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Abstract

In this paper, we study the existence of integrable solutions for the
set-valued differential equation of fractional type

(

Dαn −
n−1
∑

i=1

aiD
αi

)

x(t) ∈ F (t, x(ϕ(t))),

a.e. on (0, 1), I1−αnx(0) = c, αn ∈ (0, 1),

where F (t, ·) is lower semicontinuous from R into R and F (·, ·) is mea-
surable. The corresponding single-valued problem will be considered
first.
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1. Introduction

Recently, much attention has been paid to the existence of solutions for the
fractional order differential equations (see [1, 7, 12, 17, 18] and the references
therein). Our aim in this paper is to prove the existence of solutions (in the
class of summable functions) for the set-valued differential equation of the
fractional type

(1) L(D)x(t) ∈ F (t, x(ϕ(t))), a.e. on (0, 1), I1−αnx(0) = c, αn ∈ (0, 1),

where L(D) := Dαn −an−1D
αn−1 −· · ·−a1D

α1 , 0 < α1 < α2 < · · · < αn < 1
and Dαi denotes the standard Riemann-Liouville fractional derivatives. Here
F is a set-valued function defined on [0, 1]×R, with nonempty closed values.
In order to achieve our aim we first consider the corresponding (single-
valued) differential equation

(2)
L(D)x(t) = f(t, x(ϕ(t))),

a.e. on (0, 1), I1−αnx(0) := I1−αnx(t)|t=0 = c, αn ∈ (0, 1).

Our investigation is based on reducing the problem (2) to the Volterra inte-
gral equation

(3) x(t) = x0t
αn−1 +

n−1
∑

i=1

aiI
αn−αix(t) + Iαnf(t, x(ϕ(t))), a.e. on (0, 1),

where

x0 =
1

Γ(αn)

{

c −

n−1
∑

i=1

aiI
1−αix(0)

}

.

The set-valued problem (1) has been considered in [10, 11] and [13] but in
[10] the set-valued function F (·, x(·)) was assumed to satisfy the Lipschitz
condition and in [13] it was assumed to have Carathéodory selections and
considered that αn > 1. Here, we study the problem (1), where F (t, ·) is
lower semicontinuous from R into R and F (·, ·) is measurable. Furthermore,
we point out that particular cases of the problems (2) and (3) have provoked
some interest in the literature (cf. [1, 3, 7, 12, 15, 17, 18] and [22] for
instance). Our paper is a continuation of the results mentioned above. In
comparison with the earlier results of type (2) and (3) we get more general
assumptions. In [1, 3, 7, 15, 18] and [22] the equations (2) and (3) have
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been studied in view of obtaining the existence of continuous solutions, so the
function f is assumed to be continuous and φ(t) = t and in [17], f is assumed
to satisfy the Lipschitz condition. The case of monotonic functions which
satisfy Carathéodory conditions, equation (3), was studied in [10, 12, 13].
Here, in Theorem 3.1, we assume that the function f satisfies only Cara-
théodory conditions. Let us remark that most of the above investigations
have not been complete, however, most researchers have obtained results
not for the set-valued problems but for the corresponding set-valued integral
equations. Some of the earlier results of this type contain errors in the proof
of equivalence of the initial value problems and the corresponding Volterra
integral equations (see survey paper by Kilbas and Trujillo [16], Sections 4
and 5). In the present paper we focus on avoiding such a problem.

2. Notations and auxiliary results

Let L1(a, b) be the space of Lebesgue integrable functions on the interval
I = (a, b). Define Br := {x ∈ L1(I) : ‖x‖ < r, r > 0}. We recall that the
fractional integral operator of order α > 0 with left-hand point a is defined
by

Iα
a x(t) :=

1

Γ(α)

∫ t

a

(t − s)α−1x(s)ds.

Using the known relations between the Beta- and Gamma-function, a well-
known calculation with the Fubini-Tonelli theorem shows that I

α+β
a x =

Iα
a I

β
a x for each x ∈ L1(a, b) and each α, β > 0. In particular, In

a is the n-th
iterate of the usual integral operator, and so Iα

a may indeed be considered as
a corresponding fractional integral. We define the corresponding (Riemann-
Liouville) differential operator

Dα
a x(t) := DI1−α

a x(t), 0 < α < 1.

Here, D denotes the usual differential operator. The following Proposition
is obvious:

Proposition 2.1. Let α, β ∈ R
+, f ∈ L1(0, 1) and n = 1, 2, 3, · · · . Then

we have:

1. Iα : L1(0, 1) → L1(0, 1) is a continuous operator,

2. limα→n Iα f(t) = Inf(t),
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3. DαIαf(t) = f(t). If the fractional derivative Dβf is integrable,

IαDβf(t) = Iα−βf(t) −
[

I1−βf(t)
]

t=0

tα−1

Γ(α)
, 0 < β ≤ α < 1.

For more remarks concerning the fractional calculus, we refer the readers to
([17, 18] and [21]). Now, let us conclude the introduction by stating main
results that will be used in the sequel (cf. [8] and [9]).

Theorem 2.1 (Rothe’s Fixed Point Theorem). Let U be an open, bounded,
convex subset of a Banach space X, 0 ∈ U and let T : Ū → X be completely
continuous. If

(4) T (∂U) ⊆ Ū

then T has a fixed point.

Theorem 2.2 (Kolmogorov’s Compactness Criterion). Let Ω ⊆ Lp(0, 1),
1 ≤ p < ∞. If

1. Ω is bounded in LP (0, 1) and

2. xh → x as h → 0 uniformly with respect to x ∈ Ω, then Ω is relatively
compact in Lp(0, 1), where

xh(t) =
1

h

∫ t+h

t

x(s) ds.

Lemma 2.1 [23]. Let f be Lebesgue integrable on [0, 1]. then

1

h

∫ t+h

t

|f(τ) − f(t)| dτ → 0 for a.e. t ∈ [0, 1].

3. Single-valued problem

In this section, we prove that the integral equation (3) has a summable
solution. We begin by showing that the Cauchy problem (2) and the Volterra
integral equation (3) are equivalent in the sense that if x ∈ L1(0, 1) satisfies
one of these relations, then it also satisfies the other. We prove such a result
by assuming that for every x ∈ L1(0, 1) the function f(·, x(·)) ∈ L1(0, 1).
To facilitate our discussion, let us first state the following assumptions:
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1. f : (0, 1) × R −→ R is a function with the following properties:

(a) for each t ∈ (0, 1), f(t, ·) is continuous,

(b) for each x ∈ R, f(·, x) is measurable,

(c) there exist two real functions t → a(t), t → b(t) such that:

|f(t, x)| ≤ a(t) + b(t)|x| for each t ∈ (0, 1) and x ∈ R,

where a(·) ∈ L1(0, 1) and b(·) is measurable and bounded,

2. ϕ : (0, 1) −→ (0, 1) is nondecreasing, absolutely continuous and there
is a constant M > 0 such that ϕ

′

≥ M a.e. on (0, 1).

Thus, we are in a position to formulate and prove the following

Lemma 3.1. Let 0 < α1 < α2 < ··· < αn < 1. Assume that the assumptions
(1) and (2) are satisfied. If x ∈ L1(0, 1), then x satisfies a.e. the problem
(2) if, and only if, x satisfies the integral equation (3).

Proof. First, we prove the necessity. Let x ∈ L1(0, 1) satisfy a.e. the
problem (2). Since f satisfies Carathéodory conditions (a), (b) and since
ϕ satisfies assumption (2), f(·, x(ϕ(·))) is measurable and from (c) we have

(5)

∫ 1

0
|f(s, x(φ(s))| ds ≤

∫ 1

0
{|a(s)| + |b(s)| |x(φ(s))|} ds

≤ ‖a‖ +
sup |b(t)|

M
‖x‖.

Thus, f(·, x(ϕ(·))) ∈ L1(0, 1) and consequently equation (2) means that
there exist a.e. on (0, 1) the fractional derivatives Dαix ∈ L1(0, 1), i =
1, 2, · · · . According to ([21], Lemma 2.4), I1−αix is absolutely continuous
on [0, 1] for every i. Thanks to Proposition 2.1 we deduce

IαnL(D)x(t) =

= IαnDαnx(t) −
n−1
∑

i=1

aiI
αnDαix(t)

= x(t) −
tαn−1

Γ(αn)
I1−αnx(0) −

n−1
∑

i=1

ai

{

Iαn−αix(t) −
tαn−1

Γ(αn)
I1−αix(0)

}

= x(t) −

n−1
∑

i=1

aiI
αn−αix(t) −

tαn−1

Γ(αn)

{

c −

n−1
∑

i=1

aiI
1−αix(0)

}

.
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since f(·, x(ϕ(·))) ∈ L1(0, 1), Proposition 2.1 results in Iαnf ∈ L1(0, 1) a.e.
on (0, 1). Applying the operator Iαn on both sides of (2) we have

x(t) −

n−1
∑

i=1

aiI
αn−αix(t) −

tαn−1

Γ(αn)

{

c −

n−1
∑

i=1

aiI
1−αix(0)

}

= Iαnf(t, x(ϕ(t)),

therefore, we obtain the integral equation 3.

Conversely, let x ∈ L1(0, 1) satisfy the integral equation (3) a.e. on (0, 1).
Applying the operator Dαn on both sides of (3) and using Proposition 2.1
we obtain

Dαnx(t) =

n−1
∑

i=1

aiDI1−αnIαn−αix(t) + f(t, x(ϕ(t)))

=
n−1
∑

i=1

aiD
αix(t) + f(t, x(ϕ(t))).

From here, we arrive at the equation 2. Now, we show that the initial
conditions of the problem (2) also hold. To see this we transform both sides
of (3) by the operator I1−αn and obtain:

I1−αnx(t) = x0Γ(αn) +

n−1
∑

i=1

aiI
1−αj x(t) +

∫ t

0
f(s, x(ϕ(s))) ds

= c −

n−1
∑

i=1

aiI
1−αj x(0) +

n−1
∑

i=1

aiI
1−αj x(t) +

∫ t

0
f(s, x(ϕ(s))) ds.

Taking the limit as t → 0+, we obtain the initial condition of the problem 2.
Thus the sufficiency is proved, which completes the proof.

Now, we formulate and prove the following result

Theorem 3.1. Suppose that the assumptions of Lemma 3.1 hold along with

(6)

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
+

sup |b(t)|

MΓ(αn + 1)
< 1.

Then equation (2) has at least one solution s.t. x(·) ∈ Br, where
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r ≤

|x0|

αn

+
‖a‖

Γ(1 + αn)

1 −

[

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
+

sup |b(s)|

MΓ(1 + αn)

] .

Proof. Let us define the operator T as

(7)
(Tx)(t) := x0t

αn−1 +

n−1
∑

i=1

aiI
αn−αix(t) + Iαnf(t, x(ϕ(t))),

a.e. on (0, 1).

We claim
T : L1(0, 1) → L1(0, 1), continuously.

To prove our claim, first note that, as in the proof of Lemma 3.1, for each
x ∈ L1(0, 1), f(·, x(ϕ(·))) ∈ L1(0, 1). That is, the operator T makes sense.
Further, f is continuous in x (assumption 1) and Iα maps L1(0, 1) contin-
uously into itself (Proposition 2.1), x → Iαf(t, x(ϕ(t))) is continuous in x.
Since x is an arbitrary element in L1(0, 1), then T is well-defined and maps
L1(0, 1) continuously into L1(0, 1). Now, we will show that T : B̄r → L1(0, 1)
is a completely continuous operator. To achieve this goal we will let x be an
arbitrary element in the open set Br. Then from assumptions (1) and (2)
we have

‖Tx‖ ≤ |x0|

∫ 1

0
tαn−1dt

+

∫ 1

0

∫ t

0

[

n−1
∑

i=1

|ai|
(t − s)αn−αi−1

Γ(αn − αi)
|x(s)| +

(t − s)αn−1

Γ(αn)
|f(s, x(ϕ(s)))|

]

ds dt.

By interchanging the order of integration, we get

‖Tx‖ ≤
|x0|

αn
+

∫ 1

0

∫ 1

s

[

n−1
∑

i=1

|ai|
(t − s)αn−αi−1

Γ(αn − αi)
|x(s)|

+
(t − s)αn−1

Γ(αn)
|f(s, x(ϕ(s)))|

]

dt ds
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≤
|x0|

αn
+

∫ 1

0

[

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
|x(s)|

+
1

Γ(1 + αn)
{|a(s)| + |b(s)||x(ϕ(s))|}

]

ds

≤
|x0|

αn
+

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
‖x‖ +

‖a‖

Γ(1 + αn)

+
sup |b(s)|

MΓ(1 + αn)

∫ 1

0
|x(ϕ(s))||ϕ′(s)| ds

≤
|x0|

αn
+

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
‖x‖ +

‖a‖

Γ(1 + αn)

+
sup |b(s)|

MΓ(1 + αn)

∫ ϕ(1)

ϕ(0)
|x(u)| du .

Therefore

(8) ‖Tx‖ ≤
|x0|

αn

+
‖a‖

Γ(1 + αn)
+

[

n−1
∑

i=1

|ai|

Γ(1 + αn − αi)
+

sup |b(s)|

MΓ(1 + αn)

]

‖x‖ .

The above inequality means that the operator T maps Br into L1(0, 1).
Moreover, if x ∈ ∂Br, then from inequality (8) we have ‖Tx‖ ≤ r i.e.,
the condition (4) of Theorem 2.1 is satisfied. It remains to show that T is
compact, so, let Ω be a bounded subset of Br. We will show that (Tx)h → Tx

in L1(0, 1) as h → 0 uniformly with respect to Tx ∈ Ω. We have the following
estimation:

‖(Tx)h − (Tx)‖ =

∫ 1

0
|(Tx)h(t) − (Tx)(t)| dt

=

∫ 1

0

∣

∣

∣

∣

1

h

∫ t+h

t

(Tx)h(τ) dτ − (Tx)(t)

∣

∣

∣

∣

dt

≤

∫ 1

0

(

1

h

∫ t+h

t

|(Tx)h(τ) − (Tx)(t)| dτ

)

dt
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≤

∫ 1

0

|x0|

h

∫ t+h

t

|ταn−1 − tαn−1| dτ dt

+

∫ 1

0

1

h

∫ t+h

t

n−1
∑

i=1

|ai||I
αn−αix(t) − Iαn−αix(τ)|dτ dt

+

∫ 1

0

1

h

∫ t+h

t

|Iαn f(τ, x(φ(τ))) − Iαn f(t, x(φ(t)))| dτ dt.

Since f, x and tαn−1 are in L1(0, 1), Proposition 2.1 and Lemma 2.1 imply
that T (Ω) is relatively compact, that is, T is a compact operator. Set
U = Br and X = L1(0, 1). Then Theorem 2.1 implies that T has a fixed
point. Therefore, equation (3) has a solution x ∈ L1(0, 1). In view of Lemma
3.1, equation (2) has a solution x ∈ L1(0, 1). This completes the proof.

4. Differential inclusions

In this section, we present our main result by proving the existence of
solutions of equation (1). Consider the multivalued equation (1), where
F : [0, 1] × R → 2R has nonempty closed values. As an important conse-
quence of the main result we can present the following:

Theorem 4.1. Assume that the multifunction F satisfies the following as-
sumptions:

1◦ F (t, x) are nonempty, closed and convex for all (t, x) ∈ [0, 1] × R,

2◦ F (t, ·) is lower semicontinuous from R into R,

3◦ F (·, ·) is measurable,

4◦ |F (t, x)| := sup{|y| : y ∈ F (t, x)} ≤ a(t) + b(t)|x| for each t ∈ (0, 1) and
x ∈ R, where a(·) ∈ L1(0, 1) and b(·) is measurable and bounded,

5◦ ϕ : (0, 1) −→ (0, 1) is nondecreasing and there is a constant M > 0
such that ϕ′ ≥ M for a.e. t ∈ (0, 1),

6◦
∑n−1

i=1
|ai|

Γ(1+αn−αi)
+ sup |b(t)|

MΓ(αn+1) < 1.

Then the equation (1) has at least one continuous solution.
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Proof. By the Kuratowski Selection Theorem (cf. [5], for instance), for
each continuous function x(·) we can find a measurable selection for
F (·, x(ϕ(·)). By assumption 4◦ this selection is integrable. Consider a new
multifunction G(x) := {f ∈ L1(I) : f(t) ∈ F (t, x(ϕ(t)) for a.e. t ∈ [0, 1] }.
Its values are nonempty and since F is lower semicontinuous, G is also lower
semicontinuous. Thus, we can repeat our argumentation from Theorem 3.1
to obtain a priori boundedness of solutions by r. Then G : Br → 2L1(I) has
decomposable values. By the result of Bressan and Colombo ([4]), we get a
continuous selection of G, namely g(x)(t) ∈ F (t, x(ϕ(t))) for a.e. t ∈ [0, 1].
Define f(t, x) := g(x)(t). Now, we are able to repeat the rest of the proof of
Theorem 3.1.

Finally, let us remark that from the proof of Theorem 3.1 it follows that
we can replace assumptions 1◦–4◦ by an arbitrary set of assumptions which
guarantee the existence of Carathéodory selections (see [2]). In particular,
the continuity hypothesis can be weakened replacing lower semi-continuity
with quasi lower-semicontinuity (cf. [14, 19] or [20]).
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