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Abstract

The aim of this paper is to study the existence of solutions to a boundary
value problem associated to a nonlinear fractional differential equation where
the nonlinear term depends on a fractional derivative of lower order posed
on the half-line. An appropriate compactness criterion and suitable Banach
spaces are used and so a fixed point theorem is applied to obtain fixed points
which are solutions of our problem.
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1. INTRODUCTION

Boundary value problems associated to ordinary differential equations on un-
bounded domains have been studied widely. Most of them have studied the case
where the nonlinear term does not depend on a lower order fractional derivative
and when it depends on it, the domain of the problem is bounded. Among the
few articles that have studied boundary value problem associated to fractional
differential equations where the nonlinear term depends on a lower order frac-
tional derivative we find the paper of Su and Zhang [5] who have studied the
problem

0 { D u(t) = f(tu(t), Dy u(t)), ¢ € [0, +00),

u(0) =0, Dg‘;lu(oo) = U, Uso €R,
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where 1 < a < 2,f € C([0,+0) x R x R,R), D8‘+,D8‘+_1 are the standard
Riemann-Liouville fractional derivatives. The authors have obtain existence of
sign-changing solutions under a sublinear growth condition by using Schauder’s
fixed point theorem. Motivated by the work of [5], the aim of this paper is to
obtain existence of positive solutions for the problem (2) below under new growth
conditions by using Krasnoselskii’s fixed point theorem.

We consider the following boundary value problem

o { ~Dgu(t) = a(t)g(u(t), Diult), 1t € [0, +oc),
u(0) = Dg‘;lu(oo) =0,

where 1 <a <2,8>0,a—8>1,g€ C([0,+00) x RT,RT), a(.)(1 +t>~1)" ¢

L(]0, +00[), for some > 0 and when z,y are bounded, then Wg((l +

t* D, (1 4+ t*B~1)y) is uniformly bounded with respect to t € RT. We put

1

SRk = sup {7(1 e Ty

g((1+ £ Yy, (1 +127P1)2), (y,2) € [O,R]Q} for R > 0.

2. PRELIMINARIES

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. Fore more details, see for example [3] and [4].

Definition 1. The Riemann-Liouville fractional integral of order o > 0 of a
function w is defined by

1 t — 5)* tu(s)ds a
i [ -9 e

Ifu(t) =
provided that the right- hand side is pointwise defined and I'(«) is the Euler
gamma function defined by I'(ar) = [ oo pa—lo—tgy,

Definition 2. The Riemann-Liouville fractional derivative of order o > 0 of a
function w is defined by

mn

d n—o
Dgiu(t) = dtinlgﬁ u(t)

L & /t@ yrma—ly(s)ds, t >
= —-—— — S u\s S a
I'(n—a)dt™ /, ’ ’

where n is the smallest integer greater than or equal to «, provided that the
right-hand side is pointwise defined. In particular, for o = n, D u = D"u.
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Lemma 1 ([3, 4]). If D% u € L'(a,+00), then

S DY u(t) +Zc]tfa

where c; €R, j=1,2,...,n
We define the spaces

u
X = {u € C([O,+OO),R)7tl}+mool|+(t3’1 = 0}

u(®)]

endowed with the norm ||ul|x = SUP W’

- il
X _{UEC([O7+OO)’R)’tl)1+001+ta p-1

u(®)]
1+ ¢o=p-1

=0}

endowed with the norm ||ul|x/ = sup and

_ B DG )] _ !
Y—{UEXDO+UGC([O,+OO)7R)7 E—O—ool—l—ta B—1 _0

endowed with the norm

u(®)] | Dy u(t)|

P et TSP a1

lully = sup

One can prove easily the following lemma.
Lemma 2. (X,|.||x) and (Y, ||.|ly) are Banach spaces.

We need also the following lemma which is a compactness criterion called
Corduneanu-like compactness criterion. Its proof is easy and similar to the clas-
sical one (see [1]).

Lemma 3. Let Z C Y be a bounded set. Then Z is relatively compact in'Y if
the following conditions hold:

(i) Z CY is equicontinuous on any compact interval of R™, i.e., VJ C [0, +00)
compact, Ve > 0, 4§ > 0, Vi1, to € J,

(t1) u(ts)
|t1—t2\<6:>‘ T — _1‘<5
T+t 14145
and

DP u(ty)  DPu(ty)

0+ 0+

p i a51‘<5Vu€Z
1+ 1+t
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(ii) Z CY is equiconvergent at (+00), i.e., Ve > 0, 3T (e) > 0, such that Vty,ta,
ti by > Tle) = |-l ulta) | o gpg

= =T
1+t 1+t

ut
. a61—10+a;1‘<5 Yu € Z.
+t +t,

‘ D0+u( 1) Dy

Lemma 4 ([5]). Let 1 < a <2 and h € L'([0,4+00),R). Then the unique solution
of

‘) { —Dg u(t) = h(t), te0,+00),

u(0) =0, Dg‘jlu(oo) =0,

is u(t) = 0+°O G(t,s)h(s)ds, where

4 G(t,s) = —
4) (t,5) o=t s> t.

1 {to‘_l—(t—s)a_l, s<t,

By an easy computation, we obtain

1 Pl (t—s)2 P s <t
D Gy(t,s) = {

D(a—p) | to=P-1, s>t

G(t,s) and Dg+Gt(t, s) satisfy

G(t,s)
1+ ¢l ’ ~ I(«)

, for t,s €0,+00)

and
D0+Gtt8 1
T+ 31| =T(a_g)

for t,s € [0,400).

We define the operator 17" by

+oo
Tu(t) = i G(t,s)a(s)g(u(s), D, u(s))ds

- _ J T als)gtus), Dy u(s))ds -y
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Then, we have

+o0
Dg+Tu(t) = ; DOB+Gt(t,s)a(s)g(u(s),D&u(s))dS

+o0o B
(6) _ Jo a<8>ffr<ﬁ,£o+u(s))dsta_ﬂ_l
1

_— t — 8)* P 1g(s)g(u(s), D?, u(s))ds.
g [, €= 9 a(s)a(u(s). D u(s))a

The integral equation (5) indicates that fixed points of the operator 1" coincide
with the solutions of the problem (2).

Our arguments will be based on fixed point theory. So let us recall for the
sake of completeness the following fixed point theorem.

Theorem 1 (]2, 6]). (Krasnoselskii’s fixed point theorem) Let E be a Banach
space and let P C E be a cone. Assume that Q2,9 are two open subsets of
Ewith0eQ Cc O CQandletT : PN (Qa— Q) — P be a completely
continuous operator such that either

(1) |[Tulle < ||ul|lg foru e PNOQ and ||Tu|lg > ||ullg for uw e PN Oy,
or

(i) |[Tullg > ||ullg for w e PN O and | Tul|lg < ||u||lg for uw e PN oQs.

Then T has a fized point in PN (Q2\ Q7).

3. MAIN RESULTS

Let the following quantities be given

tu,1 (tis)a—l

(7) G(t,S) . 1 hl(ta S) = 1+ta—1 = 1gga—T1 > S S t?
Lttemt T(a) | pyt,s) = fﬁ% s>t
and
a—B—1 t— a—B-—1
(8) D§+Gt(t’ s) 1 Hi(t,s) = tia=pr — (1+f52x—5—1 , $s,
1+ ta—B-1 F(O[ — ,8) Hg(t, S) — 13:;7?;1717 s>t

The proof of the following two lemmas is easy.
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Lemma 5. The functions hi(t,s) and ha(t, s) defined in (7) satisfy
1. hi(t,s) is decreasing with respect to its first variable,
2. hq(t,s) is increasing with respect to the second variable,

3. hal(t, s) is increasing with respect to the first variable.

Lemma 6. The functions Hy(t,s) and Hy(t,s) defined in (8) satisfy
1. Hi(t,s) is decreasing with respect to the first variable,
2. Hi(t,s) is increasing with respect to the second variable,

3. Hy(t, s) is increasing with respect to the first variable.

Lemma 7. The Green’s function G(t,s) satisfies the following property

G(t, G(t,
te[ip] 14t >0 14t~
with
J2(172 _ (02 _ 1)0171 1
Ua—l[l + O-oz—l} 1 + g1

01 = min{ } for some o > 1.

Proof. Indeed, we have

min hi(t,s) = hi(o,s)

te[%,a}
B o.a—l (O’ o S)a—l
14 oxl 140l
O,afl (O’ %)a—l

v

1 0_20472 _ (02 o 1)0471
I(a) o 1 4+ o21]

Y

1 O.2a—2 _ (0.2 _ 1)a—1

The in hi(t,s) > . and
nté?;ir] 1(8:2) I'(a) ool 4+ o] !
in ho(t,s) = h (—1 )
min = s
té[%,a] 24 2 o’
1 1
>
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We obtain

G(t,s) > min { o272 (g% — 1)1 1 }

tér[l%lg] 1 _‘_tozfl - 0'0‘71[1 + O-afl] 1 + go—1

and since we have

G(t,s) 1
<
oh 1+t = T(a)’
then the desired result is obtained. [

Lemma 8. The Green’s function G(t,s) satisfies the following property

D’.G t,s D’ .G t,s
min M>928up 0% t(t,5)

te[lo] LHto7f71 = Ty 14 tomft

with

) 02@—2/3—2 _ (0.2 _ 1)04—6—1 1
A2 = min , .
o-af,ﬁfl[l + O-ozfﬁfl] 1 _|_o-o¢7,871
Proof. We have
min Hi(t,s) = hi(o,s)
te[%,a]
Uafﬁfl (J _ 8)047,871

T

N Ua—ﬁ—l B (0. _ %)a—ﬁ—l
1402 Bl 1400871
1 0.204—25—2 _ (0.2 _ 1)a—,8—1
> .
~ T'(a—p) o= B-1[1 4 ga—B-1]
1 200—28—-2 __ 2 1 a—(B—1
Then min Hi(t,s) > 7 : (o ) 7> and
te[L o] (o —B) g ALl 4 go=B-1]
. 1
min Hs(t,s) = Ha(—,s)
tel.0] o

v

We obtain
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and since we have
o D0: Gl 5) 1
i>p 1+ 1 = T(a—p)

then the desired result is obtained. [

Define the cone P by

B
= B +ult) Dy, u(t)
P= {u €Y, u(t) >0, Dy u(t) >0, teRT, To et > 91Hu||X7W
1
> 0o|| Dy ullxr, YVt € [;,G]}.
We remark that 7'(P) C P. Indeed, we have
min ———— = Iin ————al(s)g(u(s), D u(s))ds
te[él,o} 1+ ¢t te[L,0] Jo 1+ to-1 (s)g(u(s) 0+ (s))

teo  Gltys
= [ i et o

+o0 a(t, S)
> [ o 2D aggtuts). Do)
29 L [ Gt shals)otuls), DY, u(s))d
Sup ——— 71 s)a(s)g(u(s w(s))ds
=S T T ’ gluts), o+
~ 0+oo G(t, s)a(S)g(u(s),Dngu(S))ds
Z b1sup — ‘
>0 1+t
Then
. Tu(t)
———= > 0||T
tg[l;;] 1+ta—1 = 1| Tul| x
and
_ DLTuty [+ DY.Gi(ts) o
téﬁll}’]w N té?il?cr} 0 WG(S)Q(U(S)’ o+ u(s))ds

. o+ Ft\b 8
min 7]a s)g s),D s))d
/0 tE[gllvo] ta 5 1 ( ) (U( ), 0 u( )) s
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400 1 +o0
> Oy sup ————— Dy Gyt , Dy u(s))d
> [ s i [ D0 Gt a(e)atu(s). D (e

> 0y sup 0+OO D€+Gt(t, s)a(s)g(u(s),Déu(s))dS.
T >0 1+ to—B—1

Therefore,

DS, Tu(t)
—or= "\ 8 /
S T et = Bell D Tl

In the sequel, we put

where 6 = min(6,02).

Proposition 1. The operator T defined in (5) is completely continuous.

177

Proof. Let V a bounded set in Y, i.e., V C {u € Y;||jul]ly < u} for some p > 0.

1. T(V) is uniformly bounded. Indeed, we have

LU | [ E S o uts). Do
< i [ ot lotuts). D3ty
= rfi) /;OO a(s)(1+571)"ds,

and
Dot | DGl )y us), DBy sy

+oo
—_——7 als u\s 5'LLS S
< fa ) lalletus). Df o)

+oo
_— a(s s 1) s.
g [ a0ty

IN
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Then

+o0
[Tully < S“<F(1a) + F(al— 5)> /0 a(s)(1 4 s> 1Y1ds = S, M.,

Thus we have
|Tully <S,M, YueV.

2. T(V) is equicontinuous.

Indeed, let J C [0,4+00) be a compact interval, t1,te € J with ¢; < to. Then for
any u € V, we have

Tu(tz)  Tu(h) ‘ S/JFOO‘G(tQ, _ G(t1,s) "
0

U ds
1+tg—1 1+t(1iY—1 1+ta 1 1+to¢ 1 0+ ())|

< IS /+OO t27 . G(ths)

a(s)|(1 4+ s*~Hds
1+¢“1 14971 (I )

and

-B-1 -B-1
14ty 1+t

</%w’pgagbﬁ) D Gy(t1,s)
—Jo

‘D@Tmm) D&Twhw

1+t 77! 140!

a(s)g(u(s), Dy u(s))|ds

(1 + s> 1)7ds .

<s, +wzﬁ¢hm,) D Gy(t,
a—(F—1 aﬁl“
1+t 141

The Lebesgue’s dominated convergence theorem asserts the equicontinuous of 7.

3. T(V) is equiconvergent.
Tu(t)

TrgoT =0 and

Using Lebesgue’s dominated theorem, we obtain . hin

DY, Tu(t)
lim 2~ ——

= 0. We have also
t—-+o0 1+ta p-1

+00 +oo
| e latute). Duteids < 5, [ a1+ 577 < e
0

We know that for a given € > 0, there exists a constant L > 0 such that

+o0
©) | lats)gtuts). Dfuls) lds < e

L
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On the other hand, since hin I +ta11 = 1, there exists a constant 77 > 0 such
t——+o0

that for any tq,to > 17, we have

a—1 a—1 a—1 a—1
t t 5

t
0 o gl <l
(10) I L 141971

141571

_ a—1
Similarly, lim (¢ L()X,l = 1 and thus, there exists a constant 75 > L > 0 such
t——+o0 1+t

that for all ¢1,t2 > 15 and 0 < s < L, we have

(ti—5)*"" (t2—5) ’ < ( (t — S)C“l) N (1  (ta— s)a1>

140! 1+t57" 140! 14ty
(11 ( L)a 1 ( L)a 1
t1 — - to — -
< (1771““—1 )+ <1771+ta—1 ) <e.
1 2

Now choose T3 > max{T1,T»}; then for ¢1,t, > T5 and by (9)—(11) we obtain

) Tu(tg) Tu(tl) ‘
1+ta—1 14!

- gl [ e aatuts). Do

1 _Sa—l
-—A O a(sg(uls). Dfu(s))ds|

I
L — )1 — g)e-1
= F(la)/o ‘(t12+t§3—1 - (t11+t?)_1 "a(s) (u(s), Dy, u(s))|ds
1 t1 (tl _ S)ozfl
i F(a)/L 1ot (1)l Dy, u(s))lds

1 t2 (t2 _ S)afl
i T(a)/L 1+t571 la(s)g(u(s), Dy u(s))|ds

max_|a(t)g(u(t), D, u(t))]

L a—1 a—1

< t€[0,L],uev / ‘ 123 - 1] ~as

o) 0o 1141t 1+t$

2 [tee
+ / a(t)g(u(t), D u dt
T J, la(t)g(u(t), Dy, u(t))|
max_|a(t)g(u(t), Dy, u(t))|

< 2 £+ PO Eluey Le, VueV.

I(a) I(a)
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a—fB-1
On the other hand, since lim 1 =
t—+o0 1+t

that for any t1,t2 > T}, we have

=1, there exists a constant 7] > 0 such

tcx B—1 tcx B—1 ta—ﬂ—l ta—ﬁ—l
12 : P Y PR S
1407770 gyt 140771 1+t P!
(t—L)>—F-1

Similarly, lim *“—4—5— =1 and thus there exists a constant 7% > L’ > 0 such
t——+o0 1+t

that for all t1,ty > T4 and 0 < s < L', we have

(i —s)* P71 (ta— S)aﬁl) < (1 (- S)QBI) + (1 _ (2= 8)“51)

140771 14 o Pt 14077t 1485771
t — L)> b1 to — L)>F-1
(13) < (1_%%(1_%)
1+t 1415

Choose T4 > max{T7,T4}. Then for ¢1,ty > T4 and by (9)—(13) we obtain

1+ t”‘ﬁ‘l 145!

2 (1, — g)o—h-1
B ‘/ 1—|—ta soals)g(u(s), Dy, uls))ds

’Dg:rTu(tQ) DY, Tu(ty) ’

1 / ’ (tz — 8)a_1 (tl — S)a_l
(@) Jo |1+ 148971

la(s)g(u(s), Dy u(s))lds

1 t1 (tl )04—6—1
i F(a)/, 14001 la(s)g(u(s), D u(s))ds

_ )a B—1

1 2 (1,
* F(oz)/f 1450t [a(s)g(u(s), Dy u(s))ds

t t Dﬂ " /
te[o{%%ﬁevm( )g(u(t), Dy u(t))] /L ‘tg—ﬁ—l
['(a) o l1pe
ta ot 2 +o00
I () D
1497 = 1}d +F(a) /L/ la(t)g(u(t), 0+u( ))|dt
B
2 n te[ol?%iev |a(t)g(u(t), Dy, u(t))]
1“(04)8 o)

IN

IN

L'e, VuevV.
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The Lebesgue’s dominated convergence theorem asserts the equiconvergency of
T(V). Therefore, Lemma 3 ensures that the set A(V) is relatively compact.

Claim. Operator T is continuous.

Let up,u € PN (Qy — Q) with u,, — u, |Ju,|] < C and |ju]] < C Vn € N*. For
each t € [0, 400), we have

1+t0‘1_1+t0‘1‘_/0 1+ta1‘| 8)s Do un(s))lds
b [ ots)gtuts). D ats)yas
1 Feo un(s)
< — 14 g y_m\2)
< ra<s>\\g(< paeh )
D% u (s)
a—fB— o+ =n
(1+s >71+30‘ 5 1>‘ds
1 Heo u(s)
1 a—1
s [ a0 s
D? u(s)
a—B-1 0+
(1+s )1—}—30‘*5*1)‘
25, [T
< F(ol:)/ a(s)(1 + s*1)ds < +o0,
0
and
DJ Tu,(t)  DJ,Tu( o0 DP Gy(t, s D2 u(o)ld
1+t0¢—6—1_1+ta51‘— 1+ta61” Dorun(s))lds
+oo Dﬁ Gt t S
[ R (o). . s
1 a— 1 un(s)
< -
— I(a—p) / “ ( e 1—1—80‘ 14 s
DP u (s)
a—pB-1 o+n
(1+s )71+8a_5_1)‘ds
1 +oo u(s)
- 1 a—1y "“\°)
ey OIS s =
D, u(s)
a—F—1 0+
(1+s )71+8a_5_1)|d5
25,

e a—1\n
< F(a—ﬁ)/o a(s)(1+ s*7)1ds < 4o0.
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By the Lebesgue dominated convergence theorem, we conclude that the operator
T is continuous. [ |

Theorem 2. Assume that the conditions

: 1 g((+t* Nz, (14t 1)y) : :

(a1) glclfyli%lz i1y prawy = 0, uniformly with respect to
teRT,

(a2) liminf 1@) — oo

z+y—too THY

hold. Then the boundary value problem (2) has at least one positive solution.

Proof. The proof is based on the Krasnoselskii’s fixed point Theorem 1. From
the condition (a1), it follows that there exists Ry > 0 such that mg((l +
t* Dz, (1 4+t P Ny) < e(z +y) with 2 +y < Ry for all ¢ € [0, +00[ and for
some ¢ > 0. Then for u € PN I with Q) = {u €Y : ||ully < Ri1}, we have

Tu(t)
Tret
+oo s
= [ st D s

—/+OO Gt s) a(s)(1+3a*1)n ((l—l—so‘l)u(s) (14 s>~ )D0+u< ))ds
Jo 14t (L sy s B R I R

| /\

o 14s0-1 " 14 sa=6-1

()
5[F(a / (s)(1 + s~ 1)"d5]”u”y

Similarly, we have

1 /+Ooa(s)€(1+5a_1)n< u(s) n D0+U() )ds

IA
[ \/

DY Tu(t)
1+ to=p=1

“+o00 B S
= [ R ae)atats). Dl

_ / £ Dy Giltis) o (152" (<1+8“‘1>u(s> (1+ ") Dy u(s) )ds
B B T e G DT /A N BT B TR
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1 +oo o u(s) D +U( )

[y [ 1 sy

If we choose ¢ such that eM <1, then ||Tully < |jully.
On the other hand, by condition (ag), there exists Ry > 0, such that
g(z,y) > §(x +y) with z +y > Ry and § > 0. Then for u € P N 9y, where

Oy = {u €Y :[lully < Ry} with Ry = max{2R;, 22}, we have

u(t) D0+u( )
R

01 [|ull x + 02| DS, ul| x

u(t) + DY, ult) >

(14)

Y

> 0(||ullx + 1Dy ullx7)

— 1
>0Ry >Ry, V te [;,0’]

with 6 = min(6;, 62). We obtain

U Foo s
= [ e, D u(s)ds

> [T as)gtu(s), D uls)ds

1
o

> 78 as)stuts) + D us)s

/” G(t,s) a(8)5< u(s)  Dpyuls) Jas

+ ¢t 1+s2b 140871

1
oo f, ratoyas] -

Y

|

I\/
|—|q

Similarly, we have

D), Tu(t) /+°° D Gy(t,s)
Lte=f=1 — Jo  14te=B-1

B Gt S
> [P e ae)gtuts), DG u(sns

a(s)g(u(s), D, u(s))ds

q
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o DF Gy(t,s)

= ; 14gap1? a(s)d(u(s )+D0+u( s))ds
O’Dﬁ G (t 8) u<3> D u( )
o+ Tt\2) v
- /1 1+ gamht a(8)5(1+3a—1 1+ s~ B—l)ds

Q

>0

—

9/1 92a(s)ds} lully-

If we choose ¢ such that N > 1, then ||[Tully > ||u|ly. Therefore, by Theorem
1, the operator T has at least one fixed point which is a positive solution of the
boundary value problem (2). |

Example 1. Let the following problem be given

-D L (u™ D an) . teo, ,

) o) = e 0+ (D)), ¢ € 04oc)
u(0) = D, u(oc) = 0.

where a(t) = —— - H#tQ and g(z,y) = 2 +y*'. If n > a; > 1, then the

1
(1+t2)m
hypotheses of Theorem 2 are satisfied and the boundary value problem (15) has
at least one positive solution.

Theorem 3. Assume that the conditions
(b1) there emists functions p,q : R™ — RT such that

g((L+ "Nz, (L4127 N)y) < p(t)]a] + q(t)]y]

U’Zth( o T p(a )) O—H>o a(s)[p(s) +q(s)lds < 1,V x,y € RT,z+y € [0, Ry]
for some Ry >0

1+t D, (14 201
(b2) limin£ g((1 + )x’_i + ) = +o0, uniformly with respect to
z+y—0 x Y
te [%,0’]

hold. Then the boundary value problem (2) has at least one positive solution.

Proof. Let Qs = {u €Y : ||ully < R2}. Then for u € PN 0Sy we have

u oo s
e = [ S agtuts). DG uls)as

_ [T Glts) (1+5* Du(s) (1+s*~7")D,u(s)
_/0 T+ so 1 (8)( 1+so1) (1+sa—6—01) )ds
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T e D) 1
<t [ e ) d

I'(a) 14 g1 1+ sa—B-1
< [ " a) () lully + a(s)]ullylds

< (r | ol + a(s)as) fuly-

Similarly, we have

8 Ty +oo DB Gy(t, s
Dy, Tu(t) _/0 Ma(s)g( (5), Dy uls))ds

1+4ta—B-1 14 to—p-1
- [ PRG ( £ k) +<jafsa_)f )4
< s [ o a2
< o [ @bl + a(o)lulylas
< (g | olo)blo) + a(s)ds) v

Therefore, | Tu|ly < |lu|ly. From (bs) it follows that there exists R; > 0 such
that Ry < Ry and g((1 +t* Da, (1 +t* P Ny) > &(x 4+ y) with z +y < Ry for
all t € [1,0] and ¢ > 0. Then for u € PN 9Q; with Q1 = {u € Y : |jully < R},
we obtain

u oo s
o = [ S agtuts). g uls)as

T G ((1+sa‘1)u(s) (1+8a‘ﬂ‘1)D€+u(s)>ds
—Jr 14t 14 sal 7 14 sv=h-1

> /;f G(t,s) a(s)f( u(s) i D0+u() )ds

,1+t0‘_1 1+Sa—1 1+Sa61

> 5[9 /10 ela(s)ds} Iy

Similarly, we have

DP, Tu(t) +o0 DP Gyt )
0+ — 0+ ’
110 A1 /O T4 oA o(s)g(uls), Dy, u(s))ds

7 Dy, Gilt, ) (1+s* Yu(s) (1+5*)Dgu(s)
z a—FB—1 a S) ( a—1 ) a—B—1 )dS
1 1+t 1+s 1+s
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Y

7 D Gy(t, s) u(s) DP u(s)
o+ 9 ot
1 4 ta—5B-1 CL(S)§(1 +se=1 1 4 ga- ﬁ—1>d5

/92(1 )]l

We choose & such that EN > 1, therefore | Tully > ||u|ly. By Theorem 1, the op-
erator 1" has at least one fixed point, which is a positive solution of the boundary
value problem (2). ]

|—| Q=

Example 2. Let the following problem be given

et [e%
(16) D0+u()*% e (\u 2(t !+|Do+u( )[72), t € [0, +00),
1
u(0) = Dy, u(o0) =
where a = %,,8 % a(t) = éfﬂ; and g(x,y) = %2 + y*2, for all z,y € RT with

0 < ag < 1 and n > ag. Then the condition (b2) of Theorem 3 is satisfied. By
the condition (b1), we obtain

g((1—|— %) (1_|_t4) ) (1+ %)az a2+(1+t%)o¢2 oo
(L+t¢

N\»—A

IN

)] + (14 £5)°2y.

We put p(t) = (1 +£2)°2, () = (1+ £3)°2, with T'(2) ~ 0,8862, (1) ~ 3, 6256,
and we obtain

( = )1/+OO © ) 4 (14 5yt < 0,9361 < 1
- _— | = P 2 * '

Then, the boundary value problem (16) has at least one positive solution.
Theorem 4. Assume that the conditions
a— a—pB—
g((A+t*~ a1+t Dy) M1,

: 1
(e1) limsup,,, o+ (T+te=Tym Tty
uniformly with respect to t € RT,

g9(z,y) 1
(c2) Jimint %550 > N

hold. Then the boundary value problem (2) has at least one positive solution.
Proof. From (c1), it follows that for 0 < g1 < M !, there exists R; > 0 such
that, mg((l +t Dz, (14t 1y) < (M~ —g1)(x+y) with 0 < 24y <

Ry, for all t € RT. Let Q1 = {u € Y, ||ully < Ri}. So for any u € P N 9Qy, we
have
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a(s)g(u(s), Dy u(s))ds

Tu(t) _/+°O G(t,s)
L+t fy 14¢at

1 +oo (1_|_Soc—1)n (1+Sa_1)u(s) ( + 5o B— l)D +u( )
= F(a)/o T G e = L

L e a1y pm u(s) DP, u(s)
= F(a)/o als)(1+577)M 1_51)<1+3a—1 e 1>d3

< (M _51)“(1@) /O+Ooa(s)(1+sa_1)"d3“u||y.

Similarly, we have
DY Tu(t)
14 to=p-1

400 f8+Gt ;S
- [ T atsyatuto). D (e

1 teo (14 s 17 (145 Vu(s) (1+s*7F~ HDP, u(s)
Staomh Oaren(C iyt ret )

1 +oo o _ u(s) D+U()

14 s071 1450761

+o0o
_— a(s s ds| |||y
s ] sl

VAN
S
|
—

|

™

—
~

—

Then
[Tully < (M~ —e))M|ully
< ully-

From (cz), it follows that there exists Ry > 0 and €2 > 0 such that g(z,y) >

(N7! +&)(x+y), for z +y > Ry. Let Ry = max{2R;, %} and Q9 = {u €Y,
|lully < R2}. Then for u € P N 0Ss, we have

u(t) D +u( )
u(t) + Dgeult) > oy + T e

(17) > 01 |lul|x + 02)| DY, ul|x
0(||ullx + | D, ullx7)

| V

V

— 1
ORy > Ry, V t € [;,0’]
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with # = min(6;,62). We obtain

u too 5
U [T gt Dt

z /; ma(s)g(u(s),pgu(s))ds

14t

> [T ) ) uls) + Dl uls))ds

o

> /10G(t’8) a(S)(N_l—i—EQ)( u(s) + D0+u() >ds

11 4tel 1+so71 14 s08-1

_ 7 G(t,s)
1 )
> (v el [k

a(s)ds
> 68 +20)| [ dras)as]fuly,

and

Dy, Tu(t) 20 DP Gy(t, 5)

1taB-1 /O W a(s)g(u(s), D, u(s))ds
T ot als)g(uls), DY u(s))ds

o DB Gt s
> [P o) (N b 2o uls) + Do)

1 14tap-1

o DB Gy(t, s) u(s) Dy, u(s)
o+ 9 -1 0+
2/1 T (s (N e (o + T s

7 D Gy(t, )
—1 0+ 9
(N +€2)9”UHY/1 W(L(S)ds

v

Vv

6N+ ) [/U ra(s)ds] uly-

Then

(o

Tully = (V4 20661 +62)| [ als)as]luly

1
o

> (N~ 4 ea)Nully > Jully-

Therefore, by Theorem 1, the operator T" has at least one fixed point which is a
positive solution of the boundary value problem (2). ]
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By the same way, one can prove the following result.

Theorem 5. Assume that

(dy) there exist functions p,q: R™ — RT such that

g((L+ 12 N, (L4127 Ny) < p(t)|2] + a(t)]y]

with (s + rogy) i a()p(s) + a(o)]ds <1,V 0,y € B,
x4y € [0, Rg] for some Ry > 0,

a— a—pB—
(ds) liminfL g((1+t 1)$J(r1y+t DY) S N L uniformly with respect to t € [%7U]~
x+y—0

Then the boundary value problem (2) has at least one positive solution.

Example 3. Let the problem

Dmu()—é (us(t) + (Dgu(®)™), € [0, +00),
u(0) = D¢, u(o0) =0,

with a(t) = %e*t and g(z,y) = * + y*3 be given.

If n > as > 1, then the hypotheses of Theorem 4 are satisfied and the
boundary value problem (18) has at one positive solution.

If 0 < a3 < 1 with n > ag, then the hypotheses of Theorem 5 are satisfied
and the boundary value problem (18) has at one positive solution.

(18)
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