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Abstract

We present an existence theorem for integral equations of Urysohn-
Volterra type involving fuzzy set valued mappings. A fixed point the-
orem due to Schauder is the main tool in our analysis.
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1. Introduction

Dubois and Prade [4, 5] introduced the concept of integration of fuzzy func-
tions. Alternative approaches were later suggested by Goetschel and Vox-
man [8], Kaleva [9], Nanda [11] and others. While Goetschel and Voxman
preferred a Riemann integral type approach, Kaleva chose to define the in-
tegral of a fuzzy function, using the Lebesgue-type concept of integration.
For more information about integration of fuzzy functions and fuzzy integral
equations, for instance, see [1–5, 7–14] and references therein.

By means of the fuzzy integral due to Kaleva [9], we study the fuzzy
integral equation of Urysohn-Volterra, for the fuzzy set-valued mappings of
a real variable whose values are normal, convex, upper semicontinuous and
compactly supported fuzzy sets in R

n. This equation takes the form

x(t) = f(t) +

∫ t

0

u(t, s, g(s, x(s))) ds, t ∈ [0,T].(1.1)



76 M.A. Darwish

In the special case when g(t, x) = x, we obtain the nonlinear integral equa-
tion involving fuzzy set valued mappings, namely

x(t) = f(t) +

∫ t

0

u(t, s, x(s)) ds, t ∈ [0,T].(1.2)

Existence theorems for equation (1.2) have been studied by several authors,
see for examples [12, 13] and references therein. In [14], the authors es-
tablished the unique solvability of equation (1.2) by using the Contraction
Mapping Theorem.

In this paper, we prove the existence theorem of a solution to the fuzzy
integral equation (1.1). The fixed point theorem due to Schauder is the main
tool in carrying out our proof.

2. Auxiliary facts and results

This section is devoted to collect some definitions and results which will be
needed further on.

Definition 1. Let X be a nonempty set. A fuzzy set A in X is characterized
by its membership function A : X → [0, 1] and A(x), called the membership
function of fuzzy set A, is interpreted as the degree of membership of element
x in fuzzy set A for each x ∈ X.

The value zero is used to represent complete non-membership, the value one
is used to represent complete membership and values between them are used
to represent intermediate degrees of membership.

Example 1. The membership function of a fuzzy set of real numbers, close
to zero, can be defined as follows

A(x) =
1

1 + x3
.

Example 2. Let the membership function of a fuzzy set of real numbers be
close to one defined as follows

B(x) = exp(−γ(x − 1)2),

where γ is a positive real number.
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Let Pk(R
n) denote the collection of all nonempty compact convex subsets

of R
n and define the addition and scalar multiplication in Pk(R

n) as usual.
Define the Hausdorff metric

d(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}

where d(b, A) = inf{d(b, a) : a ∈ A}, A, B are nonempty bounded subsets
of R

n. It is clear that (Pk(R
n), d) is a metric space.

A fuzzy set u ∈ R
n is a function u : R

n → [0, 1] for which

(i) u is normal, i.e., there exists an x0 ∈ R
n such that u(x0) = 1,

(ii) u is fuzzy convex,

(iii) u is upper semicontinuous, and

(iv) the closure of {x ∈ R
n : u(x) > 0}, denoted by [u]0, is compact.

For 0 < α ≤ 1, the α−level set [u]α is define by [u]α = {x ∈ R
n : u(x) ≥ α}.

Then from (i) − (iv), it follows that [u]γ ∈ Pk(R
n) for all 0 ≤ α ≤ 1.

By Zadeh’s extension principle, we can define addition and scalar mul-
tiplication in En as follows:

[u + v]γ = [u]γ + [v]γ ,

[λ u]γ = λ [u]γ ,

where u, v ∈ En, λ ∈ R and 0 ≤ γ ≤ 1. Define 0̂ : R
n → [0, 1] by

0̂(t) =

{

1 if t = 0

0 otherwise .

We call 0̂ the null element of En.

Let D : En × En → [0,∞) be define by

D(u, v) = sup
0≤γ≤1

d ([u]γ , [v]γ)

where d is the Hausdorff metric defined in Pk(R
n). Then (En, D) is a com-

plete metric space [13]. Also, we know that [13]

(1) D(u + w, v + w) = D(u, v) for u, v, w ∈ En

(2) D(λu, λv) = |λ| D(u, v) for all u, v ∈ En and λ ∈ R.
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Now, we recall some definitions and theorems concerning integrability prop-
erties for the set-valued mapping of a real variable whose values are in
(En, D) [9, 13].

Definition 2. A mapping F : J → En is strongly measurable if for γ ∈ [0, 1]
the set-valued mapping Fγ : J → Pk(R

n) defined by Fγ(t) = [f(t)]γ is
Lebesgue measurable, when Pk(R

n) is endowed with the topology generated
by the Hausdorff metric d.

Definition 3. A mapping F : J → En is called strongly bounded if there
exists an integrable function h such that ‖x‖ ≤ h(t) for all x ∈ F0(t).

Definition 4. Let F : J → En. The integral of F over J , defined by
∫

J
F (t) dt, is defined levelwise by

(
∫

J

F (t) dt

)γ

=

∫

J

Fγ(t) dt

= { f(t) dt | f : J → R
n is a measurable selection for Fγ} .

A strongly measurable and integrably bounded mapping F : J → En is said
to be integrable over J if

∫

J
F (t) dt ∈ En.

Theorem 1. If F : J → En is strongly measurable and integrably bounded,
then F is integrable.

Theorem 2. If F : J → En is continuous, then it is integrable.

Theorem 3. If F : J → En is integrable and b ∈ J . Then

∫ t0+a

t0

F (t) dt =

∫ b

t0

F (t) dt +

∫ t0+a

b

F (t) dt.

Theorem 4. If F,G : J → En is integrable and λ ∈ R. Then

(1)
∫

J
(F (t) + G(t)) dt =

∫

J
F (t) dt +

∫

J
G(t) dt,

(2)
∫

J
λ F (t) dt = λ

∫

J
F (t) dt,

(3) D(F,G) is integrable,

(4) D
(∫

J
F (t) dt,

∫

J
G(t) dt

)

≤
∫

J
D(F (t), G(t)) dt.
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For our purposes, we will need the following fixed point theorem [6]

Theorem 5 (Schauder’s Fixed Point Theorem). Let C be a convex subset
of a Banach space X and F be a completely continuous mapping of C into
C. Then F has at least one fixed point in C.

3. Main theorem

Let b, M and T be positive numbers. Take U to the set of all x ∈ En for
which there exists an t ∈ [0, T ] such that D(x(t), f(t)) ≤ b. In this section,
we will study equation (1.1) assuming that the following assumptions are
satisfied.

(a1) f : [0, T ] → En is continuous and bounded.

(a2) u : [0, T ] × [0, T ] × U → En is continuous and

D
(

u(t, s, x), 0̂
)

≤ M

for all (t, s, x) ∈ [0, T ] × [0, T ] × U.

(a3) g : [0, T ] × En → En is continuous and bounded.

Now, we are in a position to state and prove our main result.

Theorem 6. Let the assumptions (a1)–(a3) be satisfied. Then equation (1.1)
has at least one solution x on [0, τ ], where τ = min

{

T, Mb−1
}

.

Proof. Define Ψu : [0,∞) → R by

Ψu(δ) = sup {D(u(t2, y2, w2), u(t1, y1, w1)) | (ti, si, yi) ∈ Ω; i = 1, 2,

max {d(t2, t1), d(s2, s1), D(y2, y1)} ≤ δ} .

By the uniform continuity of u on the compact set [0, T ] × [0, T ] × U, Ψu is
continuous at δ = 0 and Ψu(0) = 0.

Now, let

Ω := {y | y ∈ C([0, τ ];En), y(0) = f(0), and D(y, f) ≤ b}
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be a subset of C([0, τ ];En) and

(Fy)(t) = f(t) +

∫ t

0

u(t, s, g(s, y(s))) ds, t ∈ [0, τ ],(3.1)

where D(x, y) = sup0≤t≤τ D(x(t), y(t)).

Solving equation (1.1) is equivalent to finding a fixed point of the oper-
ator F .

It is easy to see, by the aid of our assumptions, that F is continuous. We
claim the operator F : Ω → Ω is completely continuous. Once the claim is
established, then Theorem 5 with X = C([0, τ ]; En) and C = Ω guarantees
the existence of a fixed point of F in Ω, and hence equation (1.1) has a
solution in C([0, τ ]; En).

We begin by showing that condition F maps Ω into itself. To see this,
take y ∈ Ω and 0 ≤ t ≤ τ . Thus

D(Fy(t), f(t)) = D

(

f(t) +

∫ t

0

u(t, s, g(s, y(s))) ds, f(t)

)

≤ D

(
∫ t

0

u(t, s, g(s, y(s))) ds, 0̂

)

≤

∫ t

0

D
(

u(t, s, g(s, y(s))), 0̂
)

ds(3.2)

≤ M t,

thanks to assumption (a2). In particular, (Fy)(0) = f(0) and the estimate

D(x(t), f(t)) ≤ M t(3.3)

holds for any solution x of equation (1.1) in [0, τ ]. Moreover,

D(Fy, f) ≤ M t ≤ b.(3.4)

Hence F : Ω → Ω is continuous. Also F : Ω → Ω is completely continuous.
To see this, due to the theorem of Arzèla-Ascoli, the uniform boundedness
and the equicontinuity of {Fym} is to be checked, where {ym} is a bounded
sequence in Ω. Let 0 ≤ t1 ≤ t2 ≤ τ . Then
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D(Fym)(t2) − (Fym)(t1)) ≤ D(f(t2), f(t1))

+ D

(
∫ t2

0

u(t2, s, g(s, ym(s))) ds,

∫ t1

0

u(t1, s, g(s, ym(s))) ds

)

≤ D(f(t2), f(t1))

+ D

(
∫ t2

0

u(t2, s, g(s, ym(s))) ds,

∫ t2

0

u(t1, s, g(s, ym(s))) ds

)

+ D

(
∫ t2

0

u(t1, s, g(s, ym(s))) ds,

∫ t1

0

u(t1, s, g(s, ym(s))) ds

)

≤ D(f(t2), f(t1))

+

∫ t2

0

D (u(t2, s, g(s, ym(s))), u(t1, s, g(s, ym(s)))) ds

+

∫ t2

t1

D
(

u(t1, s, g(s, ym(s))), 0̂
)

ds

≤ D(f(t2), f(t1)) + Ψu(d(t2, t1)) t2 + M (t2 − t1).

(3.5)

Inequality (3.5), by symmetry, is valid for all t1, t2 ∈ [0, τ ] regardless whether
or not t2 ≥ t1. Therefore, the equicontinuity follows. Now, we have

D(Fym(t), 0̂) ≤ D(Fym(t), f(t)) + D(f(t), 0̂)

≤ b + D(f(t), 0̂).

This means that {Fym} is uniformly bounded. Lemma 5 guarantees that
(1.1) has a solution y ∈ Ω. This completes the proof.
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