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Consider a differential inclusion
(1) —AyY € F(t,¢)

with boundary conditions
(2) Ylor =0

where ¢t runs over a bounded domain 7" C R"™ with a sufficiently smooth
boundary I' = 9T. A is Laplace operator in T" and F is a Lipschitzean
multifunction with a constant m € LP(T) i.e.
disty (F(t,z), F(t,y)) <m(t) |z —y] .
By a solution (1), (2) we mean a function ¢ € H}(T) N W2L(T) such that
—AG(t) € F(t, (1)
for a.e. t € T. In [3] we examined the case n =1 i.e.

» { -2’ e F(t,x), teT

(IJ‘|3T =0.
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We have proved that if m is sufficiently small than the set of solutions of
(*) is an absolute retract. The main tools used in [2] were the spectral
properties of the operator L,, = —A — m extended to Sobolev space H}
and in particular the stability property of the principal eigenvalue of the
operator L,,, m € L'. Having this property we were able to renorm L', in
such a way that the solution set of (*) is the set of fixed points of certain
multivalued contraction and then apply the BCF theorem [5] on properties
of the set of fixed points. Applying these methods to the case of R is
possible, however, it calls for a thorough study of spectral properties of the
operator

Loyth = —Aty —m - 1), Y€ Hy.

This will be the subject of a consecutive paper. In particular, we need to
examine the stability properties of the principal eigenvalue of the operator
L,, in relation to m € LP with properly chosen p (c.f. [2] for case n = 3).
We should point out that spectral properties of the operator L,, are well
known, in case m is a sufficiently smooth function. The results, known in
the literature, concerning the stability of the principal (or other) eigenvalue
of the operator L,, seem not to cover our case m € LP. In this paper we deal
with L,, for t € T C R3, where a bounded domain T and m are restricted
to satisfy the condition

(Hy) sup {/Tgo(t,T)mz(T)go(T, s)dr : t,s € T} <1/|T|

which is obviously fulfiled if m € L* or if | T'| is sufficiently small. Here
Go(t, s) is a Green function of Dirichlet problem for Laplacean in T

In Section 2, we extend the result from BCF [5] on retraction in L' to
the case LP and in Section 3, we apply this for a differential inclusion of type
(1) in H.

1. NOTATION

Let T C R? be a bounded domain with C* smooth boundary I' and
H(T) be a Sobolev space, i.e. a completion in the norm

[0 = (IVell2 + [91l2)2,
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of the space CS°(T) = {3 : T — RF : suppt) C T} of infinitely many times
differentiable functions where ||¢[|, = ([ [%[P)*/? is a norm in L? with an
obvious modification for p = co. Moreover,

W2Pp = {zp eLP: &'ajl/J eLP;i,j= 17273}’

Then H{ can be continuously embedded in L° and compactly embedded in
L? e.g. [10]. The latter means in particular that there exists a constant S
such that

®) ([ wwra)” < syl

for ¢» € H}. Moreover, for m € L3/2 the space H} can be continuously
embedded in L?(m) = {u:u?m € L'}, because from (3) and the Hélder
inequality we have

W L (L) (L) < imlgastior

Consider a quadratic form

(5) Dulo] = [ (IV0f? = mo?) d
and let
(6) Dy [¢,v] = /T (vwv - mv,/w) dt

be a corresponding bilinear form. It generates the operator L,, by the
formula (L1, v) = Dy, [, v] for all 1, v € H}. The previous remark means,
in particular, that the domain of L,, contains H{.

Let us consider the boundary value problem to the inclusion (1) with
boundary conditions (2).

We shall assume that the multifunction F(t,x) satisfies the following
hypotheses:
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(H1) the sets F(t,z) are compact subsets of RF for any t € T and z € RF,
and the multifunctions ¢ — F(t,x) are measurable for any = € RF;

(H2) there exists m € L*?2 such that for any x,y € R we have
disty (f(t7x)a~7:(tay)) < m(t) |.T - y|7

where dist (K, L) stands for the Hausdorff distance between sets K
and L C RF;

(H3)

sup{|z|:z € F(t,0)} < a(t) a.e. and a€ L.

By a solution to the problem (1), (2) we mean any function ¢ € W2!n VVOI’2
such that

(7) (Loy)(t) € F(t,¢(t)) ae.in T.

In the present paper we deal with properties of the solution set R to the
problem (1), (2). We prove that R is a retract of the whole space
w2l nw, 2.

A by-product is the existence of solutions to the problem (1), (2), since
any retract R # (). Our work was motivated by a result by De Blasi and
Pianigiani [4], where the authors assumed that the Lipschitz constant m(t) =
const < 1, t € [0;1]. In the situation considered in our paper, the above
hypothesis has been weakened substantially.

The simplest Schrodinger operator is the operator Loy = —A) (for
m = 0). The equation

(8) Lo =u
with the boundary conditions (2)

(9) Ylor =0
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has a solution 1 = Au € W2 n W01’2 for any w € L'. This solution is
expressed by the formula

(10) Au(t) = /T Go(t, s)u(s) ds

where Go(t,s) is the corresponding Green function in LP(T x T') for any
p< 2.

The operator A : L%/%> — W26/5 ig linear, and bounded, and positive,
i.e. for any function v < 0 we have Au < 0. In particular, it means that for
any u € L5/5 the following estimate

(11) |Au(t)| < VEA(Ju|)(t) ae. inT

holds.

2. RETRACTION IN LP ON FIXED POINTS OF A CONTRACTIVE
MULTIFUNCTION

Let T be a compact Hausdorff space with a o-field 3 of Borel measurable
sets given by a nonatomic Radon measure "dt”. For 1 < p < oo by
LP = [P(T, X) we mean the Banach space of Bochner integrable functions
with the usual norm

1
= (/ u(t)]? dt>p for 1< p< oo
T
We shall assume that LP is separable.

A set K C LP is said to be decomposable iff for any u,v € K and A € ¥

xau+ (1 —xa)v e K.

Denote by D the family of all nonempty, closed and decomposable subsets
of L? and take K € D. Recall that from [9] it follows that for any given
u € LP and € > 0 there exists v € K such that

(12) lu(t) —v(t)| < essinf{|u(t) —z(t)|: 2€ K} +¢ a.e. inT.
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Therefore
dist (u, K) = inf{|ju — z|[p : z € K}

> ([ fessint [u(t) ~ #(0)]: = € ) dt);

3=

> lu—vllp = elu(T)]7.

But € > 0 is arbitrary, so

(13) dist (u, K) = ( /T {ossinf |u(t) — 2(t)] : = € K}Mt)’l’ .

Let us consider a mapping ® : LP — D which is a contraction, i.e. there is
a constant a € (0,1) such that

(14) distzr (®(u), ®(v)) < a || u—v |,

where disty (A, B) stands for the Hausdorff distance of sets A and B. Con-
sider a mapping ¢ : LP(T, X) — LP(T, R) given by

(15) o(u) = essinf{|u(t) — w(t)| : w € ®(u)}.
From (14) one can easily observe that
(16) le(u)lly = dist (u, @(u)).

Lemma 1. The mapping ¢ : LP(T, X) — LP(T, R) given by (15) is Lipschitz
with a constant 2.+ 1.

Proof. Take any u,v € LP and fix € > 0. From (12) there exist w € ®(u)
and z € ®(v) such that

lu(t) —w(t)] < e(u)(t) +e ae in T

and
[v(t) — z(t)] < p(v)(t) +e ae. in T.
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Moreover, there are a € ®(u) and b € ®(v) such that

(17) la— 2], < dist (2, ®(u)) + & < afju —v[l, +¢

and

(18) 16— w|l, < dist (w, ®(v)) + ¢ < aflu — v, +e.

Then

p()(t) —e(u)(t) < [v(t) = b(t)] — |u(t) —w(t)| +e

(19) < o(®) —u(t)] + |u®) = b(t)| — |u(t) —w(t)] +
< Jo(t) —u(®)] + |lw(t) = b(E)] + |a(t) — 2(t)] +&.

Similarly

(20) p(u)(t) = ¢(v)(t) < [o(t) = u(®)] + [w(t) = b(H)] + [a(t) — 2(t)| + &

and therefore

B =

lp(u) = (V)llp < llu—vllp + [w = bllp + [la = z[lp + & [u(T)]7.

This together with (17) and (18) means that

B =

(21) le(u) =)l < 2a+Dfu—wvllp + 2 + & [u(T)]

But € > 0 is arbitrary, so the latter shows our claim. [

Theorem 1. Let & : LP — D be a contraction. Then the set
Fix(®) ={u:u € ®(u)}

s a retract of LP.
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Proof. Denote by S = LP \ Fix(®) and observe that S is open. For any
given u € S define

l—«

2a

(22) = p(u) + (D)) 77 @),

and

(23) K(u) =l ({U € d(u) : |u(t) —v(t)| < ¥(t) ae. in T}),

where cl stands for the closure in LP.

Employing similar arguments as in Proposition 2 in [6], [5] and Proposi-
tion 3 in [9] one can see that K : S — D is lower semicontinuous. Therefore
from BCF Theorem there exists a continuous mapping k : S — LP such
that for u € S we have k(u) € ®(u) and |k(u)(t) — u(t)] < ¥(t) a.e. in T.
Therefore

-«
1r(w) = ullp < 191y < lle(llp + == el
(24) 1
_ ;ao‘ dist (u, ®(u)) .
Extend k on LP by setting k(u) = u if u € Fix(®).
By construction we have that for all u
(25) k(u) € ®(u)
and by (24)
1
(26) I9e0) = ully <~ dist (u, ®(w)

Such k remains continuous on the whole LP. To see this it is enough to check
continuity for u € Fix(®), since it clearly holds on open S. Fix u € Fix(®)
and let u,, — w. Then by (14) and Lemma 1 we have

(27) dist (un, ®(un)) = [l(un)llp = lle(w)llp =0
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and therefore by (26)
(28) E(uyp) — u=k(u)

what shows continuity of the mapping k.
Set r1(u) = k(u) and, by induction,

(29) ng1(u) = k(rn(u).
Clearly, each 7, is continuous and by (25)
(30) Tnt1(u) € ©(rp(u)).

We shall show that r, tends locally uniformly to r and that r is a required
retraction. Indeed, from (24), (29) and (30) we have

s () = )y < o st (ra (), @ (u)

(31) I+« I+a

< S st (B (), B (w) < 15 ) = s (@)l
Therefore
(32) () = i)l < (S5 ) st (s, 2(0).

Since dist (u, ®(u)) is locally bounded, r,, converges locally uniformly. This
implies that r(u) = limr,(u) is continuous. Moreover, for u € ®(u) we
have r(u) = wu, since rp(u) = w. Passing to the limit in (30) we obtain
r(u) € ®(r(u)), so r is a retraction. |

3. APPLICATION OF THE RETRACTION RESULT TO DIFFERENTIAL
INCLUSION

Let us consider the problem of the existence of solution 1 to the differential
inclusion
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(33) —Ay e F(t,¥)

in the class of functions v € W2 n I/VO1 2 and therefore 1) satisfies the
boundary conditions

(34) Ylor = 0.

Let us impose the conditions (H1), (H2) and (H3) on the right hand side
F(t,x) and let us assume that the operator L,, where m is a “Lipschitz
constant” of the multifunction F(t,-) satisfies (H). The solution set R is
the set of all ¢ such that (33) is fulfiled almost everywhere in 7" with (34)
on the boundary of 7. The main result in this paper is the following:

Theorem 2. Let us assume that for the multifunction F(t,z) (H1), (H2),
(H3) and (Hy) hold. Then the set of solutions to the problem (33) with (34)
is a retract of the space W2 N W01’2.

Proof. Denote by

(35) K(w) = {v e L?: v(t) € F(t, A(u)(t) ac.in T}

and

(36) a=|T| sup /Qo(t,T)mQ(T)go(T, s)dr.
t,seT JT

We shall prove that K : L? — dec(L?) is a contraction.

First, let us observe that the sets C(u) # (). Indeed, let v be a mea-
surable selection of the multifunction ¢ — F (¢, A(u)(t)). The existence of v
follows from the Kuratowski and Ryll-Nardzewski Theorem. The hypothesis
(H2) implies

dist (v(t), F(t,0)) < m(t) | A(u)(t)]

for a.e. t € T. Then from (H3) follows an estimate
[o(@)[< at) +m(t) [A(Ju]) ()]

and further v € L2.
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Secondly, for the contractivity of the map u — K(u), let us fix uy, ug and
vy € K(u1). Let va(7) € F(7, A(u2)(7)) be a measurable selection such that
lv1(7) —va(7)| < m(7)|A(u1)(T) — A(u2)(7)| a.e. in T. Hence together with
(H2) we have

IN

/|v1(7')—vg(7')]2dr /m2(7)|A(u1—u2)(7')|2dT
T T

(37)
ayT\—l/Tyul(T)—ug(T)PdT.

IN

Now, we have that this is nothing but the contractivity of . Now, Theorem
1 else implies that the set Fix(K) of fixed points of multifunction K(u) is
a retract of the space L?. Let ¢ : L?> — Fix(K) be the retraction. Since
the map A is continuous into W2 N T/Vol’2 then the map r: W2n VVOI’2
— R given by

() = A(6(=Ap))

is the retraction from the theorem. [ ]
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