
Discussiones Mathematicae 79
Differential Inclusions, Control and Optimization 22 (2002 ) 79–95

NEW VERSIONS ON NIKAIDÔ’S COINCIDENCE
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Abstract

In 1959, Nikaidô established a remarkable coincidence theorem in a
compact Hausdorff topological space, to generalize and to give a unified
treatment to the results of Gale regarding the existence of economic
equilibrium and the theorems in game problems. The main purpose
of the present paper is to deduce several generalized key results based
on this very powerful result, together with some KKM property. In-
deed, we shall simplify and reformulate a few coincidence theorems
on acyclic multifunctions, as well as some Górniewicz-type fixed point
theorems. Beyond the realm of monotonicity nor metrizability, the
results derived here generalize and unify various earlier ones from the
classic optimization theory. In the sequel, we shall deduce two versions
of Nikaidô’s coincidence theorem about Vietoris maps from different
approaches.
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1. Introduction and preliminaries

An acyclic space is a nonempty compact Hausdorff path connected with a
topological space whose n-th homology group is zero for each n = 1, 2, 3, . . ..
Homology, taken over any fixed field of coefficients, is in terms of either
Vietoris or Čech cycles, as in Begle [2, 3, 4]. For example, any nonempty
compact convex set and any compact contractible space are acyclic. In this
paper, we will establish several unified coincidence theorems, together with
fixed point theorems, and several corollaries from them for acyclic multifuc-
tions. Beyond the realm of monotonicity and convexity on operators, the
results derived here generalize and unify various earlier ones from classic
optimization theory, as will be indicated below. For the purpose, we shall
adopt a technical result from Nikaidô [19]. Indeed, a remarkable coincidence
theorem, due to Nikaidô, is proved by using a result of Begle [2, 3, 4] plus
the outline of the Knaster-Kuratowski-Mazurkiewicz [16] proof of Brouwer’s
fixed point theorem.

Nikaidô’s Coincidence Theorem [19, Theorem 3]. Let M be a compact
Hausdorff topological space, N a finite-dimensional compact convex set, and
σ and τ be continuous functions from M to N . If τ is onto and the inverse
image τ−1(q) is acyclic for each q ∈ N (such a function τ is called a Vietoris
map), then there exists some p ∈ M such that σ(p) = τ(p).

In particular, when T = τ−1 and f = σ, Nikaidô’s coincidence theorem
implies

Górniewicz’s Fixed Point Theorem [10, 13, 14]. Let P be an n-simplex
in a topological vector space X, and Y be any compact Hausdorff topological
space. If T : P −→ Y is an acyclic multifunction and f : Y −→ P is a
continuous function, then f ◦ T : P −→ P has a fixed point.

Indeed, Górniewicz theorems are results of Lefschetz type theorems. Ac-
cordingly, there exist x ∈ P and y ∈ T (x) such that x = f(y). Such a pair
(x, y) is called a coincidence for T and f . For multifunctions T : X −→ Y
and S : Y −→ X, we define the most central of the problems treated here,
the coincidence for T and S, to be a pair (x, y) ∈ X × Y with y ∈ T (x)
and x ∈ S(y). When X = Y and S is the identity map on X, then the
coincidence problem is reduced to the fixed-point problem of T .

We digress briefly now to list a little notation and review some defini-
tions. Suppose that C and D are subsets of topological spaces X and Y ,
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respectively. In this paper, we shall use LC spaces to indicate the class of
locally convex Hausdorff topological vector spaces. A multifunction T from
C to D, written as T : C −→ D, is simply a function which assigns each
point x of C to a (possibly empty) subset T (x) of D. The domain, range,
graph and inverse of T are defined, respectively, by

D(T ) := {x ∈ C; T (x) 6= ∅},
R(T ) := {y ∈ D; y ∈ T (x) for some x ∈ D(T )},
G(T ) := {(x, y) ∈ C ×D; y ∈ T (x)},

and
G(T−1) := {(y, x) ∈ D × C; (x, y) ∈ G(T )}.

A multifunction T : C −→ D is upper semicontinuous at x provided for each
open set V containing T (x), there exists an open set U containing x such
that T (y) is contained in V whenever y is in U . We shall say T is upper
semicontinuous (u.s.c.) provided T is u.s.c. at each x. T will be called to
be acyclic provided T is u.s.c. and T (x) is acyclic for each x. It is known
from a Künneth theorem (see Massey [18]) that the Cartesian product of
two acyclic multifunctions is acyclic. T is closed if the graph of T is closed
in C × D. It is also known that any u.s.c. compact-valued multifunction
T : C −→ D is closed. Conversely, if T is closed and D is compact, then
T is also u.s.c.. When R(T ) is contained in some compact subset of D,
we shall say T to be compact; in other words, clR(T ) is compact in D.
Therefore, any compact closed multifunction is u.s.c.. It is clear that T is
compact whenever D is compact. As well, when C is compact, any u.s.c.
compact-valued multifunction T is compact. Further, T is said to have the
local intersection property if, for each x ∈ C with T (x) 6= φ, there exists an
open neighborhood N(x) of x such that

⋂

z∈N(x)

T (z) 6= φ.

The following proposition provides a relation between Vietoris maps and
acyclic multifunctions.

Proposition 1.1. Let M and N be nonempty subsets of Hausdorff topolog-
ical spaces X and Y , respectively, and let τ be a continuous Vietoris map
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from M to N . If M is compact, then the multifunction τ−1 : N −→ M is
acyclic.

Proof. Let T = τ−1. Since τ is a Vietoris map, T (q) = τ−1(q) is nonempty
and acyclic for each q ∈ N . Notice that

G(τ) = {(y, x) ∈ M ×N ; τ(y) = x} = {(y, x) ∈ M × τ(M); τ(y) = x}

is a closed subset of M × τ(M), as τ is continuous. It follows that

G(T ) = G(τ−1) = {(x, y) ∈ N×M ; y ∈ τ−1x} = {(x, y) ∈ N×M ; τ(y) = x}

is also closed. This shows that T is a closed multifunction. Since R(T ) is
contained in the compact set M , it follows that T is u.s.c., and hence T is
an acyclic multifunction.

For a subset C of X, the closure and the convex hull of C will be denoted
by clC and coC, respectively. For such a pair (T,C) and a function φ :
C × C × D −→ R ∪ {+∞}, we shall also consider an auxiliary problem,
called the generalized variational inequality problem :

GV I(T,C, φ) : Find x ∈ C and y ∈ T (x) such that φ(x, x, y) ≥ 0, ∀ x ∈ C.

In particular, if φ(z, x, y) := 〈z−x, y〉, ∀ (z, x, y) ∈ C×C×D, the problem
GV I(T,C, φ) reduces to the usual variational inequality V I(T, C). Further-
more, when X is a reflexive Banach space, with dual X∗, and T is the
subdifferential of a convex function f : X −→ R ∪ {+∞}; i.e.,

T (x) = ∂f(x) := {y ∈ X∗; f(z)− f(x) ≥ 〈z − x, y〉, ∀z ∈ X},

it is easy to see that (x, y) solves V I(T, C) only if x solves the abstract
convex programming problem min{f(x); x ∈ C}.
Finally, we expose a general continuous selection theorem. A locally selec-
tionable multifunction T : C −→ D is a multifunction satisfying for each
x ∈ C there exist an open neighborhood Ux of x and a continuous mapping
fx : C −→ D such that

fx(y) ∈ T (y), ∀ y ∈ Ux ∩ C.

In virtue of partition of unity, we follow mainly an idea from Wu and Shen
[22] to establish a unified continuous selection theorem as follows.
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Proposition 1.2. Let S : C −→ D be a multifunction, where C is a
nonempty subset of a Hausdorff topological space X, and D is a nonempty
convex subset of a topological vector space Y . If K is a compact subset of C
and any one of the following properties holds, then there exists a continuous
selection f from S on K; that is, f(x) ∈ S(x), ∀ x ∈ K.

(I) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,
(ii) A is locally selectionable.

(II) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,
(ii) A has the local intersection property.

(III) There exists a multifunction A : K −→ D satisfying

(i) A(x) is nonempty and coA(x) ⊂ S(x) for each x ∈ K,
(ii) A−1(y) is open for each y ∈ D.

Proof. (I) Since A is locally selectionable, for any x ∈ K ⊂ C, there exist
an open neighborhood Ux of x and a continuous mapping fx : K −→ D such
that

fx(y) ∈ A(y), ∀ y ∈ Ux ∩K.

Since {Ux; x ∈ K} forms an open covering of the compact set K, there
is a finite subcover {Ux1 , Ux2 , · · · , Uxn} of K. Thus, there is a partition of
unity subordinate to this subcover; that is, there are continuous functions
ϕk : K −→ [0, 1], k = 1, 2, . . . , n, such that

(i) for each k, ϕk(y) = 0, ∀ y /∈ Uxk
,

(ii)
∑n

k=1 ϕk(y) = 1, ∀ y ∈ K.

Define a mapping f : K −→ Y by

f(y) :=
n∑

k=1

ϕk(y)fxk
(y), ∀ y ∈ K.

Thus, f is clearly continuous. Note that for y ∈ K with ϕk(y) 6= 0, the
condition (i) yields y ∈ Uxk

, and hence fxk
(y) ∈ A(y). It follows that
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f(y) =
n∑

k=1

ϕk(y)fxk
(y) ∈

n∑

k=1

ϕk(y)A(y) ⊂ coA(y) ⊂ S(y), ∀ y ∈ K.

This shows that f is a continuous selection from S on K.

(II) Since A has the local intersection property, for each x ∈ K, there exists
an open neighborhood N(x) of x such that

F (x) :=
⋂

z∈N(x)

A(z) 6= ∅.

Since K is compact, there is a finite open cover {N(xi); i ∈ I} of K and a
partition of unity subordinated to this cover, say {fi; i ∈ I}, such that
(i) fi(x) = 0, ∀ x /∈ N(xi) for each i ∈ I,
(ii)

∑
i∈I fi(x) = 1, ∀ x ∈ K.

Now, we choose any yi ∈ F (xi) for each i ∈ I, and define f : K −→ Y by

f(x) :=
∑

i∈I

fi(x)yi, ∀ x ∈ K.

Then f is clearly continuous. Moreover, for each x ∈ K and each i ∈ I, if
fi(x) 6= 0, then x ∈ N(xi). It follows that yi ∈ F (xi) ⊂ A(x), and hence

f(x) ∈ co{yi; fi(x) 6= 0} ⊂ coA(x) ⊂ S(x), ∀ x ∈ K.

This yields that f is a continuous selection from S on K.

(III) Since A−1(y) is open for each y ∈ D, then for each x ∈ C with A(x) 6= ∅,
we can choose a y ∈ A(x) and let N(x) = A−1(y). Then N(x) is an open
neighborhood of x and y ∈ ∩z∈N(x)A(z). Hence, A has the local intersection
property, and the proof is complete.

As an application of Nikaidô’s Coincidence Theorem, a new coincidence
theorem is obtained as follows. This result shall be further extended, re-
spectively; see Theorem 2.6 and Theorem 3.4.

Theorem 1.3. Let C be a nonempty compact subset of a Hausdorff topo-
logical space X and D be a nonempty convex subset of a topological vector
space Y . If S : C −→ D is a multifunction satisfying any one of conditions
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(II)∼(III) in Proposition 1.2 with K = C, and T : D −→ C is an acyclic
multifunction, then there is a coincidence for S and T ; that is, there is some
(x̄, ȳ) ∈ C ×D such that ȳ ∈ S(x̄) and x̄ ∈ T (ȳ).

Proof. Following the proof of Proposition 1.2, we have a finite subset
{yi; i ∈ I} of D and a continuous selection f from S. Let N := co{yi; i ∈ I}.
Then N is a finite-dimensional compact convex subset of D. Since T is u.s.c.,
the image T (N) is compact. Thus, the closed subset

M := (T (N)×N) ∩ G(T−1)

of the compact set T (N) × N is also compact. Let σ and τ be two maps
from M into N defined by σ(x, y) := f(x) and τ(x, y) := y. Then they are
continuous and τ is a Vietoris map, since

τ−1(y) = {(x, y) ∈ M ; τ(x, y) = y} = T (y)× {y}

is an acyclic set for each y ∈ N . Applying Nikaidô’s coincidence theorem,
we have some (x̄, ȳ) ∈ M ⊂ C × D such that σ(x̄, ȳ) = τ(x̄, ȳ). It follows
that x̄ ∈ T (ȳ) and ȳ = σ(x̄, ȳ) = f(x̄) ∈ S(x̄).

2. The first version of Nikaidô’s coincidence theorem

We begin with a technical result regarding the existence of Fan-type elements
[8, 9]. The versatile tool to prove it is adapted from Nikaidô [19], where there
is a consequence of the Lefschetz fixed point theorem. For the bibliography,
see also [4, 5, 6, 10, 13, 15, 17, 20, 21].

Lemma 2.1. Let C be a nonempty compact convex subset of an LC space
X, D a subset of a Hausdorff topological space Y , and T : C −→ D be an
acyclic multifunction. Suppose that

F (z, x) = {y ∈ T (x); ϕ1(z, y) ≥ ϕ2(x, y)}, ∀ z, x ∈ C,

where ϕ1, ϕ2 : C ×D −→ R ∪ {+∞} are functions satisfying
(i) ϕ1(x, y) ≥ ϕ2(x, y), ∀ (x, y) ∈ G(T ),
(ii) for each y ∈ D the map x 7→ ϕ1(x, y) is quasiconvex on C,
(iii) for each x ∈ C the map y 7→ ϕ1(x, y) is continuous on D,
(iv) the function ϕ2 is l.s.c. on C ×D.
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Then there exists a Fan-type element x̄ ∈ C such that
⋂

z∈C

F (z, x̄) 6= ∅.

Proof. First, we observe that G(T ) is compact, as it is a closed subset
of the compact set C × T (C). Let α and β be the natural projections
of the graph G(T ) of T onto C and T (C), respectively. That is, for any
p := (x, y) ∈ G(T ) we have α(p) := x and β(p) := y. Thus for all z ∈ C the
sets

A(z) := {p ∈ G(T ); ϕ1(z, β(p)) ≥ ϕ2(p)}

are each nonempty and compact. To complete the proof we need to show
that

(1)
⋂
{A(z); z ∈ C} 6= ∅.

For this, it will suffice to show just that

(2)
⋂
{A(zi); i ∈ I} 6= ∅,

for any nonempty finite subset {zi; i ∈ I} of C. Assume now that there is
a finite subset {zi; i ∈ I} of C such that

⋂
{A(zi); i ∈ I} = ∅.

Then for each p ∈ G(T )

fI(p) := min{ϕ1(zi, β(p)); i ∈ I} < ϕ2(p).

More specifically, since ϕ2 − fI is l.s.c. on the compact set G(T ), for each
p ∈ G(T ) there exists some j ∈ I such that

(3) ϕ1(zj , β(p)) = fI(p) < ε + fI(p) ≤ ϕ2(p),

where ε is a positive number, given by

ε := inf{ϕ2(p)− fI(p); p ∈ G(T )} > 0.
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Let

θi(p) := max{0, ε + fI(p)− ϕ1(zi, β(p))}.

It follows from (3) that the formula

θ(p) :=
∑

i∈I θi(p)zi∑
i∈I θi(p)

specifies a well-defined continuous function from G(T ) to the set S :=
co{zi; i ∈ I}. Also, the projection α maps L := G(T ) ∩ (S × T (C))
into S continuously, with α−1(x) = {x} × T (x), an acyclic subset of L
for each x ∈ S ⊂ C. Therefore, Nikaidô’s coincidence theorem yields some
p̄ := (x̄, ȳ) ∈ L such that θ(p̄) = α(p̄). Let J := {i ∈ I; θi(p̄) > 0}. Then J
is nonempty by (3). Since θi(p̄) > 0 for every i ∈ J , it follows that

ε + fI(p̄)− ϕ1(zi, β(p̄)) > 0, ∀ i ∈ J.

Thus, by the definition of ε, we have

ϕ2(p̄)− fI(p̄) ≥ ε > ϕ1(zi, β(p̄))− fI(p̄), ∀ i ∈ J.

From this, we deduce

(4) ϕ2(p̄) > ϕ1(zi, β(p̄)), ∀ i ∈ J.

Notice that the summation in θ(p̄) can be taken just over J . It follows that

x̄ = α(p̄) = θ(p̄) ∈ co{zi; i ∈ J} ⊂ C.

Since the function ϕ1(·, ȳ) is quasiconvex on C, by (4) we then have

ϕ1(x̄, ȳ) ≤ max{ϕ1(zi, ȳ); i ∈ J} < ϕ2(p̄) ≤ ϕ1(x̄, ȳ).

This contradiction yields (2), and hence the proof is complete.
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Remark that for a function φ : C ×C ×D −→ R ∪ {+∞}, we may consider
the sets

F (z, x) = {y ∈ T (x); φ(z, x, y) ≥ 0}, ∀ z, x ∈ C.

An argumentation similar to that used in the proof of Lemma 2.1 shows
that there exists a Fan-type element x̄ ∈ C such that

⋂

z∈C

F (z, x̄) 6= ∅.

Thus, we can obtain an existence theorem of solutions to GV I(T, C, φ) as
follows.

Theorem 2.2. Let C be a nonempty compact convex subset of an LC space
X, D a subset of a Hausdorff topological space Y , and T : C −→ D be an
acyclic multifunction. Suppose that φ : C × C × D −→ R ∪ {+∞} is a
function satisfying

(i) φ(x, x, y) ≥ 0, ∀ (x, y) ∈ G(T ),
(ii) for each (x, y) ∈ G(T ), the map z 7→ φ(z, x, y) is quasiconvex,
(iii) for each z ∈ C, the map (x, y) 7→ φ(z, x, y) is continuous.

Then there is a solution to GV I(T, C, φ).

Now, we will prove a reverse form of Górniewicz-type fixed point theorem.
Indeed, this result unifies and relaxes almost all of the well-known fixed
point theorems, because the question, if every compact convex subset of an
LC space is its neighborhood retract, seems to be an open problem (in the
non-metrizable case).

Theorem 2.3. Let C be a nonempty compact convex subset of an LC space
X, and D be a nonempty subset of a Hausdorff topological space Y . If
f : C −→ D is a continuous function, and T : D −→ C is an acyclic
multifunction, then there exists a fixed point to the composite T ◦ f .

Proof. Since X is locally convex, there is a local base β for X consisting
of closed symmetric convex neighborhoods of 0 in X. For U ∈ β, we define

FU := {z ∈ C; z ∈ T ◦ f(z) + U}.
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It is clear that z ∈ C is a fixed point of T ◦ f if and only if

(5) z ∈
⋂
{FU ; U ∈ β}.

Since C is compact, it will suffice to show just that the sets FU are closed
and satisfy the finite intersection property. Note that for any finite collection
{U1, U2, · · · , Un} from β, there is a U ∈ β such that FU ⊂ FUk

, ∀ k =
1, 2, · · · , n. Therefore, it will suffice just to show that each FU is both closed
and nonempty. Assume that FU is empty for some U ∈ β, we then have

x− y /∈ U, ∀ (x, y) ∈ G(T ◦ f).

Hence, the Minkowski functional

µU (x) := inf{λ > 0; x ∈ λU}

is continuous and satisfies

(6) µU (x− y) ≥ 1, ∀ (x, y) ∈ G(T ◦ f).

It follows that the functional αU : C −→ R, defined by

αU (x) := min{µU (x− y); y ∈ T ◦ f(x)}, ∀ x ∈ C,

satisfies that αU (x) ≥ 1,∀ x ∈ C. Applying Lemma 2.1 to (T ◦f,X, X, C,C)
in place of (T, X, Y, C,D) with ϕ1(x, y) = µU (x− y), and ϕ2(x, y) = αU (x),
we obtain some x̄ ∈ C and ȳ ∈ T · f(x̄) such that

µU (x− ȳ) ≥ αU (x̄), ∀ x ∈ C.

Since ȳ ∈ T ◦ f(x̄) ⊂ C, we deduce a contradiction:

0 = µU (ȳ − ȳ) ≥ αU (x̄) ≥ 1.

This implies that all the sets FU are nonempty. It remains to show that
each FU is closed. Define ∆ := {(x, x); x ∈ C}, and let TU : C −→ X be
the multifunction given by

TU (x) := T ◦ f(x) + U, ∀ x ∈ C.
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Observe that FU = p(∆ ∩G(TU )), where p denotes the projection of C ×C
onto the first coordinate. Notice that T ◦ f is u.s.c.. The set G(TU ) =
G(T ◦f)+{0}×U is closed as an algebraic sum of the compact set G(T ◦f)
and the closed set {0} × U in X × X. It follows that each FU is compact
and hence closed. Thus, the proof is complete.

Remark that if the convex set C in Theorem 2.3 (see also Corollary 3.3) was
a neighborhood retract in an LC space X, then both theorems (2.3 and 3.3)
would follow from the Lefschetz fixed point theorem for admissible compact
multifunctions in the sense of Fournier and Górniewicz [10, Theorem 6.3].
For further considerations on fixed points of noncompact multifunctions,
see e.g., [1, 12]. Using the above technical result, we can establish several
consequences as follows. By taking C = D and f(x) = x, ∀ x ∈ C, we
first obtain a rather general fixed point theorem. Indeed, many well-known
results can be considered as our consequences, such as Brouwer’s fixed point
theorem, Kakutani’s fixed point theorem, Browder’s fixed point theorem,
and Fan-Glicksberg’s fixed point theorem.

Corollary 2.4. If C is a nonempty compact convex subset of an LC space
X, then any acyclic multifunction T from C into itself has a fixed point.

From this, we are able to deduce a Himmelberg-type fixed point theorem,
which is established by Park [20].

Corollary 2.5. If C is a nonempty convex subset of an LC space X, then
any compact acyclic multifunction T from C into itself has a fixed point.

As an application, we can extend a new coincidence theorem [7, Theorem
2.1] to the case that the image S(x) need not be convex and the lower section
S−1(y) is not necessarily open.

Theorem 2.6. Let C be a nonempty compact convex subset of an LC space
X, and D be a nonempty convex subset of a Hausdorff topological space Y .
If S : C −→ D is a multifunction satisfying any one of conditions (I)∼(III)
in Proposition 1.2 with K = C, and T : D −→ C is an acyclic multifunction,
then there is a coincidence for S and T ; that is, there is some (x̄, ȳ) ∈ C×D
such that ȳ ∈ S(x̄) and x̄ ∈ T (ȳ).

Proof. Following the proof of Proposition 1.2, the multifunction S admits
a continuous selection f . Thus, by Theorem 2.3, there exists a fixed point
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x to T ◦ f . Let y = f(x). Then x ∈ T ◦ f(x) = T (y) and y = f(x) ∈ S(x).
This completes the proof.

We remark that Theorem 2.3 is a particular case of Corollary 2.4, as well
as Corollary 2.5, since the composition T ◦ f is an acyclic multifunction
from C to itself. By Proposition 1.1, we can use Theorem 2.3 to establish
a general form of Nikaidô’s coincidence theorem. Therefore, all the above
theorems are equivalent logically to Nikaidô’s coincidence theorem in any
locally convex Hausdorff topological space.

Theorem 2.7 (The first version of Nikaidô’s coincidence theorem). Let M
be a nonempty compact convex subset of an LC space X, N a nonempty sub-
set of a Hausdorff topological space Y , and σ and τ be continuous functions
from M to N . If τ is a Vietoris map, then there exists some p ∈ M such
that σ(p) = τ(p).

Proof. Let C = M, D = N , and define T = τ−1 and f = σ. By Proposition
1.1, T is an acyclic multifunction. Applying Theorem 2.3, we have a fixed
point p to the composition T ◦f ; that is, p ∈ T ◦f(p) = τ−1(σ(p)). It follows
that σ(p) = τ(p).

3. The second version of Nikaidô’s coincidence theorem

A multifunction S : C −→ X is called a KKM mapping if coA ⊂ S(A) for
each finite subset A of C. In [8, 9], Fan proved the following celebrated
lemma, which asserts that given any convex set C in X and a closed-valued
KKM mapping S : C −→ X, if S(x) is compact for at least one x ∈ C,
then

⋂
x∈C S(x) 6= ∅. This lemma generalizes a classical finite-dimensional

result of Knaster, Kuratowski, and Mazurkiewicz. Since then, many results
in this direction have been obtained; see for example [6, 8, 17, 21, 22].
Following [6], we generalized the above property to the following form: if
S, T : C −→ D are two multifunctions such that T (coA) ⊂ S(A) for each
finite subset A of C, then we call S a generalized KKM mapping w.r.t. T . We
say that T : C −→ D has the KKM property, if the family {clS(x); x ∈ C}
has the finite intersection property for every generalized KKM mapping
S : C −→ Y w.r.t. T . We shall denote

KKM(C, D) = {T ; T : C −→ D has the KKM property}.

Using this terminology, we have the following basic property.
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Lemma 3.1. Let C be a nonempty convex subset of an LC space X, and
let Y,Z be two topological spaces.
(1) If T ∈ KKM(C,C) is compact and closed, then T has a fixed point.
(2) If T : C −→ Y is an acyclic multifunction, then T ∈ KKM(C, Y ).
(3) If T ∈ KKM(C, Y ) and f is continuous from Y to Z, then f ◦ T ∈

KKM(C, Z).

Proof. Part (1) is a result of [6, Theorem 2]. Part (2) is a consequence of
[21, Corollary 2]. To prove (3), we let S : C −→ Z be a generalized KKM
mapping w.r.t. f ◦ T . Then for any finite subset {x1, x2, . . . , xn} of C, we
have

f ◦ T (co{x1, x2, . . . , xn}) ⊂
n⋃

i=1

S(xi).

Hence

T (co{x1, x2, . . . , xn}) ⊂
n⋃

i=1

f−1S(xi).

It follows that f−1 ◦ S is a generalized KKM mapping w.r.t. T . Since
T ∈ KKM(C, Y ), then the family {cl(f−1 ◦ S(x)); x ∈ C} has the finite
intersection property, and hence {clS(x); x ∈ C} has the finite intersection
property.

To establish our main results, we begin with a generalized fixed point theo-
rem of Górniewicz-type equipped with the KKM property.

Theorem 3.2. Let C be a nonempty convex subset of a LC space X, and
D be a nonempty subset of a topological space Y . If T ∈ KKM(C,D) is
a compact closed multifunction and f : D −→ C is a continuous function,
then f ◦ T : C −→ C has a fixed point.

Proof. By Lemma 3.1(3), f ◦ T ∈ KKM(C, C). Since T is compact and
closed, f ◦T is also compact and closed. It follows from Lemma 3.1 (1) that
f ◦ T has a fixed point.

Corollary 3.3 (Generalized Górniewicz Fixed Point Theorem). Let C be
a nonempty convex subset of an LC space X, and D be a nonempty subset
of a topological space Y . If T : C −→ D is a compact acyclic multifunction
and f : D −→ C is a continuous function, then f ◦ T : C −→ C has a fixed
point.
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Notice that Theorem 3.2 implies also Corollary 2.4. In virtue of the property
of continuous selections, we have a general coincidence theorem for KKM
mappings.

Theorem 3.4. Let C be a nonempty subset of a Hausdorff topological space
X, and D be a nonempty convex subset of an LC space Y . If S : C −→ D is
a multifunction satisfying any one of conditions (I)∼(III) in Proposition 1.2
with K = clT (D), and T ∈ KKM(D,C) is a compact closed multifunction,
then there exists a coincidence for S and T .

Proof. Since T is compact, the set clT (D) is a compact subset of C.
By Proposition 1.2, the restriction of the multifunction S to the compact
set clT (D) admits a continuous selection f . Thus, by Theorem 3.2, there
exists a fixed point x to f ◦ T . Let x = f(y) for some y ∈ T (x). Then
x = f(y) ∈ S(y). This completes the proof.

Comparing with Theorem 2.7, the following version requires convexity of N
and local convexity on Y , but M need not be convex and X need not be
locally convex.

Theorem 3.5 (The second version of Nikaidô’s coincidence theorem). Let
M be a nonempty compact subset of a Hausdorff topological space X, N
a nonempty convex subset of an LC space Y , and σ and τ be continuous
functions from M to N . If τ is a Vietoris map, then there exists some
p ∈ M such that σ(p) = τ(p).

Proof. Let C = N, D = M , and define T = τ−1. By Proposition 1.1, T
is an acyclic multifunction. Since M is compact, T is compact. Applying
Corollary 3.3, we have a fixed point p to the composition f ◦ T ; that is,
p ∈ f ◦T (p). Let q ∈ T (p) such that p = f(q). It follows that σ(q) = f(q) =
p = τ(q).
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[10] G. Fournier and L. Górniewicz, The Lefschetz fixed point theorem for multival-
ued maps of non-metrizable spaces, Fundamenta Math. XCII (1976), 213–222.
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