
Discussiones Mathematicae
Differential Inclusions, Control and Optimization 33 (2013) 115–133
doi:10.7151/dmdico.1150

EXISTENCE OF THREE ANTI-PERIODIC SOLUTIONS FOR
SECOND-ORDER IMPULSIVE DIFFERENTIAL

INCLUSIONS WITH TWO PARAMETERS

S. Heidarkhani

Department of Mathematics
Faculty of Sciences, Razi University

67149 Kermanshah, Iran
and

School of Mathematics
Institute for Research in Fundamental Sciences (IPM)

P.O. Box: 19395-5746, Tehran, Iran

e-mail: s.heidarkhani@razi.ac.ir

G.A. Afrouzi

Department of Mathematics
Faculty of Mathematical Sciences

University of Mazandaran, Babolsar, Iran

e-mail: afrouzi@umz.ac.ir

and

A. Hadjian

Department of Mathematics
Faculty of Mathematical Sciences

University of Mazandaran, Babolsar, Iran

e-mail: a.hadjian@umz.ac.ir

Abstract

Applying two three critical points theorems, we prove the existence of at
least three anti-periodic solutions for a second-order impulsive differential
inclusion with a perturbed nonlinearity and two parameters.

Keywords: differential inclusion, impulsive, anti-periodic solution, non-
smooth critical point theory.

2010 Mathematics Subject Classification: 58E05, 49J52, 34A60.

http://dx.doi.org/10.7151/dmdico.1150


116 S. Heidarkhani, G.A. Afrouzi and A. Hadjian

1. Introduction

The aim of this paper is to investigate the existence of at least three solutions for
the following two parameters second-order impulsive differential inclusion subject
to anti-periodic boundary conditions

(1.1)


−(φp(u

′(x)))′ +Mφp(u(x)) ∈ λF (u(x)) + µG(x, u(x)) in [0, T ] \Q,

−∆φp(u
′(xk)) = Ik(u(xk)), k = 1, 2, . . . ,m,

u(0) = −u(T ), u′(0) = −u′(T ),

where p > 1, Q = {x1, x2, . . . , xm}, T > 0, M ≥ 0, φp(x) := |x|p−2x, 0 = x0 <
x1 < · · · < xm < xm+1 = T, ∆φp(u

′(xk)) := φp(u
′(x+k ))−φp(u′(x−k )), with u′(x+k )

and u′(x−k ) denoting the right and left limits, respectively, of u′(x) at x = xk, Ik ∈
C(R,R), k = 1, 2, . . . ,m, λ is a positive parameter, µ is a nonnegative parameter,
and F is a multifunction defined on R, satisfying

(F1) F : R→ 2R is upper semicontinuous with compact convex values;

(F2) minF, maxF : R→ R are Borel measurable;

(F3) |ξ| ≤ a(1 + |s|r−1) for all s ∈ R, ξ ∈ F (s), r > 1 (a > 0).

G is a multifunction defined on [0, T ]× R, satisfying

(G1) G(x, ·) : R → 2R is upper semicontinuous with compact convex values for
a.e. x ∈ [0, T ] \Q;

(G2) minG, maxG : ([0, T ] \Q)× R→ R are Borel measurable;

(G3) |ξ| ≤ a(1 + |s|r−1) for a.e. x ∈ [0, T ], s ∈ R, ξ ∈ G(x, s), r > 1 (a > 0).

Impulsive differential equations describe various processes of the real world de-
scribed by models that are subject to sudden changes in their states. These
models are studied in physics, population dynamics, ecology, industrial robotics,
biotechnology, economics, optimal control, and so forth. Associated with this de-
velopment, a theory of impulsive differential equations has been given extensive
attention. Differential inclusions arise in models for control systems, mechanical
systems, economical systems, game theory, and biological systems to name a few.
It is very important to study anti-periodic boundary value problems because they
can be applied to interpolation problems [5], antiperiodic wavelets [3], the Hill
differential operator [6], and so on. It is natural from both a physical standpoint
as well as a theoretical view to give considerable attention to a synthesis in-
volving problems for impulsive differential inclusion with anti-periodic boundary
conditions.
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Recently, multiplicity of solutions for differential inclusions via non-smooth vari-
ational methods and critical point theory has been considered in the papers
[9, 10, 11, 12, 16]. For instance, in [11], the author, employing a non-smooth
Ricceri-type variational principle [15] developed by Marano and Motreanu [13],
has established the existence of infinitely many, radially symmetric solutions for
a differential inclusion problem in RN . Also, in [12], the authors extended a re-
cent result of Ricceri concerning the existence of three critical points of certain
non-smooth functionals. Two applications have been given, both in the theory
of differential inclusions. The first one concerns a non-homogeneous Neumann
boundary value problem, the second one treats a quasilinear elliptic inclusion
problem in the whole RN . In [9], the author, under convenient assumptions, has
investigated the existence of at least three positive solutions for a differential
inclusion involving the p-Laplacian operator on a bounded domain, with homo-
geneous Dirichlet boundary conditions and a perturbed nonlinearity depending
on two positive parameters. His result also ensured an estimate on norms of so-
lutions independent of both perturbations and parameters. Very recently, Tian
and Henderson in [16], based on a non-smooth version of critical point theory
of Ricceri due to Iannizzotto [9], have established the existence of at least three
solutions for the problem (1.1) whenever λ is large enough and µ is small enough.

In the present paper, motivated by [16], employing two kinds of three-critical-
point theorems obtained in [1] and [2] (see Theorems 2.6 and 2.7 below), we are
interested in ensuring the existence of at least three anti-periodic solutions for
the problem (1.1); see Theorems 3.1 and 3.4 below.

A special case of Theorem 3.1 is the following theorem.

Theorem 1.1. Let F be a multifunction defined on R, satisfying (F1)–(F3) and
let Ik ∈ C(R,R), satisfying Ik(0) = 0, Ik(s)s < 0, s ∈ R, k = 1, 2, . . . ,m, be such
that

lim inf
ξ→0

sup|u|≤ξ min
∫ u
0 F (s)ds

ξ2
= lim sup
|ξ|→+∞

∫ T
0 min

∫ ξ(T
2
−x)

0 F (s)dsdx

1
2ξ

2T −
∑m

i=1

∫ ξ(T
2
−xi)

0 Ii(s)ds
= 0.

Then, there is λ∗ > 0 such that for every λ > λ∗ and for every multifunction G
satisfying (G1)-(G3) and the asymptotical condition

lim sup
|ξ|→+∞

sup
x∈[0,T ]

min
∫ ξ
0 G(x, s)ds

ξ2
< +∞,
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there exists δ∗λ,G > 0 such that, for each µ ∈ [0, δ∗λ,G[, the problem
−u′′(x) ∈ λF (u(x)) + µG(x, u(x)) in [0, T ] \Q,

−(u′(x+k )− u′(x−k )) = Ik(u(xk)), k = 1, 2, . . . ,m,

u(0) = −u(T ), u′(0) = −u′(T )

admits at least three solutions in the space {u ∈W 1,2([0, T ]) : u(0) = −u(T )}.

For a couple of references on impulsive differential inclusions, we refer to [7]
and [8].

2. Basic definitions and preliminary results

Let (X, ‖ · ‖X) be a real Banach space. We denote by X∗ the dual space of
X, while 〈·, ·〉 stands for the duality pairing between X∗ and X. A function
ϕ : X → R is called locally Lipschitz if, for all u ∈ X, there exist a neighborhood
U of u and a real number L > 0 such that

|ϕ(v)− ϕ(w)| ≤ L‖v − w‖X for all v, w ∈ U.

If ϕ is locally Lipschitz and u ∈ X, the generalized directional derivative of ϕ at
u along the direction v ∈ X is

ϕ◦(u; v) := lim sup
w→u, τ→0+

ϕ(w + τv)− ϕ(w)

τ
.

The generalized gradient of ϕ at u is the set

∂ϕ(u) := {u∗ ∈ X∗ : 〈u∗, v〉 ≤ ϕ◦(u; v) for all v ∈ X}.

So ∂ϕ : X → 2X
∗

is a multifunction. We say that ϕ has compact gradient if ∂ϕ
maps bounded subsets of X into relatively compact subsets of X∗.

Lemma 2.1 [14, Proposition 1.1]. Let ϕ ∈ C1(X) be a functional. Then ϕ is
locally Lipschitz and

ϕ◦(u; v) = 〈ϕ′(u), v〉 for all u, v ∈ X;

∂ϕ(u) = {ϕ′(u)} for all u ∈ X.

Lemma 2.2 [14, Proposition 1.3]. Let ϕ : X → R be a locally Lipschitz func-
tional. Then
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ϕ◦(u; ·) is subadditive and positively homogeneous for all u ∈ X, and

ϕ◦(u; v) ≤ L‖v‖ for all u, v ∈ X, with L > 0 being a Lipschitz constant for ϕ
around u.

Lemma 2.3 [4]. Let ϕ : X → R be a locally Lipschitz functional. Then ϕ◦ :
X ×X → R is upper semicontinuous and for all λ ≥ 0, u, v ∈ X, one has

(λϕ)◦(u; v) = λϕ◦(u; v).

Moreover, if ϕ,ψ : X → R are locally Lipschitz functionals, then

(ϕ+ ψ)◦(u; v) ≤ ϕ◦(u; v) + ψ◦(u; v) for all u, v ∈ X.

Lemma 2.4 [14, Proposition 1.6]. Let ϕ,ψ : X → R be locally Lipschitz func-
tionals. Then

∂(λϕ)(u) = λ∂ϕ(u) for all u ∈ X, λ ∈ R, and

∂(ϕ+ ψ)(u) ⊆ ∂ϕ(u) + ∂ψ(u) for all u ∈ X.

Lemma 2.5 [9, Proposition 1.6]. Let ϕ : X → R be a locally Lipschitz functional
with a compact gradient. Then ϕ is sequentially weakly continuous.

We say that u ∈ X is a (generalized) critical point of locally Lipschitz functional
ϕ if 0 ∈ ∂ϕ(u), i.e.,

ϕ◦(u; v) ≥ 0 for all v ∈ X.

Our main tools are three-critical-point theorems that we recall here in a conve-
nient form. The first one was obtained in [2] and it is a more precise version of
Theorem 3.2 of [1]. The second one was established in [1]. In the first one the
coercivity of the functional N −λM is required, in the second one a suitable sign
hypothesis is assumed.

Let N and M be locally Lipschitz functionals and write Jλ := N − λM.

Theorem 2.6 [2, Theorem 3.6]. Let X be a reflexive real Banach space, N :
X → R be a coercive and sequentially weakly lower semicontinuous functional,
and M : X → R be a sequentially weakly upper semicontinuous functional such
that

N (0) =M(0) = 0.

Assume that there exist r ∈ R and x ∈ X, with 0 < r < N (x), such that

(a1)
supN (x)≤rM(x)

r < M(x)
N (x) ;
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(a2) for each λ ∈ Λr :=
(
N (x)
M(x) ,

r
supN (x)≤rM(x)

)
, the functional Jλ is coercive.

Then, for each λ ∈ Λr, the functional Jλ has at least three distinct critical points
in X.

Theorem 2.7 [1, Corollary 3.1]. Let X be a reflexive real Banach space, N : X →
R be a convex, coercive and sequentially weakly lower semicontinuous functional,
and M : X → R be a sequentially weakly upper semicontinuous functional such
that

inf
X
N = N (0) =M(0) = 0.

Assume that there exist two positive constants r1, r2 and x ∈ X with 2r1 <
N (x) < r2

2 such that

(b1)
supN (x)<r1

M(x)

r1
< 2

3
M(x)
N (x) ;

(b2)
supN (x)<r2

M(x)

r2
< 1

3
M(x)
N (x) ;

(b3) for each λ ∈ Λ
′
r1,r2 :=

(
3
2
N (x)
M(x) ,min

{
r1

supN (x)<r1
M(x) ,

r2
2 supN (x)<r2

M(x)

})
and

for every x1, x2 ∈ X which are local minima for the functional Jλ and such
that M(x1) ≥ 0 and M(x2) ≥ 0, one has infs∈[0,1]M(sx1 + (1− s)x2) ≥ 0.

Then, for each λ ∈ Λ
′
r1,r2, the functional Jλ admits at least three critical points

which lie in N−1(−∞, r2).

We recall here some basic definitions and notations. On the reflexive Banach
space
X := {u ∈W 1,p([0, T ]) : u(0) = −u(T )} we consider the norm

‖u‖X :=

(∫ T

0

(
|u′(x)|p +M |u(x)|p

)
dx

)1/p

for all u ∈ X, which is equivalent to the usual norm (note that M ≥ 0).

Since p > 1, X is compactly embedded into the space C0([0, T ]) endowed
with the maximum norm ‖ · ‖C0 .

Lemma 2.8 [16, Lemma 3.3]. Let u ∈ X. Then

(2.1) ‖u‖C0 ≤
1

2
T 1/q‖u‖X ,

where 1/p+ 1/q = 1.
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Obviously, X is compactly embedded into Lγ([0, T ]) endowed with the usual norm
‖ · ‖Lγ , for all γ ≥ 1.

Definition 2.9. A function u ∈ X is a weak solution of the problem (1.1) if
there exists u∗ ∈ Lγ([0, T ]) (for some γ > 1) such that

∫ T

0

[
φp(u

′(x))v′(x) +Mφp(u(x))v(x)− u∗(x)v(x)
]
dx−

m∑
i=1

Ii(u(xi))v(xi) = 0

for all v ∈ X and u∗ ∈ λF (u(x)) + µG(x, u(x)) for a.e. x ∈ [0, T ].

Definition 2.10. By a solution of the impulsive differential inclusion (1.1) we
will understand a function u : [0, T ] \Q→ R is of class C1 with φp(u

′) absolutely
continuous, satisfying

−(φp(u
′(x)))′ +Mφp(u(x)) = u∗ in [0, T ] \Q,

−∆φp(u
′(xk)) = Ik(u(xk)), k = 1, 2, . . . ,m,

u(0) = −u(T ), u′(0) = −u′(T ),

where u∗ ∈ λF (u(x)) + µG(x, u(x)) and u∗ ∈ Lγ([0, T ]) (for some γ > 1).

Lemma 2.11 [16, Lemma 3.5]. If a function u ∈ X is a weak solution of (1.1),
then u is a solution of (1.1).

We introduce for a.e. x ∈ [0, T ] and all s ∈ R, the Aumann-type set-valued
integral

∫ s

0
F (t)dt =

{∫ s

0
f(t)dt : f : R→ R is a measurable selection ofF

}

and set F(u) =
∫ T
0 min

∫ u
0 F (s)dsdx for all u ∈ Lp([0, T ]).

The Aumann-type set-valued integral

∫ s

0
G(x, t)dt =

{∫ s

0
g(x, t)dt : g : [0, T ]×R→ R is a measurable selection ofG

}

and set G(u) =
∫ T
0 min

∫ u
0 G(x, s)dsdx for all u ∈ Lp([0, T ]).



122 S. Heidarkhani, G.A. Afrouzi and A. Hadjian

Lemma 2.12 [10, Lemma 3.1]. The functionals F ,G : Lp([0, T ]) → R are well
defined and Lipschitz on any bounded subset of Lp([0, T ]). Moreover, for all
u ∈ Lp([0, T ]) and all u∗ ∈ ∂(F(u) + G(u)),

u∗(x) ∈ F (u(x)) +G(x, u(x)) for a.e. x ∈ [0, T ].

We define an energy functional for the problem (1.1) by setting

Jλ(u) =
1

p
‖u‖pX − λF(u)− µG(u)−

m∑
i=1

∫ u(xi)

0
Ii(s)ds

for all u ∈ X.

Lemma 2.13 [16, Lemma 4.4]. The functional Jλ : X → R is locally Lipschitz.
Moreover, for each critical point u ∈ X of Jλ, u is a weak solution of (1.1).

3. Main results

Fixing c, d > 0 such that

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx
<

1
p

(
2c
T

)p
sup
|u|≤c

min
∫ u
0 F (s)ds

and picking
(3.1)

λ ∈ Λ1 :=


dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx
,

1
p

(
2c
T

)p
sup
|u|≤c

min
∫ u
0 F (s)ds

 ,

put

(3.2)

δλ,G := min

{ 1
p( 2c

T )
p−λ sup

|u|≤c
min

∫ u
0 F (s)ds

sup
|u|≤c

min
∫ u
0 G(x,s)ds

,

λ
∫ T
0 min

∫ d(T2 −x)
0 F (s)dsdx− d

p

p

(
T+ 2M

p+1(T2 )
p+1

)
+
m∑
i=1

∫ d(T2 −xi)
0 Ii(s)ds

−
∫ T
0 min

∫ d(T2 −x)
0 G(x,s)dsdx

}
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and

(3.3) δλ,G := min


δλ,G,

1
p

(
2
T

)p
max

0, lim sup
|ξ|→+∞

sup
x∈[0,T ]

min
∫ ξ
0 G(x,s)ds

ξp




,

where we read r
0 = +∞.

We formulate our main result as follows.

Theorem 3.1. Assume that (F1)–(F3) hold. Furthermore, suppose that there
exist two positive constants c and d with

(3.4)
(2c

T

)p
< dp

(
1 +

M

p+ 1

(T
2

)p)
and such that

(F4)
sup|u|≤cmin

∫ u
0 F (s)ds

1
p( 2c

T )
p <

∫ T
0 min

∫ d(T2 −x)
0 F (s)dsdx

dp

p

(
T+ 2M

p+1
(T
2
)p+1

)
−
∑m
i=1

∫ d(T2 −xi)
0 Ii(s)ds

;

(F5) lim sup|ξ|→+∞
min

∫ ξ
0 F (s)ds

ξp ≤ 0;

(I) Ii(0) = 0, Ii(s)s < 0, s ∈ R, i = 1, 2, . . . ,m.

Then, for every λ ∈ Λ1, where Λ1 is given by (3.1), and for every multifunction
G satisfying (G1)–(G3) and

(G4) lim sup|ξ|→+∞

sup
x∈[0,T ]

min
∫ ξ
0 G(x,s)ds

ξp < +∞,

there exists δλ,G > 0 given by (3.3) such that, for each µ ∈ [0, δλ,G[, the problem
(1.1) admits at least three solutions in X.

Proof. Fix λ,G and µ as in the Theorem. For each u ∈ X, put

N (u) :=
1

p
‖u‖pX −

m∑
i=1

∫ u(xi)

0
Ii(s)ds,

M(u) :=

∫ T

0
min

∫ u

0
F (s)dsdx+

µ

λ

∫ T

0
min

∫ u

0
G(x, s)dsdx.
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It is a simple matter to verify that N is sequentially weakly lower semicontin-
uous on X. Clearly N ∈ C1(X). By Lemma 2.1, N is locally Lipschitz on X.
By Lemma 2.12, F and G are locally Lipschitz on Lp([0, T ]). So, M is locally
Lipschitz on Lp([0, T ]). Moreover, X is compactly embedded into Lp([0, T ]). So
M is locally Lipschitz on X. Therefore, M is sequentially weakly upper semi-
continuous. For all u ∈ X, by (I),∫ u(xi)

0
Ii(s)ds < 0, i = 1, 2, . . . ,m.

So, we have

N (u) =
1

p
‖u‖pX −

m∑
i=1

∫ u(xi)

0
Ii(s)ds >

1

p
‖u‖pX

for all u ∈ X. Hence, N is coercive and

inf
X
N = N (0) =M(0) = 0.

Thus, the regularity assumptions on N and M are satisfied. We will verify (a1)
and (a2) of Theorem 2.6. Let w be the function defined by

(3.5) w(x) := d
(T

2
− x
)
, x ∈ [0, T ],

and put

r :=
1

p

(
2c

T 1/q

)p
.

Clearly, w ∈ X and, in particular, one has

‖w‖pX = dp
(
T +

2M

p+ 1

(T
2

)p+1
)
,

and so

N (w) =
dp

p

(
T +

2M

p+ 1

(T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0
Ii(s)ds.

From condition (3.4), one has N (w) > r.

Also, we have

M(w) :=

∫ T

0
min

∫ d(T
2
−x)

0
F (s)dsdx+

µ

λ

∫ T

0
min

∫ d(T
2
−x)

0
G(x, s)dsdx.
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For all u ∈ X with N (u) ≤ r, taking into account ‖u‖pX < pr and ‖u‖C0 ≤
1
2T

1/q‖u‖X , one has |u(x)| ≤ c for all x ∈ [0, T ]. Therefore,

sup
N (u)≤r

M(u)

r
=

sup
N (u)≤r

[∫ T
0 min

∫ u
0 F (s)dsdx+ µ

λ

∫ T
0 min

∫ u
0 G(x, s)dsdx

]
r

≤ p
( T

2c

)p
sup
|u|≤c

min

∫ u

0
F (s)ds+

µ

λ
p
( T

2c

)p
sup
|u|≤c

min

∫ u

0
G(x, s)ds.(3.6)

On the other hand, we have

M(w)

N (w)
=

∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

+
µ

λ

∫ T
0 min

∫ d(T
2
−x)

0 G(x, s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

.(3.7)

Since µ < δλ,G, one has

µ <

1
p

(
2c
T

)p − λ sup
|u|≤c

min
∫ u
0 F (s)ds

sup
|u|≤c

min
∫ u
0 G(x, s)ds

,

and so

(3.8) p
( T

2c

)p
sup
|u|≤c

min

∫ u

0
F (s)ds+

µ

λ
p
( T

2c

)p
sup
|u|≤c

min

∫ u

0
G(x, s)ds <

1

λ
.

Similarly,

µ <

λ
∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx− dp

p

(
T + 2M

p+1

(
T
2

)p+1
)

+
m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

−
∫ T
0 min

∫ d(T
2
−x)

0 G(x, s)dsdx
,

and so ∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

+
µ

λ

∫ T
0 min

∫ d(T
2
−x)

0 G(x, s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

>
1

λ
.(3.9)
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Hence, from (3.6)–(3.9), condition (a1) of Theorem 2.6 is verified.

Since µ < δλ,G, we can fix l > 0 such that

lim sup
|ξ|→+∞

sup
x∈[0,T ]

min
∫ ξ
0 G(x, s)ds

ξp
< l

and µl < 1
p

(
2
T

)p
. Therefore, there exists a positive constant k such that

min

∫ ξ

0
G(x, s)ds ≤ lξp + k

for each (x, ξ) ∈ [0, T ] × R. Now, fix 0 < ε <
1
p

(
2
T

)p
−µl

λ . From (F5) there is a
positive constant kε such that

min

∫ ξ

0
F (s)ds ≤ εξp + kε

for each ξ ∈ R. So, for each u ∈ X,

Jλ(u) =
1

p
‖u‖pX −

m∑
i=1

∫ u(xi)

0
Ii(s)ds− λ

∫ T

0
min

∫ u

0
F (s)dsdx

− µ
∫ T

0
min

∫ u

0
G(x, s)dsdx

>
1

p
‖u‖pX − λ

∫ T

0

(
εup + kε

)
dx− µ

∫ T

0

(
lup + k

)
dx

≥
(1

p
− λε

(T
2

)p − µl(T
2

)p)‖u‖pX − λTkε − µTk.
This leads to coercivity of Jλ and condition (a2) of Theorem 2.6 is verified.

Since, from (3.6)–(3.9),

λ ∈ Λ1 ⊆

(
N (w)

M(w)
,

r

supN (u)≤rM(u)

)
,

Theorem 2.6 ensures the existence of at least three critical points for the func-
tional Jλ. Finally, by Lemma 2.13, the critical points of Jλ are weak solutions for
the problem (1.1), and by Lemma 2.11, every weak solution of (1.1) is a solution
of (1.1). Hence, the proof is complete.
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Remark 3.2. Theorem 3.1 ensures a more precise conclusion than [16, Theorem
2.7]. In fact, Theorem 2.7 of [16] establishes that there exists a non-degenerate
interval [α, β] ⊂ (0,+∞) such that, for every λ ∈ [α, β] and any multifunction G
satisfying (G1)–(G3), there exists δ > 0 such that, for all µ ∈ [0, δ], the problem
(1.1) admits at least three solutions. Hence, neither a location of the interval
[α, β] in (0,+∞) nor an estimate of δ is established.

The following result is a special case of Theorem 3.1 with µ = 0.

Theorem 3.3. Assume that (F1)–(F3), (F5) and (I) hold. Furthermore, suppose
that there exist two positive constants c and d such that condition (3.4) and the
assumption (F4) hold. Then, for each λ ∈ Λ1, where Λ1 is given by (3.1), the
problem

(3.10)


−(φp(u

′(x)))′ +Mφp(u(x)) ∈ λF (u(x)) in [0, T ] \Q,

−∆φp(u
′(xk)) = Ik(u(xk)), k = 1, 2, . . . ,m,

u(0) = −u(T ), u′(0) = −u′(T )

has at least three solutions in X.

Now, a variant of Theorem 3.1 where no asymptotic condition on G as (G4) is
required, is pointed out.

Fixing c1, c2, d > 0 such that

3

(
dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

)
2
∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

< min


1
p

(
2c1
T

)p
sup
|u|≤c1

min
∫ u
0 F (s)ds

,

1
2p

(
2c2
T

)p
sup
|u|≤c2

min
∫ u
0 F (s)ds

 ,

and picking

(3.11)

λ ∈ Λ2 :=

3

(
dp

p

(
T+ 2M

p+1(T2 )
p+1

)
−
∑m
i=1

∫ d(T2 −xi)
0 Ii(s)ds

)
2
∫ T
0 min

∫ d(T2 −x)
0 F (s)dsdx

,

min

{
1
p

(
2c1
T

)p
sup
|u|≤c1

min
∫ u
0 F (s)ds

,
1
2p

(
2c2
T

)p
sup|u|≤c2 min

∫ u
0 F (s)ds

})
,
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put

(3.12)

δ∗λ,G := min


1
p

(
2c1
T

)p − λ sup
|u|≤c1

min
∫ u
0 F (s)ds

sup
|u|≤c1

min
∫ u
0 G(x, s)ds

,

1
p

(
2c2
T

)p − λ sup
|u|≤c2

min
∫ u
0 F (s)ds

sup
|u|≤c2

min
∫ u
0 G(x, s)ds

 .

Theorem 3.4. Assume that (F1)-(F3) and (I) hold. Furthermore, suppose that
there exist three positive constants c1, c2 and d with

(3.13)
(2c1
T

)p
<
dp

2

(
1 +

M

p+ 1

(T
2

)p)
and

(3.14)
1

2p

( 2c2

T 1/q

)p
>
dp

p

(
T +

2M

p+ 1

(T
2

)p+1
)
−

m∑
i=1

∫ d(T
2
−xi)

0
Ii(s)ds

and such that

(F6) min
∫ t
0 F (s)ds ≥ 0 for each t ∈ [0, c2];

(F7)
sup|u|≤c1 min

∫ u
0 F (s)ds

1
p

(
2c1
T

)p < 2
3

∫ T
0 min

∫ d(T2 −x)
0 F (s)dsdx

dp

p

(
T+ 2M

p+1(T2 )
p+1−

∑m
i=1

∫ d(T2 −xi)
0 Ii(s)ds

) ;

(F8)
sup|u|≤c2 min

∫ u
0 F (s)ds

1
p

(
2c2
T

)p < 1
3

∫ T
0 min

∫ d(T2 −x)
0 F (s)dsdx

dp

p

(
T+ 2M

p+1(T2 )
p+1−

∑m
i=1

∫ d(T2 −xi)
0 Ii(s)ds

) .

Then, for each λ ∈ Λ2, where Λ2 is given by (3.11), and for every multifunction
G satisfying (G1)-(G3) and

(G5) min
∫ t
0 G(x, s)ds ≥ 0 for each x ∈ [0, T ] and t ∈ R,

there exists δ∗λ,G given by (3.12) and such that, for each µ ∈ [0, δ∗λ,G[, the problem
(1.1) has at least three solutions ui, i = 1, 2, 3, such that

0 < ui(x) < c2, ∀x ∈ [0, T ], i = 1, 2, 3.
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Proof. Fix λ,G and µ as in the Theorem and take N and M as in the proof
of Theorem 3.1. The regularity assumption of Theorem 2.7 on N and M are
satisfied. Put w as in (3.5),

r1 :=
1

p

(
2c1

T 1/q

)p
and r2 :=

1

p

(
2c2

T 1/q

)p
.

From the conditions (3.13) and (3.14), we observe 2r1 < N (w) < r2
2 . Since

µ < δ∗λ,G, we have

supN (u)<r1M(u)

r1
≤ p

( T

2c1

)p
sup
|u|≤c1

min

∫ u

0
F (s)ds

+
µ

λ
p
( T

2c1

)p
sup
|u|≤c1

min

∫ u

0
G(x, s)ds

<
1

λ

<
2

3

( ∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−
∑m

i=1

∫ d(T
2
−xi)

0 Ii(s)ds

+
µ

λ

2
∫ T
0 min

∫ d(T
2
−x)

0 G(x, s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−
∑m

i=1

∫ d(T
2
−xi)

0 Ii(s)ds

)

=
2

3

M(w)

N (w)
,

and similarly,

2
supN (u)<r2M(u)

r2
≤ 2p

( T

2c2

)p
sup
|u|≤c2

min

∫ u

0
F (s)ds

+
µ

λ
p
( T

2c2

)p
sup
|u|≤c2

min

∫ u

0
G(x, s)ds

<
1

λ

<
2

3

( ∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−
∑m

i=1

∫ d(T
2
−xi)

0 Ii(s)ds

+
µ

λ

2
∫ T
0 min

∫ d(T
2
−x)

0 G(x, s)dsdx

dp

p

(
T + 2M

p+1

(
T
2

)p+1
)
−
∑m

i=1

∫ d(T
2
−xi)

0 Ii(s)ds

)

=
2

3

M(w)

N (w)
.
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Therefore, assumptions (b1) and (b2) of Theorem 2.7 are verified. Now, we show
that the functional Jλ satisfies assumption (b3) of Theorem 2.7. Let u∗ and u∗∗

be two local minima for Jλ. Then u∗ and u∗∗ are critical points for Jλ, and so
by Lemma 2.12, they are weak solutions for problem (1.1). Due to (F6) and
(G5), from the Maximum Principle we have u∗(x) ≥ 0 and u∗∗(x) ≥ 0 for every
x ∈ [0, T ]. So, it follows that su∗+(1−s)u∗∗ ≥ 0 for all s ∈ [0, 1], and consequently
M
(
su∗ + (1 − s)u∗∗

)
≥ 0 for all s ∈ [0, 1]. Thus, Theorem 2.7 ensures at least

three solutions whose norm in X is less than 2c2. Hence, the Strong Maximum
Principle and Lemma 2.8 ensure the conclusion.

Now, we present the following example to illustrate Theorem 3.4.

Example 3.5. Consider the problem

(3.15)


−(φ3(u

′(x)))′ + φ3(u(x)) ∈ λF (u(x)) + µG(x, u(x)) in [0, 2] \ {1},

−∆φ3(u
′(x1)) = I1(u(x1)), x1 = 1,

u(0) = −u(2), u′(0) = −u′(2),

where for all s ∈ R,

F (s) =



{0}, if |s| < 2−1/3,

[0, 1], if |s| = 2−1/3,

{s− 2−1/3 + 1}, if s > 2−1/3,

{s+ 2−1/3 + 1}, if s < −2−1/3.

For any multifunction G satisfying (G1)-(G3), the problem (3.15) admits at least
three solutions ui, i = 1, 2, 3, such that

0 < ui(x) < 8, ∀x ∈ [0, 2], i = 1, 2, 3,

for λ and µ lying in convenient intervals. In fact, contrast to the problem (1.1),
p = 3, M = 1, T = 2 and x1 = 1. Clearly the assumptions (F1)–(F3) and (I)

are satisfied. By choosing c1 = 2−
1
3 , c2 = 8 and d = 2, we see that conditions

(3.13) and (3.14) and the assumption (F6) are easily verified. Moreover, simple
calculations show that

sup

|u|≤2−
1
3

min

∫ u

0
F (s)ds = sup

|u|≤8
min

∫ u

0
F (s)ds = 0
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and ∫ 2
0 min

∫ 2(1−x)
0 F (s)dsdx

20
3 −

∫ 2(1−x1)
0 I1(s)ds

=
3

20

∫ 1

−1
min

∫ 2x

0
F (s)dsdx

=
3

20

(∫ −2−1/3

−1

∫ 2x

0
maxF (s)dsdx+

∫ 0

−2−1/3

∫ 2x

0
maxF (s)dsdx

+

∫ 2−1/3

0

∫ 2x

0
maxF (s)dsdx+

∫ 1

2−1/3

∫ 2x

0
maxF (s)dsdx

)
> 0.

So, the assumptions (F7) and (F8) are fulfilled. Hence, using Theorem 3.4, the
problem (3.15) admits at least three solutions ui, i = 1, 2, 3, in X := {u ∈
W 1,3([0, 2]) : u(0) = −u(2)}, such that

0 < ui(x) < 8, ∀x ∈ [0, 2], i = 1, 2, 3.

The following result is a special case of Theorem 3.4 with µ = 0.

Theorem 3.6. Assume that (F1)–(F3) and (I) hold. Furthermore, suppose that
there exist three positive constants c1, c2 and d such that conditions (3.13) and
(3.14) and assumptions (F6)–(F8) hold. Then, for each λ ∈ Λ2, where Λ2 is given
by (3.11), the problem (3.10) has at least three solutions ui, i = 1, 2, 3, in X, such
that

0 < ui(x) < c2, ∀x ∈ [0, T ], i = 1, 2, 3.

Finally, we prove Theorem 1.1 from the Introduction.

Proof of Theorem 1.1. Fix λ > λ∗ :=
d2

2
T−
∑m
i=1

∫ d(T2 −xi)
0 Ii(s)ds∫ T

0 min
∫ d(T2 −x)
0 F (s)dsdx

for some d > 0.

Since

lim inf
ξ→0

sup|u|≤ξ min
∫ u
0 F (s)ds

ξ2
= 0,

there is a sequence {cn} ⊂ (0,+∞) such that lim
n→+∞

cn = 0 and

lim
n→+∞

sup|u|≤cn min
∫ u
0 F (s)ds

c2n
= 0.
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Indeed, one has

lim
n→+∞

sup|u|≤cn min
∫ u
0 F (s)ds

c2n
= lim

n→+∞

min
∫ ξcn
0 F (s)ds

ξ2cn

ξ2cn
c2n

= 0,

where min

∫ ξcn

0
F (s)ds = sup

|u|≤cn
min

∫ u

0
F (s)ds. Hence, there exists c > 0 such

that

sup|u|≤c min
∫ u
0 F (s)ds

1
2

(
2c
T

)2 < min


∫ T
0 min

∫ d(T
2
−x)

0 F (s)dsdx

d2

2 T −
m∑
i=1

∫ d(T
2
−xi)

0 Ii(s)ds

,
1

λ


and c < dT

2 . The conclusion follows from Theorem 3.1 with p = 2 and M = 0.
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