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Abstract

In this paper, a general existence theorem on the generalized vari-
ational inequality problem GV I(T, C, φ) is derived by using our new
versions of Nikaidô’s coincidence theorem, for the case where the re-
gion C is noncompact and nonconvex, but merely is a nearly convex
set. Equipped with a kind of V0-Karamardian condition, this general
existence theorem contains some existing ones as special cases. Based
on a Saigal condition, we also modify the main theorem to obtain an-
other existence theorem on GV I(T,C, φ), which generalizes a result of
Fang and Peterson.
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1. Introduction and preliminaries

In 1959, Nikaidô established the following remarkable coincidence theorem,
by using a result of Begle [1, 2, 3] plus the outline of the Knaster-Kuratowski-
Mazurkiewicz [11] proof of Brouwer’s fixed point theorem.

Nikaidô’s Coincidence Theorem [14, Theorem 3]. Let M be a compact
Hausdorff topological space, N a finite-dimensional compact convex set, and
σ and τ continuous functions from M to N . If τ is onto and the inverse
image τ−1(q) is acyclic for each q ∈ N (such a function τ is called a Vietoris
map), then there exists some p ∈ M such that σ(p) = τ(p).

In [6], we extend the following two new versions of Nikaidô’s coincidence
theorem using different approaches.

The First Version of Nikaidô’s Coincidence Theorem. Let M be a
nonempty compact convex subset of an LC space X, N a nonempty subset
of a Hausdorff topological space Y , and σ and τ continuous functions from
M to N . If τ is a Vietoris map, then there exists some p ∈ M such that
σ(p) = τ(p).

The Second Version of Nikaidô’s Coincidence Theorem. Let M be a
nonempty compact subset of a Hausdorff topological space X, N a nonempty
convex subset of a locally convex topological vector space Y , and σ and τ
continuous functions from M to N . If τ is a Vietoris map, then there exists
some p ∈ M such that σ(p) = τ(p).

The main purpose of the present paper is to deduce several generalized key
results of variational inequalities based on the above very powerful results,
together with some coercitive property. Indeed, we shall simplify and refor-
mulate the existence theorem of generalized variational inequalities in non-
compact regions, which need not be convex, but is merely a nearly convex
set. Beyond the realm of monotonicity nor metrizability, the results derived
here generalize and unify various earlier ones from the classic optimization
theory.

For a subset C of a topological space X, and a multifunction T : X −→
2Y and a single-valued function φ : C × C ×D −→ R, we define the gener-
alized variational inequality problem to be

GVI(T,C, φ) : Find x ∈ C and y ∈ T (x) such that φ(x, x, y) ≥ 0, ∀ x ∈ C.
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In particular, if φ(z, x, y) := 〈z−x, y〉, ∀ (z, x, y) ∈ C×C×D, the problem
GV I(T,C, φ) reduces to the usual variational inequality V I(T, C).

We digress briefly now to introduce the notation and review some defi-
nitions. Suppose that C and D are subsets of topological spaces X and Y ,
respectively. The interior, relative interior, closure, and convex hull of a set
C will be denoted by intC, riC, clC, and coC, respectively. In this paper, we
shall use LC spaces to indicate the class of locally convex Hausdorff topolog-
ical vector spaces. A multifunction T from C to D, written as T : C −→ 2D,
is simply a function which assigns to each point x of C a (possibly empty)
subset T (x) of D. The domain, range, graph and inverse of T are defined,
respectively, by

D(T ) := {x ∈ C; T (x) 6= ∅},
R(T ) := {y ∈ D; y ∈ T (x) for some x ∈ D(T )},
G(T ) := {(x, y) ∈ C ×D; y ∈ T (x)},

and
T−1(y) := {x ∈ C; y ∈ T (x)}.

A multifunction T : C −→ 2D is upper semicontinuous at x provided for
each open set V containing T (x), there exists an open set U containing x
such that T (y) is contained in V whenever y is in U . We shall say T is upper
semicontinuous (u.s.c.) provided T is u.s.c. at each x. T will be called to
be acyclic provided T is u.s.c. and T (x) is acyclic for each x. Here, an
acyclic space is a nonempty compact Hausdorff path connected topological
space whose n-th homology group is zero for each n = 1, 2, 3, .... Homology,
taken over any fixed field of coefficients, is in terms of either Vietoris or Čech
cycles, as in Begle [1, 2, 3]. For example, any nonempty compact convex set
and any compact contractible space are acyclic.

2. Existence theorems on GV I(T,C, φ)

In this section, we shall use our extensions of Nikaidô’s coincidence theorem
to deal with the existence theorem on GV I(T,C, φ) for the case where C is
noncompact and nonconvex, but merely a nearly convex set. We shall say
that a subset C of X is nearly convex if for every compact subset K of C
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and every neighborhood V of the origin of X, there is a continuous mapping
h : K −→ C such that

(2.1) x− h(x) ∈ V, ∀ x ∈ K,

and h(K) is contained in some convex subset of C. Trivially, all convex
sets are nearly convex. Other related nonconvex sets are the following. A
subset C of X is said to be almost convex (in the sense of Minty [13]), if
ri(coC) ⊂ C. The set C is virtually convex (in the sense of Rockafellar [15]),
if for every compact subset K of coC and every neighborhood V of the origin
in X, there exists a continuous mapping h : K −→ C satisfying (2.1). This
condition implies that C is finitely convex (in the sense on Halkin [8]); that
is, for every finite subset P of C and every neighborhood V of the origin in
X, there exists a continuous mapping h : coP −→ C such that

x− h(x) ∈ V, ∀ x ∈ coP.

It is clear that nearly convex sets may not be convex. However, under some
mild conditions, the class of nearly convex sets also contains almost convex
sets, virtually convex sets, and finitely convex sets. Furthermore, we have
some relations as follows.

Proposition 2.1. If C is almost convex with ri(coC) 6= ∅, then C is nearly
convex. Conversely, any closed nearly convex set C in an LC space X is
almost convex.

Proof. Let z ∈ ri(coC). Notice that for any compact subset K of C and
any neighborhood V of the origin in X, there is λ ∈ (0, 1] small enough that

λ(x− z) ∈ V, ∀ x ∈ K.

Define h : K −→ C by

h(x) := (1− λ)x + λz, ∀ x ∈ K.

Then h is continuous and x − h(x) = λ(x − z) ∈ V, ∀ x ∈ K. Notice that
x ∈ K ⊂ coC and z ∈ ri(coC). Hence,

h(x) = (1− λ)x + λz ∈ ri(coC), ∀ x ∈ K.
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Since C is almost convex, it follows that

h(K) ⊂ ri(coC) ⊂ C.

This shows that C is nearly convex. Conversely, let C be closed and nearly
convex. Notice that for any z ∈ coC, we may write z = λ1x1 + λ2x2 +
· · · + λnxn, where xi ∈ C and λi ∈ [0, 1], i = 1, 2, 3, · · · , n. Let K :=
{x1, x2, · · · , xn}. For any neighborhood V of the origin in X, we may assume
without loss of generality that V is convex, since X is locally convex. Then,
by the definition of near convexity of C, we have a continuous mapping
h : K −→ C such that

x− h(x) ∈ V, ∀ x ∈ K,

and coh(K) ⊂ C. Thus.

z =
n∑

i=1

λixi ∈
n∑

i=1

λi (h(xi) + V ) =
n∑

i=1

λih(xi) + V ⊂ coh(K) + V ⊂ C + V.

It follows that

coC ⊂ C + V for all neighborhood V of the origin in X.

This yields that

ri coC ⊂ coC ⊂
⋂

V

(C + V ) = clC = C,

and hence C is almost convex.

Proposition 2.2. If X is finite-dimensional and C is nonempty virtually
convex, then C is nearly convex. Conversely, any closed nearly convex set
C, with ri(coC) 6= ∅, in an LC space X is virtually convex.

Proof. Since C is nonempty in a finite-dimensional topological vector
space, we have ri coC 6= ∅. So by Proposition 1, it is sufficient to show
that C is almost convex. Without loss of generality, we may assume that
the affine hull of C is the whole space, so that ri(coC) = int(coC). For any
z ∈ int(coC), we can choose r > 0 so small that

z ∈ B(z, r) ⊂ coC,
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where B(z, r) denotes the closed ball of radius r around z in X. Let V be
a neighborhood of the origin in X such that z + V ⊂ B(z, r). Since B(z, r)
is a compact subset of coC and C is virtually convex, there is a continuous
mapping h : B(z, r) −→ C such that

x− h(x) ∈ V, ∀ x ∈ B(z, r).

Define f : B(z, r) −→ X by

f(x) = z + x− h(x), ∀ x ∈ B(z, r).

Then f is continuous from B(z, r) to B(z, r), since

f(x) = z + x− h(x) ∈ z + V ⊂ B(z, r), ∀ x ∈ B(z, r).

Since B(z, r) is a compact convex subset of X, by Brouwer’s fixed point
theorem, there exists some x ∈ B(z, r) such that f(x) = x. It follows that

z = f(x)− x + h(x) = h(x) ∈ C .

This yields that int(coC) ⊂ C, and hence C is almost convex. Thus, the
assertion follows from Proposition 2.1. Conversely, let C be closed and
nearly convex, with ri(coC) 6= ∅. By Proposition 2.1, C is almost convex.
Thus, we have ri(coC) ⊂ C. Let z ∈ ri(coC). Then for any compact subset
K of coC and any neighborhood V of the origin in X, there is λ ∈ (0, 1]
small enough that

λ(x− z) ∈ V, ∀ x ∈ K.

Notice that

(1− λ)x + λz ∈ ri(coC) ⊂ C, ∀ x ∈ K.

Thus, the mapping h : K −→ C, defined by

h(x) := (1− λ)x + λz, ∀ x ∈ K,

is continuous, and x− h(x) = λ(x− z) ∈ V, ∀ x ∈ K. This shows that C is
virtually convex.
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Before proceeding with our main result, let us first define a variant Kara-
mardian condition [9, 10, 16]. Suppose that T : X −→ 2Y is a multifunction
and φ : X×X×Y −→ R is a single-valued function. For a neighborhood V0

of the origin of X, we shall say that T and φ satisfy the V0−Karamardian
condition on C, if there exists a compact convex subset K of C, such that
for each x ∈ (C + V0)\K and y ∈ T (x), there exists some s ∈ K such that
φ(s, x, y) < 0.

Remark. When C is convex, we may take V0 = {0}, so that the V0-
Karamardian condition reduces to the usual Karamardian condition. In
fact, we say that T and φ satisfy the Karamardian condition on C, if there
exists a compact convex subset K of C, such that for each x ∈ C\K and
y ∈ T (x), there is some s ∈ K satisfying φ(s, x, y) < 0.

We now establish our main result, which is a general version of Chan and
Pang [5, Theorem 3.1]. Also, the result derived here generalizes Lin [12] and
some results in [7, 10].

Theorem 2.3. Let C be a nonempty nearly convex subset of an LC space
X, and Y a topological space. Suppose that T : X −→ 2Y is an acyclic
multifunction in C + V for some neighborhood V of the origin in X, and
φ : X ×X × Y −→ R is a continuous function satisfying

(i) φ(x, x, y) ≥ 0, ∀ (x, y) ∈ G(T ),
(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is quasiconvex.

If T and φ satisfy the V0-Karamardian condition on C for some neighbor-
hood V0 of the origin in X, then there is a solution to GV I(T, C, φ).

Proof. Observe that for any convex neighborhood U of the origin in X with
U ⊂ V ∩ V0, the maps T and φ also satisfy the U -Karamardian condition
on C. Hence, without loss of generality, we may assume V0 is convex and T
is acyclic in C + V0. For each z ∈ C, we define

A(z) := {(x, y) ∈ G(T ); φ(z, x, y) ≥ 0}.

To complete the proof, we need to show that

(2.2)
⋂
{A(z); z ∈ C} 6= ∅.
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We first consider the case where G(T ) is compact. By (i), each A(z) is
nonempty and compact. Thus, to prove (2.2), it will suffice to show just
that

(2.3)
⋂
{A(zi); i ∈ I} 6= ∅,

for any finite subset {zi; i ∈ I} of C. Assume now that there is a finite
subset {zi; i ∈ I} of C such that

(2.4)
⋂
{A(zi); i ∈ I} = ∅.

Since C is nearly convex, for the compact subset H := {zi; i ∈ I} of C and
every neighborhood V of the origin in X, there is a continuous mapping
hV : H −→ C such that

zi − hV (zi) ∈ V, ∀ i ∈ I,

and cohV (H) ⊂ C. We now show that there exists a neighborhood U of the
origin such that ⋂

{A(hU (zi)); i ∈ I} = ∅.

Assume that for any neighborhood V of the origin,

⋂
{A(hV (zi)); i ∈ I} 6= ∅.

Then there is some (xV , yV ) ∈ A(hV (zi)) for each i ∈ I. This implies
that (xV , yV ) ∈ G(T ) and φ(hV (zi), xV , yV ) ≥ 0 for each i ∈ I. Since
G(T ) is compact, there exists a subnet of (xV , yV ) converging to some (x̄, ȳ)
as V tends toward {0}. Without loss of generality, we may let (xV , yV )
converge to (x̄, ȳ) ∈ G(T ), since G(T ) is closed. It follows from the upper
semicontinuity of φ that

φ(s, x̄, ȳ) ≥ lim
V

φ(hV (s), xV , yV ) ≥ 0, ∀ s ∈ H.

It follows that

(x̄, ȳ) ∈
⋂
{A(zi); i ∈ I}.
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This contradicts (2.4), and hence there exists a neighborhood U of the origin
such that

(2.5)
⋂
{A(hU (zi)); i ∈ I} = ∅.

For the sake of convenience, we denote hU by h, and for each p := (x, y) ∈
G(T ), we define

fI(p) := min{φ(h(zi), x, y); i ∈ I}.

Then fI(p) < 0 and the term

ε := inf{−fI(p); p ∈ G(T )} > 0,

since fI is u.s.c. on the compact set G(T ). Therefore, for each p ∈ G(T )
there exists some i ∈ I such that

φ(h(zi), p) = fI(p) < ε + fI(p) ≤ 0.

Let
θi(p) := max{0, ε + fI(p)− φ(h(zi), p)}.

Thus, the set Jp := {i ∈ I; θi(p) > 0} is nonempty and the formula

θ(p) :=
∑

i∈I

θi(p)∑
j∈I θj(p)

h(zi)

specifies a well-defined continuous function from G(T ) to the convex hull
coH of the finite set H. On the other hand, let α be the natural projection of
the graph G(T ) onto C. That is, for any p := (x, y) ∈ G(T ) we have α(p) :=
x. Notice that the projection α maps M := G(T ) ∩ (coh(H) × T (coh(H))
into coh(H) continuously, with α−1(x) = {x}×T (x), an acyclic subset of M
for each x ∈ coh(H) ⊂ C. Therefore, Nikaidô’s coincidence theorem yields
some p̄ := (x̄, ȳ) ∈ M such that θ(p̄) = α(p̄). Since Jp̄ is nonempty, for any
i ∈ Jp̄, we have θi(p̄) > 0 and

−fI(p̄) ≥ ε > φ(h(zi), p̄)− fI(p̄).
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From this we have

(2.6) φ(h(zi), p̄) < 0, ∀ i ∈ Jp̄.

Notice that the summation in θ(p̄) can be taken just over Jp̄. It follows that

x̄ = α(p̄) = θ(p̄) ∈ co{h(zi); i ∈ Jp̄} ⊂ C.

Since the function φ(·, ȳ) is quasiconvex on C, by (2.6) we then have

φ(x̄, x̄, ȳ) ≤ max{φ(h(zi), x̄, ȳ); i ∈ Jp̄} < 0.

This contradicts with the condition (i), and hence (2.3) holds.
Next, we consider the general case where G(T ) is not compact. Let

{zi; i ∈ I} be any finite subset of C, and define H := K
⋃{zi; i ∈ I},

where K is a compact convex subset of C, defined in the V0-Karamardian
condition. Since C is nearly convex, for the compact subset H of C, there
is a continuous mapping h : H −→ C such that

x− h(x) ∈ V0, ∀ x ∈ H,

and coh(H) ⊂ C. Then the set L := coH is a compact convex subset of
C + V0. In fact, we have

H ⊂ h(H) + V0 ⊂ coh(H) + V0.

Since coh(H) + V0 is convex, we obtain

L = coH ⊂ coh(H) + V0 ⊂ C + V0.

For each z ∈ C, we define

AL(z) := {(x, y) ∈ G(TL); φ(z, x, y) ≥ 0},

where TL : L −→ 2T (L) is the restriction of T to the nonempty compact
convex subset L of X. Then TL is an acyclic multifunction on L, and its
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graph G(TL) = G(T )
⋂

(L×T (L)) is compact. By a similar argument (after
(2.5)), and applying the second version of Nikaidô’s coincidence theorem to
M := G(TL) and N := L, we have

(2.7)
⋂
{AL(xj); j ∈ J} 6= ∅,

for any finite subset {xj ; j ∈ J} of L. In view of compactness of each set
AL(z) for z ∈ L, we conclude that

⋂
{AL(z); z ∈ L} 6= ∅.

That is, there exists some (x̄, ȳ) ∈ G(TL) such that

φ(z, x̄, ȳ) ≥ 0, ∀ z ∈ L.

In particular, we have

(2.8) φ(s, x̄, ȳ) ≥ 0, ∀ s ∈ K,

and

(2.9) φ(zi, x̄, ȳ) ≥ 0, ∀ i ∈ I.

Now, we claim that x̄ ∈ K. Suppose this were not true. Since (x̄, ȳ) ∈ G(TL),
x̄ ∈ C + V0. Therefore, x̄ ∈ (C + V0)\K. By applying the V0-Karamardian
condition, we have some s ∈ K such that φ(s, x̄, ȳ) < 0, which contradicts
(2.8). The contradiction shows that x̄ ∈ K. Consequently, by (2.9) we obtain

(x̄, ȳ) ∈
⋂
{AK(zi); i ∈ I},

for any finite subset {zi; i ∈ I} of C. Since each AK(z) is compact for each
z ∈ C, we conclude ⋂

{AK(z); z ∈ C} 6= ∅.

Hence (2.2) holds by the fact that AK(z) ⊂ A(z). Thus, we complete the
proof.
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Following the remark before Theorem 2.3, when C is convex, we can relax
Theorem 2.3 to the case where T is acyclic on C and φ is continuous on
C × C × Y . Indeed, we obtain the following result, which is a version of
Saigal theorem [16].

Theorem 2.4. Let C be a nonempty convex subset of an LC space X,
and Y a topological space. Suppose that T : C −→ 2Y is acyclic and φ :
C × C × Y −→ R is a continuous function satisfying

(i) φ(x, x, y) ≥ 0, ∀ (x, y) ∈ G(T ),
(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is quasiconvex.

If T and φ satisfy the Karamardian condition on C, then there is a solution
to GV I(T,C, φ).

Notice that the V0-Karamardian condition requires a compact convex set K
satisfying φ(z, x, y) < 0. We next develop a condition on K such that the
strict inequality can be replaced by φ(z, x, y) ≤ 0. For this, we introduce
the concept of core and bounding points of K. Recall that for a subset A
of X, the algebraic interior of A, denoted by core A, consists of all points a
in A such that for all b ∈ X\{a} there exists some x ∈ A ∩ (a, b) such that
[a, x] ⊂ A, where

(a, b) := {(1− λ)a + λb; 0 < λ < 1},

and
[a, x] := {(1− λ)a + λx; 0 ≤ λ ≤ 1}.

The points neither in core A nor in core(X\A) are called bounding points
of A. We shall denote by ∂A the set consisting of all the bounding points
of A. We remark that for any convex set C, the algebraic interior core C is
again convex, and in general the following inclusion relations hold:

int C ⊂ core C, A ⊂ core A ∪ ∂A.

Lemma 2.5. Let A and B be nonempty subsets of X such that A ⊂ B, and
let φ : X ×X × Y −→ R be a single-value function satisfying

(i) φ(x, x, y) = 0, ∀ (x, y) ∈ G(T ),
(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is convex.
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If x̄ ∈ coreA, ȳ ∈ T (x̄), and φ(z, x̄, ȳ) ≥ 0, ∀ z ∈ A, then φ(z, x̄, ȳ) ≥ 0,
∀ z ∈ B.

Proof. Let x ∈ B. If x = x̄, then φ(z, x̄, ȳ) = 0. If x ∈ B\{x̄}, it follows
from x̄ ∈ coreA that there exists some λ > 0 sufficiently small so that
z := (1 − λ)x̄ + λx ∈ A. Taking this z, we obtain φ((1 − λ)x̄ + λx), x̄, ȳ)
≥ 0. By conditions (i) and (ii), it follows that

λφ(x, x̄, ȳ) = (1− λ)φ(x̄, x̄, ȳ) + λφ(x, x̄, ȳ) ≥ φ((1− λ)x̄ + λx), x̄, ȳ) ≥ 0.

Thus, φ(z, x̄, ȳ) ≥ 0 for all x ∈ B.

The following existence theorem for GV I(T, C, φ) generalizes a result of
Fang and Peterson [7] which is based on Saigal condition [16]. Indeed, the
mapping T they deal with is a u.s.c. multifunction from Rn to Rn whose
images are nonempty compact contractible subsets of Rn.

Theorem 2.6. Let C be a nonempty subset of an LC space X, and Y a
topological space. Suppose that T : C −→ 2Y is an acyclic multifunction and
φ : X ×X × Y −→ R is a continuous function satisfying

(i) φ(x, x, y) = 0, ∀ (x, y) ∈ G(T ),
(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is convex.

It is assumed that there exists a nonempty compact convex subset K of C
such that for each x ∈ ∂K, and y ∈ T (x), there exists some w ∈ coreK such
that

(2.10) φ(w, x, y) ≤ 0.

Then there exists a solution to GV I(T,C, φ).

Proof. Since K is a nonempty compact convex subset of C, it follows from
Theorem 2.4 that the problem GV I(T, K, φ) has a solution. That is, there
exist x̄ ∈ K and ȳ ∈ T (x̄) such that

(2.11) φ(z, x̄, ȳ) ≥ 0, ∀ z ∈ K.

Since x ∈ K ⊂ coreK ∪ ∂K, we conclude the proof by considering two
possible cases.

Case 1. x̄ ∈ coreK. Applying Lemma 2.5 with A := K and B := C,
together with (2.11), yields a solution to GV I(T, C, φ).
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Case 2. x̄ ∈ ∂K. It follows from (2.10) that there exists some w ∈ coreK
such that

(2.12) φ(w, x̄, ȳ) ≤ 0.

Combining (2.11) with (2.12) yields

(2.13) φ(w, x̄, ȳ) = 0.

For any x ∈ C\{x̄}, it follows from the fact w ∈ coreK that there exists
some λ > 0 sufficiently small so that z := (1− λ)w + λx ∈ K. Taking this z
in (2.11), we obtain φ((1 − λ)w + λx), x̄, ȳ) ≥ 0. By the condition (ii) and
(2.13), it follows that

λφ(x, x̄, ȳ) = (1− λ)φ(w, x̄, ȳ) + λφ(x, x̄, ȳ) ≥ φ((1− λ)w + λx), x̄, ȳ) ≥ 0.

Thus, φ(x, x̄, ȳ) ≥ 0, ∀ x ∈ C, and hence x̄ is a solution of GV I(T,C, φ).
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