.e. t ∈ J.

Since F (·, ·) has compact values, then there exists a subsequence vnm
(·) such

that

vnm
(·) → v∗(·) as m→ ∞

and

v∗(t) ∈ F (t, y∗(t)), a.e. t ∈ J.

For every w ∈ F (t, y∗(t)), we have

|vnm
(t) − v∗(t)| ≤ |vnm

(t) −w| + |w − v∗(t)|.

Then

|vnm
(t) − v∗(t)| ≤ d(vnm

(t), F (t, y∗(t)).
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By a similar relation, obtained by interchanging the roles of vnm
and v∗, it

follows that

|vnm
(t) − v∗(t)| ≤ Hd(F (t, yn(t)), F (t, y∗(t))) ≤ l(t)‖yn − y∗‖∞.

Then

|hn(t) − h∗(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|vnm

(s) − v∗(s)|ds

+
|b|

|a+ b|

1

Γ(α)

∫ T

0
(T − s)α−1|vnm

(s) − v∗(s)|ds

≤
1

Γ(α)

∫ t

0
(t− s)α−1l(s)ds‖ynm

− y∗‖∞

+
|b|

|a+ b|

1

Γ(α)

∫ T

0
(T − s)α−1l(s)ds‖ynm

− y∗‖∞.

Hence

‖hnm
− h∗‖∞ ≤

1

Γ(α)

∫ t

0
(t− s)α−1l(s)ds‖ynm

− y∗‖∞

+
|b|

|a+ b|

1

Γ(α)

∫ T

0
(T− s)α−1l(s)ds‖ynm

− y∗‖∞→ 0 as m→ ∞.

Step 5. A priori bounds on solutions.

Let y be a possible solution to the problem (1)–(2). Then, there exists
v ∈ SF,y such that, for each t ∈ J ,

y(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v(s)ds− c

]

.

This implies by (H2) that, for each t ∈ J , we have
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|y(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|v(s)|ds

+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1|v(s)| +

|c|

|a+ b|

≤
1

Γ(α)

∫ t

0
(t− s)α−1p(s)ψ(|y(s)|)ds

+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1p(s)ψ(|y(s)|)ds +

|c|

|a+ b|

≤
ψ(‖y‖∞)

Γ(α)

∫ t

0
(t− s)α−1p(s)ds

+
|b|ψ(‖y‖∞)

Γ(α)|a+ b|

∫ T

0
(T − s)α−1p(s)ds+

|c|

|a+ b|

≤ ψ(‖y‖∞)(Iαp)(t) +
|b|ψ(‖y‖∞)(Iαp)(T )

|a+ b|
+

|c|

|a+ b|
.

Thus
‖y‖∞

ψ(‖y‖∞)‖Iαp‖∞ +
|b|ψ(‖y‖∞)(Iαp)(T )

|a+ b|
+

|c|

|a+ b|

≤ 1.

Then by condition (9), there exists M such that ‖y‖∞ 6= M.

Let

U = {y ∈ C(J,R) : ‖y‖∞ < M}.

The operator N : U → P(C(J,R)) is upper semicontinuous and completely
continuous. From the choice of U , there is no y ∈ ∂U such that y ∈ λN(y)
for some λ ∈ (0, 1). As a consequence of the nonlinear alternative of Leray-
Schauder type [14], we deduce that N has a fixed point y in U which is a
solution to the problem (1)–(2). This completes the proof.

We present now a result for the problem (1)–(2) with a nonconvex valued
right hand side. Our considerations are based on the fixed point theorem
for contraction multivalued maps given by Covitz and Nadler [8].
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Theorem 3.6. Assume (H3) and the following hypothesis holds:

(H5) F : J × R −→ Pcp(R) has the property that F (·, u) : J → Pcp(R) is

measurable for each u ∈ R;

If

(10) ‖Iαl‖∞ +
|b|(Iαl)(T )

|a+ b|
< 1,

then the BVP (1)–(2) has at least one solution on J .

Remark 3.7. For each y ∈ C(J,R), the set SF,y is nonempty since by (H5),
F has a measurable selection (see [7], Theorem III.6).

Proof of Theorem 3.6. We shall show that N satisfies the assumptions of
Lemma 2.3. The proof will be given in two steps.

Step 1. N(y) ∈ Pcl(C(J,R)) for each y ∈ C(J,R).

Indeed, let (yn)n≥0 ∈ N(y) such that yn −→ ỹ in C(J,R). Then, ỹ ∈ C(J,R)
and there exists vn ∈ SF,y such that, for each t ∈ J,

yn(t) =
1

Γ(α)

∫ t

0
(t− s)α−1vn(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1vn(s)ds− c

]

.

Using the fact that F has compact values and from (H3), we may pass to
a subsequence if necessary to get that vn converges weakly to v in L1

w(J,R)
(the space endowed with the weak toplogy). An application of Mazur’s
theorem ([37]) implies that vn converges strongly to v and hence v ∈ SF,y.
Then, for each t ∈ J,

yn(t) −→ ỹ(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v(s)ds− c

]

.

So, ỹ ∈ N(y).
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Step 2. There exists γ < 1 such that

Hd(N(y), N(y)) ≤ γ‖y − y‖∞ for each y, y ∈ C(J,R).

Let y, y ∈ C(J,R) and h1 ∈ N(y). Then, there exists v1(t) ∈ F (t, y(t)) such
that for each t ∈ J

h1(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v1(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v1(s)ds− c

]

.

From (H3) it follows that

Hd(F (t, y(t)), F (t, y(t))) ≤ l(t)|y(t) − y(t)|.

Hence, there exists w ∈ F (t, y(t)) such that

|v1(t) − w| ≤ l(t)|y(t) − y(t)|, t ∈ J.

Consider U : J → P(R) given by

U(t) = {w ∈ R : |v1(t) − w| ≤ l(t)|y(t) − y(t)|}.

Since the multivalued operator V (t) = U(t) ∩ F (t, y(t)) is measurable (see
Proposition III.4 in [7]), there exists a function v2(t) which is a measurable
selection for V . So, v2(t) ∈ F (t, y(t)), and for each t ∈ J,

|v1(t) − v2(t)| ≤ l(t)|y(t) − y(t)|.

Let us define for each t ∈ J

h2(t) =
1

Γ(α)

∫ t

0
(t− s)α−1v2(s)ds

−
1

a+ b

[

b

Γ(α)

∫ T

0
(T − s)α−1v2(s)ds− c

]

.
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Then for t ∈ J

|h1(t) − h2(t)| ≤
1

Γ(α)

∫ t

0
(t− s)α−1|v1(s) − v2(s)|ds

+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1|v1(s) − v2(s)|ds

≤
1

Γ(α)

∫ t

0
(t− s)α−1l(s)|y(s) − y(s)|ds

+
|b|

Γ(α)|a + b|

∫ T

0
(T − s)α−1l(s)|y(s) − y(s)|ds.

Thus

‖h1 − h2‖∞ ≤

[

‖Iαl‖∞ +
|b|(Iαl)(T )

|a+ b|

]

‖y − y‖∞.

From an analogous relation, obtained by interchanging the roles of y and y,
it follows that

Hd(N(y), N(y)) ≤

[

‖Iαl‖∞ +
|b|(Iαl)(T )

|a+ b|

]

‖y − y‖∞.

So by (10), N is a contraction and thus, by Lemma 2.3, N has a fixed point
y which is solution to (1)–(2). The proof is complete.

Remark 3.8. Our results for the BVP (1)–(2) are applied to initial value
problems (a = 1, b = 0), terminal value problems (a = 0, b = 1) and
anti-periodic solutions (a = 1, b = 1, c = 0).

4. An example

We apply the main result of the paper (Theorem 3.4) to the following frac-
tional differential inclusion

(11) cDαy(t) ∈ F (t, y), a.e. t ∈ J = [0, T ], 0 < α ≤ 1,

(12) y(0) = y0.

Set

F (t, y) = {v ∈ R : f1(t, y) ≤ v ≤ f2(t, y)},
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where f1, f2 : J × R → R. We assume that for each t ∈ J, f1(t, ·) is lower
semi-continuous (i.e, the set {y ∈ R : f1(t, y) > µ} is open for each µ ∈ R),
and assume that for each t ∈ J, f2(t, ·) is upper semi-continuous (i.e., the
set {y ∈ R : f2(t, y) < µ} is open for each µ ∈ R). Assume that there are
p ∈ C(J,R+) and ψ : [0,∞) → (0,∞) continuous and nondecreasing such
that

max(|f1(t, y)|, |f2(t, y)|) ≤ p(t)ψ(|y|), t ∈ J, and all y ∈ R.

It is clear that F is compact and convex valued, and it is upper semi-
continuous (see [9]). Since all the conditions of Theorem 3.4 are satisfied,
problem (11)–(12) has at least one solution y on J.
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