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Consider a differential inclusion

−∆ψ ∈ F(t, ψ)(1)

with boundary conditions
ψ|∂T = 0(2)

where t runs over a bounded domain T ⊂ Rn with a sufficiently smooth
boundary Γ = ∂T . ∆ is Laplace operator in T and F is a Lipschitzean
multifunction with a constant m ∈ Lp(T ) i.e.

distH (F(t, x),F(t, y)) ≤ m(t) |x− y | .

By a solution (1), (2) we mean a function ψ ∈ H1
0 (T ) ∩W 2,1(T ) such that

−∆ψ(t) ∈ F(t, ψ(t))

for a.e. t ∈ T . In [3] we examined the case n = 1 i.e.

(∗)
{ −x′′ ∈ F(t, x), t ∈ T

x|∂T = 0.
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We have proved that if m is sufficiently small than the set of solutions of
(*) is an absolute retract. The main tools used in [2] were the spectral
properties of the operator Lm = −∆ − m extended to Sobolev space H1

0

and in particular the stability property of the principal eigenvalue of the
operator Lm, m ∈ L1. Having this property we were able to renorm L1, in
such a way that the solution set of (*) is the set of fixed points of certain
multivalued contraction and then apply the BCF theorem [5] on properties
of the set of fixed points. Applying these methods to the case of Rn is
possible, however, it calls for a thorough study of spectral properties of the
operator

Lmψ = −∆ψ −m · ψ, ψ ∈ H1
0 .

This will be the subject of a consecutive paper. In particular, we need to
examine the stability properties of the principal eigenvalue of the operator
Lm in relation to m ∈ Lp with properly chosen p (c.f. [2] for case n = 3).
We should point out that spectral properties of the operator Lm are well
known, in case m is a sufficiently smooth function. The results, known in
the literature, concerning the stability of the principal (or other) eigenvalue
of the operator Lm seem not to cover our case m ∈ Lp. In this paper we deal
with Lm for t ∈ T ⊂ R3, where a bounded domain T and m are restricted
to satisfy the condition

(H+) sup
{∫

T
G0(t, τ)m2(τ)G0(τ, s)dτ : t, s ∈ T

}
< 1/ |T |

which is obviously fulfiled if m ∈ L4 or if | T | is sufficiently small. Here
G0(t, s) is a Green function of Dirichlet problem for Laplacean in T .

In Section 2, we extend the result from BCF [5] on retraction in L1 to
the case Lp and in Section 3, we apply this for a differential inclusion of type
(1) in H1

0 .

1. Notation

Let T ⊂ R3 be a bounded domain with C∞ smooth boundary Γ and
H1

0 (T ) be a Sobolev space, i.e. a completion in the norm

|ψ| = (‖∇ψ‖2 + ‖ψ‖2)1/2,
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of the space C∞
0 (T ) = {ψ : T → Rk : suppψ ⊂ T} of infinitely many times

differentiable functions where ‖ψ‖p = (
∫
T |ψ |p)1/p is a norm in Lp with an

obvious modification for p = ∞. Moreover,

W 2,p =
{
ψ ∈ Lp : ∂i∂jψ ∈ Lp; i, j = 1, 2, 3

}
.

Then H1
0 can be continuously embedded in L6 and compactly embedded in

L2 e.g. [10]. The latter means in particular that there exists a constant S
such that

(∫

T
|ψ(t)|6 dt

)1/6

≤ S ‖ψ‖(3)

for ψ ∈ H1
0 . Moreover, for m ∈ L3/2, the space H1

0 can be continuously
embedded in L2(m) =

{
u : u2m ∈ L1

}
, because from (3) and the Hölder

inequality we have

∫

T
mψ2 ≤

(∫

T
m3/2

)2/3 (∫

T
|ψ2|3

)1/3

≤ ‖m‖3/2S
2|ψ|2.(4)

Consider a quadratic form

Dm[φ] =
∫

T

(
|∇ψ|2 −mψ2

)
dt(5)

and let

Dm[φ, v] =
∫

T

(
∇ψ∇v −mψv

)
dt(6)

be a corresponding bilinear form. It generates the operator Lm by the
formula 〈Lmψ, v〉 = Dm[ψ, v] for all ψ, v ∈ H1

0 . The previous remark means,
in particular, that the domain of Lm contains H1

0 .
Let us consider the boundary value problem to the inclusion (1) with

boundary conditions (2).
We shall assume that the multifunction F(t, x) satisfies the following

hypotheses:
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(H1) the sets F(t, x) are compact subsets of Rk for any t ∈ T and x ∈ Rk,
and the multifunctions t 7→ F(t, x) are measurable for any x ∈ Rk;

(H2) there exists m ∈ L3/2 such that for any x, y ∈ Rk we have

distH (F(t, x),F(t, y)) ≤ m(t) |x− y |,

where dist (K, L) stands for the Hausdorff distance between sets K
and L ⊂ Rk;

(H3)

sup {|x | : x ∈ F(t, 0)} ≤ a(t) a.e. and a ∈ L∞.

By a solution to the problem (1), (2) we mean any function ψ ∈ W 2,1∩W 1,2
0

such that

(L0ψ)(t) ∈ F(t, ψ(t)) a.e. in T.(7)

In the present paper we deal with properties of the solution set R to the
problem (1), (2). We prove that R is a retract of the whole space
W 2,1 ∩W 1,2

0 .

A by-product is the existence of solutions to the problem (1), (2), since
any retract R 6= ∅. Our work was motivated by a result by De Blasi and
Pianigiani [4], where the authors assumed that the Lipschitz constant m(t) =
const < 1, t ∈ [0; 1]. In the situation considered in our paper, the above
hypothesis has been weakened substantially.

The simplest Schrödinger operator is the operator L0ψ = −∆ψ (for
m = 0). The equation

L0ψ = u(8)

with the boundary conditions (2)

ψ|∂T = 0(9)
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has a solution ψ = Au ∈ W 2,1 ∩ W 1,2
0 for any u ∈ L1. This solution is

expressed by the formula

Au(t) =
∫

T
G0(t, s)u(s) ds(10)

where G0(t, s) is the corresponding Green function in Lp(T × T ) for any
p < 12

5 .
The operator A : L6/5 −→ W 2,6/5 is linear, and bounded, and positive,

i.e. for any function u ≤ 0 we have Au ≤ 0. In particular, it means that for
any u ∈ L6/5 the following estimate

|Au(t)| ≤
√

kA(|u|)(t) a.e. in T(11)

holds.

2. Retraction in Lp on fixed points of a contractive
multifunction

Let T be a compact Hausdorff space with a σ-field Σ of Borel measurable
sets given by a nonatomic Radon measure ”dt”. For 1 ≤ p < ∞ by
Lp = Lp(T,X) we mean the Banach space of Bochner integrable functions
with the usual norm

‖ u ‖p=
(∫

T
|u(t)|p dt

) 1
p

for 1 ≤ p < ∞.

We shall assume that Lp is separable.

A set K ⊂ Lp is said to be decomposable iff for any u, v ∈ K and A ∈ Σ

χAu + (1− χA)v ∈ K.

Denote by D the family of all nonempty, closed and decomposable subsets
of Lp and take K ∈ D. Recall that from [9] it follows that for any given
u ∈ Lp and ε > 0 there exists v ∈ K such that

|u(t)− v(t)| ≤ essinf{|u(t)− z(t)| : z ∈ K}+ ε a.e. in T.(12)
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Therefore
dist (u,K) = inf{‖u− z‖p : z ∈ K}

≥
(∫

T
{essinf |u(t)− z(t)| : z ∈ K}pdt

) 1
p

≥ ‖u− v‖p − ε[µ(T )]
1
p .

But ε > 0 is arbitrary, so

dist (u,K) =
(∫

T
{essinf |u(t)− z(t)| : z ∈ K}pdt

) 1
p

.(13)

Let us consider a mapping Φ : Lp → D which is a contraction, i.e. there is
a constant α ∈ (0, 1) such that

distH (Φ(u),Φ(v)) ≤ α ‖ u− v ‖p,(14)

where distH (A,B) stands for the Hausdorff distance of sets A and B. Con-
sider a mapping ϕ : Lp(T, X) → Lp(T,R) given by

ϕ(u) = essinf{|u(t)− w(t)| : w ∈ Φ(u)}.(15)

From (14) one can easily observe that

‖ϕ(u)‖p = dist (u,Φ(u)) .(16)

Lemma 1. The mapping ϕ : Lp(T, X) → Lp(T, R) given by (15) is Lipschitz
with a constant 2α + 1.

Proof. Take any u, v ∈ Lp and fix ε > 0. From (12) there exist w ∈ Φ(u)
and z ∈ Φ(v) such that

|u(t)− w(t)| ≤ ϕ(u)(t) + ε a.e. in T

and
|v(t)− z(t)| ≤ ϕ(v)(t) + ε a.e. in T.
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Moreover, there are a ∈ Φ(u) and b ∈ Φ(v) such that

‖a− z‖p ≤ dist (z,Φ(u)) + ε ≤ α‖u− v‖p + ε(17)

and

‖b− w‖p ≤ dist (w, Φ(v)) + ε ≤ α‖u− v‖p + ε.(18)

Then

ϕ(v)(t)− ϕ(u)(t) ≤ |v(t)− b(t)| − |u(t)− w(t)|+ ε

≤ |v(t)− u(t)|+ |u(t)− b(t)| − |u(t)− w(t)|+ ε

≤ |v(t)− u(t)|+ |w(t)− b(t)|+ |a(t)− z(t)|+ ε.

(19)

Similarly

ϕ(u)(t)− ϕ(v)(t) ≤ |v(t)− u(t)|+ |w(t)− b(t)|+ |a(t)− z(t)|+ ε(20)

and therefore

‖ϕ(u)− ϕ(v)‖p ≤ ‖u− v‖p + ‖w − b‖p + ‖a− z‖p + ε [µ(T )]
1
p .

This together with (17) and (18) means that

‖ϕ(u)− ϕ(v)‖p ≤ (2α + 1)‖u− v‖p + 2ε + ε [µ(T )]
1
p .(21)

But ε > 0 is arbitrary, so the latter shows our claim.

Theorem 1. Let Φ : Lp → D be a contraction. Then the set

Fix(Φ) = {u : u ∈ Φ(u)}

is a retract of Lp.
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Proof. Denote by S = Lp \ Fix(Φ) and observe that S is open. For any
given u ∈ S define

ψ = ϕ(u) +
1− α

2α
[µ(T )]−

1
p ‖φ(u)‖p(22)

and

K(u) = cl
(
{v ∈ Φ(u) : |u(t)− v(t)| < ψ(t) a.e. in T}

)
,(23)

where cl stands for the closure in Lp.

Employing similar arguments as in Proposition 2 in [6], [5] and Proposi-
tion 3 in [9] one can see that K : S → D is lower semicontinuous. Therefore
from BCF Theorem there exists a continuous mapping k : S → Lp such
that for u ∈ S we have k(u) ∈ Φ(u) and |k(u)(t)− u(t)| ≤ ψ(t) a.e. in T .
Therefore

‖k(u)− u‖p ≤ ‖ψ‖p ≤ ‖ϕ(u)‖p +
1− α

2α
‖ϕ(u)‖p

=
1 + α

2α
dist (u,Φ(u)) .

(24)

Extend k on Lp by setting k(u) = u if u ∈ Fix(Φ).
By construction we have that for all u

k(u) ∈ Φ(u)(25)

and by (24)

‖k(u)− u‖p ≤ 1 + α

2α
dist (u,Φ(u)) .(26)

Such k remains continuous on the whole Lp. To see this it is enough to check
continuity for u ∈ Fix(Φ), since it clearly holds on open S. Fix u ∈ Fix(Φ)
and let un → u. Then by (14) and Lemma 1 we have

dist (un, Φ(un)) = ‖ϕ(un)‖p → ‖ϕ(u)‖p = 0(27)
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and therefore by (26)

k(un) → u = k(u)(28)

what shows continuity of the mapping k.
Set r1(u) = k(u) and, by induction,

rn+1(u) = k(rn(u)).(29)

Clearly, each rn is continuous and by (25)

rn+1(u) ∈ Φ(rn(u)).(30)

We shall show that rn tends locally uniformly to r and that r is a required
retraction. Indeed, from (24), (29) and (30) we have

‖rn+1(u)− rn(u)‖p ≤ 1 + α

2α
dist (rn(u), Φ(rn(u))

≤ 1 + α

2α
dist (Φ(rn−1(u)), Φ(rn(u)) ≤ 1 + α

2
‖rn(u)− rn−1(u)‖p.

(31)

Therefore

‖rn+1(u)− rn(u)‖p ≤
(

1 + α

2

)n

dist (u,Φ(u)) .(32)

Since dist (u,Φ(u)) is locally bounded, rn converges locally uniformly. This
implies that r(u) = lim rn(u) is continuous. Moreover, for u ∈ Φ(u) we
have r(u) = u, since rn(u) = u. Passing to the limit in (30) we obtain
r(u) ∈ Φ(r(u)), so r is a retraction.

3. Application of the retraction result to differential
inclusion

Let us consider the problem of the existence of solution ψ to the differential
inclusion
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−∆ψ ∈ F(t, ψ)(33)

in the class of functions ψ ∈ W 2,1 ∩ W 1,2
0 and therefore ψ satisfies the

boundary conditions

ψ|∂T = 0.(34)

Let us impose the conditions (H1), (H2) and (H3) on the right hand side
F(t, x) and let us assume that the operator Lm where m is a “Lipschitz
constant” of the multifunction F(t, ·) satisfies (H+). The solution set R is
the set of all ψ such that (33) is fulfiled almost everywhere in T with (34)
on the boundary of T . The main result in this paper is the following:

Theorem 2. Let us assume that for the multifunction F(t, x) (H1), (H2),
(H3) and (H+) hold. Then the set of solutions to the problem (33) with (34)
is a retract of the space W 2,1 ∩W 1,2

0 .

Proof. Denote by

K(u) =
{
v ∈ L2 : v(t) ∈ F(t, A(u)(t)) a.e. in T

}
(35)

and

α = |T | sup
t,s∈T

∫

T
G0(t, τ)m2(τ)G0(τ, s) dτ.(36)

We shall prove that K : L2 −→ dec(L2) is a contraction.
First, let us observe that the sets K(u) 6= ∅. Indeed, let v be a mea-

surable selection of the multifunction t 7→ F(t, A(u)(t)). The existence of v
follows from the Kuratowski and Ryll-Nardzewski Theorem. The hypothesis
(H2) implies

dist (v(t),F(t, 0)) ≤ m(t) |A(u)(t) |

for a.e. t ∈ T . Then from (H3) follows an estimate

|v(t) |≤ a(t) + m(t) |A(|u |)(t) |

and further v ∈ L2.
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Secondly, for the contractivity of the map u 7→ K(u), let us fix u1, u2 and
v1 ∈ K(u1). Let v2(τ) ∈ F(τ,A(u2)(τ)) be a measurable selection such that
|v1(τ)− v2(τ)| ≤ m(τ)|A(u1)(τ)−A(u2)(τ)| a.e. in T . Hence together with
(H2) we have

∫

T
|v1(τ)− v2(τ)|2dτ ≤

∫

T
m2(τ)|A(u1 − u2)(τ)|2dτ

≤ α|T |−1
∫

T
|u1(τ)− u2(τ)|2dτ.

(37)

Now, we have that this is nothing but the contractivity of K. Now, Theorem
1 else implies that the set Fix(K) of fixed points of multifunction K(u) is
a retract of the space L2. Let φ : L2 −→ Fix(K) be the retraction. Since
the map A is continuous into W 2,1 ∩ W 1,2

0 then the map r : W 2,1 ∩W 1,2
0

−→ R given by
r(ψ) = A(φ(−∆ψ))

is the retraction from the theorem.
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