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Abstract

Oscillation criteria, extended Kamenev and Philos-type oscillation
theorems for the nonlinear second order neutral delay differential equa-
tion with and without the forced term are given. These results extend
and improve the well known results of Grammatikopoulos et. al., Graef
et. al., Tanaka for the nonlinear neutral case and the recent results
of Dzurina and Mihalikova for the neutral linear case. Some examples
are considered to illustrate our main results.
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1. Introduction

In this paper, we are concerned with the oscillation of all solutions of the
second order nonlinear neutral delay differential equations

(1.1) [y(t) + p(t)y(t− τ))]
′′

+ q(t)f(y(t− σ)) = 0, t ∈ [t0,∞),
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(1.2) [y(t) + p(t)y(t− τ))]
′′

+ q(t)f(y(t− σ)) = F (t), t ∈ [t0,∞).

where

(H1) p, q ∈ C([t0,∞),R+), τ, σ ≥ 0 and 0 ≤ p(t) < 1;
(H2) f ∈ C(R,R), uf(u) ≥ 0 for u 6= 0, f(uv) ≥ f(u)f(v) for uv > 0, and

f(u) ≥ βu, β > 0,

(H3) There exists θ ∈ C2([t0,∞),R) such that θ(t) is oscillatory, periodic
of period τ and θ

′′
(t) = F (t).

Let ρ = max{σ, τ} and let t1 > t0. By a solution of equation (1.1) (or
(1.2)) on [t1,∞) we mean a function y ∈ C([t1− ρ,∞),R), such that y(t) +
p(t)y(t − τ) is twice continuously differentiable on [t1,∞) and such that
(1.1) is satisfied for t > t1. Our attention is restricted to those solutions of
(1.1) that satisfy sup{|y(t)| : t ≥ T} > 0. We make a standing hypothesis
that (1.1) does possess such solutions. For further questions concerning the
existence and uniqueness of solutions of neutral delay differential equations
see Hale [15]. A solution y(t) of (1.1) is called oscillatory if it has arbitrarily
large zeros, otherwise the solution is called non-oscillatory. Equation (1.1)
is said to be oscillatory if its all solutions are oscillatory.

In recent years the literature on the oscillation theory of neutral delay
differential equations has been growing very fast. This is due to the fact
that neutral delay differential equations are a new field with interesting
applications in real world life problems. In fact, neutral delay differential
equations appear in modelling of networks containing lossless transmission
lines (as in high-speed computers where lossless transmission lines are used
to interconnect switching circuits), second order neutral delay differential
equations appear in the study of vibrating masses attached to an elastic bar,
as the Euler equation in some variational problems, the theory of automatic
control and in neuromechanical systems in which inertia plays an important
role (see Hale [15], Popove [23] and Boe and Chang [4] and reference cited
therein).

There has been considerable research into the oscillation and asymptotic
behavior of solutions of second order equations of neutral type with deviating
argument (see for example [5, 6, 8–13, 21, 24, 29]). For more results on
neutral delay differential equations and other various functional differential
equations we refer to the monographs [1–3, 7, 14, 19].
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For the oscillation of (1.1) Grammatikopoulos et al. [11] extended the re-
sults of Waltman [26] and Travis [25] for the oscillation of a second order
differential equation in the linear case, i.e., when f(u) = u, to (1.1) and
proved that if 0 ≤ p(t) < 1 and

(1.3)
∫ ∞

t0

q(s)[1− p(s− σ)]ds = ∞.

then every solution of (1.1) oscillates. But one can see that the condition
(1.3) cannot be applied to the equation

(1.4) [y(t) + p(t)y(t− τ)]
′′

+
µ

t2
y(t− σ) = 0, t ≥ t0.

where µ > 0 and 0 ≤ p(t) < 1. However, if p(t) = 0, then (1.4) reduces to the
well known Euler equation and every solution of this equation oscillates if
µ > 1

4 . Recently Dzurina and Mihalikova [6] considered (1.1) when p(t) = p
is a constant and f(x) = x and gave the following oscillation criteria: If

(1.5)
∫ ∞

t0

[
q(s)(s− σ)

1− pn+1

1− p
− 1

4(s− σ)

]
ds = ∞

then every solution of (1.1) oscillates. It is clear that the results of Dzurina
and Mihalikova [6] can be applied to (1.4) when p is a constant. But this
result applies to the linear case with constant p and cannot be applied to a
more general case (1.1). In fact, we will see below that the result of Dzurina
and Mihalikova will be considered as a special case of our results.

In [8] Graef et al. extend the condition (1.3) to the nonlinear equation
(1.1), and proved that every solution of (1.1) oscillates if

(1.6)
∫ ∞

t0

q(s)f((1− p(s− σ)c)ds = ∞, c > 0.

In [24] Tanaka extended the condition (1.6) to (1.2) and proved that every
solution of (1.2) oscillates if

(1.7)
∫ ∞

t0

q(s)f((1− p(s− σ)c + Θ(s− σ))ds = ∞, c > 0

where Θ(t) = θ(t) − p(t)θ(t− τ).
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Note that the results of Graef et. al., and Tanaka cannot be applied to (1.4)
in the linear case.

The before mentioned results have motivated the present research and
the principle reasons are the following: The results of Grammatikopoulos et
al and Dzurina and Mihalikova considered f(u) = u, the linear case without
a forced term. The results of Tanaka also cannot be applied to the linear
case and it may be somewhat restrictive for applications, so it is useful to
prove results in the nonlinear case with a forced term.

The purpose of this paper is to give some new oscillation criteria of (1.1)
and extend our results to (1.2). We present some new sufficient conditions
which guarantee oscillation of all proper solutions of the nonlinear delay
differential equation (1.1) and (1.2). Also we give some Kamenev-type and
Philos-type theorems for oscillation due to Kamenev and Philos Methods
[17, 22], and discuss a number of carefully chosen examples which clarify
the relevance of our results. Our results extend and improve the results of
Grammatikopoulos et al. [11], Dzurina and Mihalikova [6], Graef et. al. [8]
and the results of Tanaka [24]. Moreover our results, immediately improve
the results of Waltman [26] and Wintner [27], Travis [25] and Leighton
[20], Kamenev [17], Philos [22] and Yan [28] for second order differential
equations.

In the sequel, when we write a functional inequality, we will assume that
it holds for all sufficiently large values of t.

2. Main results

In this section we will establish some new oscillation criteria for the oscil-
lation of (1.1), and extend these results to (1.2), and also presented some
extended Kamenev-type and Philos-type theorems for oscillations.

Theorem 2.1. Assume that (H1) − (H2) hold, and there exists a function
ρ ∈ C1[[t0,∞),R+] such that

(2.1) lim
t→∞ sup

∫ t

t0

(
ρ(s)Q(s)− ρ

′
(s)

4ρ(s)

)
ds = ∞.

where Q(t) = βq(t)f((1− p(t− σ))). Then every solution of (1.1) oscillates.
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Proof. Let y(t) be a nonoscillatory solution of (1.1). Without loss of
generality, we assume that y(t) 6= 0 for t > t0. Further, we suppose that
y(t) > 0, y(t− τ) > 0 and y(t−σ) > 0 for t > t1 ≥ t0, since the substitution
u = −y transforms (1.1) into an equation of the same form subject to the
assumption of the Theorem. Let

(2.2) z(t) = y(t) + p(t)y(t− τ).

By (H1) we see that z(t) ≥ y(t) > 0 for t > t1, and from (1.1) it follows that

(2.3) z
′′
(t) = −q(t)f(y(t− σ)) < 0, for t > t1.

Therefore z
′
(t) is a decreasing function. Now as z(t) > 0 and z

′′
(t) < 0 for

t ≥ t1, then by Kiguradze Lemma [18] we have immediately

(2.4) z
′
(t) > 0, for t > t1.

Now using (2.4) in (2.2) we have

y(t) = z(t)− p(t)y(t− τ) = z(t)− p(t)[z(t− τ)− p(t− τ)y(t− 2τ)]

≥ z(t)− p(t)z(t− τ) > (1− p(t))z(t).

Thus there exists a t2 ≥ t1 such that

(2.5) y(t− σ) ≥ (1− p(t− σ))z(t− σ) for t ≥ t2.

Then by using (H2) we have

(2.6) f(y(t− σ)) ≥ f(1− p(t− σ))f(z(t− σ)) for t ≥ t2.

By substituting (2.6) in (2.3), we obtain

(2.7) z
′′
(t) + Q(t)z(t− σ) ≤ 0, t ≥ t2,
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where Q(t) = βq(t)f(1− p(t− σ)). Define

w(t) =
ρ(t)z

′
(t)

z(t− σ)
,

then w(t) > 0. Since z
′
(t− σ) > z

′
(t), then from (2.7) we have

(2.8) w
′
(t)− ρ

′
(t)

ρ(t)
w(t) + ρ(t)Q(t) +

1
ρ(t)

w2(t) ≤ 0.

Hence

w
′
(t) ≤ −ρ(t)Q(t) +

ρ
′
(t)

ρ(t)
w(t)− 1

ρ(t)
w2(t)

= −ρ(t)Q(t)−
[

1√
ρ(t)

w(t)− 1
2

√
ρ′(t)
ρ(t)

]2

+
ρ
′
(t)

4ρ(t)
.

Thus

w
′
(t) < −

[
ρ(t)Q(t)− 1

4
ρ
′
(t)

ρ(t)

]
.

Integrating the last inequality from t2 to t, we get

w(t) ≤ w(t2)−
∫ t

t2

[
ρ(s)Q(s)− ρ

′
(s)

4ρ(s)

]
ds.

Taking t →∞, we deduce by (2.1) that w(t) → −∞, a contradiction. Then
every solution of (1.1) oscillates.

Now we extend Theorem 2.1 to (1.2) with a forced term.

Theorem 2.2. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0 and there
exists a function ρ ∈ C1[[t0,∞),R+] such that

(2.9) lim
t→∞ sup

∫ t

t0

(
ρ(s)Q1(s)− ρ

′
(s)

4ρ(s)

)
ds = ∞,

where Q1(t) = βq(t)f(λ(1−p(t−σ))). Then every solution of (1.2) oscillates.
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Proof. Let y(t) be a nonoscillatory solution of (1.2). Without loss of
generality, we assume that y(t) 6= 0 for t > t0. Further, we suppose that
y(t) > 0, y(t− τ) > 0 and y(t−σ) > 0 for t > t1 ≥ t0, since the substitution
u = −y transforms (1.2) into an equation of the same form subject to the
assumption of the Theorem. Let

(2.10) z(t) = y(t) + p(t)y(t− τ)− θ(t).

By (H1) and as in [24] we see that z(t) ≥ y(t) > 0 for t > t1, and from (1.2)
it follows that

(2.11) z
′′
(t) = −q(t)f(y(t− σ)) < 0, for t > t1.

Therefore z
′
(t) is a decreasing function. Now as z(t) > 0 and z

′′
(t) < 0 for

t ≥ t1, then by Kiguradze Lemma [18] we have immediately again

(2.12) z
′
(t) > 0, for t > t1.

Now using (2.12) in (2.10) and using the fact that θ(t) = θ(t− τ), we have

y(t) = z(t)− p(t)y(t− τ) + θ(t)

≥ z(t)− p(t)[z(t− τ) + θ(t− τ)] + θ(t)

≥ (1− p(t))z(t)− p(t)θ(t− τ) + θ(t) = (1− p(t))z(t) + Θ(t).

On the other hand, since limt→∞Θ(t) = 0, we can find t2 ≥ t1 such that

(2.13) y(t− σ) ≥ λ(1− p(t− σ))z(t− σ) for t ≥ t2,

where λ ∈ (0, 1). Then by using (H2) we have

(2.14) f(y(t− σ)) ≥ f(λ(1− p(t− σ)))f(z(t− σ)) for t ≥ t2.

Substituting (2.14) in (2.11), we obtain

(2.15) z
′′
(t) + Q1(t)z(t− σ) ≤ 0, t ≥ t2.
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where Q1(t) = βq(t)f(λ(1 − p(t − σ))). Defining again w(t) as in Theorem
2.1 we obtain

(2.16) w
′
(t)− ρ

′
(t)

ρ(t)
w(t) + ρ(t)Q1(t) +

1
ρ(t)

w2(t) ≤ 0.

The remainder of the proof is now similar to that of Theorem 2.1 and will
be omitted.

Corollary 2.1. Assume that (H1) and (H2) hold, f(u) = u and ρ(t) = t,
such that

lim
t→∞ sup

∫ t

t0

(
sq(s)(1− p(s− σ)− 1

4s

)
ds = ∞.

Then every solution of (1.1) oscillates.

Corollary 2.2. Assume that (H1) and (H2) hold, p(t) = 0, ρ(t) = t, and
f(u) = u such that

lim
t→∞ sup

∫ t

t0

(
sq(s)− 1

4s

)
ds = ∞.

Then every solution of the delay differential equation

y
′′
(t) + q(t)y(σ(t)) = 0, t ≥ t0.

oscillates.

Remark 2.1. Note that the results of Dzurina and Mihalikova depend on a
positive integer n > 0, and in Corollary 2.1 we do not require any additional
constants. Then Corollary 2.1 extends and improves the results of Dzurina
and Mihalikova [6].

To illustrate our main results, we consider the following two examples

Example 2.1. Consider the Euler Equation

(E) y
′′
(t) +

ν

t2
y(t) = 0, t ≥ 1.
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where ν > 0 is a constant. Here p(t) = 0, σ = 0, and q(t) = ν
t2

. Note that:

(Wintner) limt→∞ 1
t

∫ t
t0

∫ s
t0

q(x)dxds = limt→∞ 1
t

∫ t
1

∫ s
1

ν
x2 dxds =

limt→∞ ν
t

∫ t
1 (−1

s + 1)ds = limt→∞ ν
t (− ln(t) + t− 1) = ν < ∞.

(Leighton)
∫∞
t0

q(s)ds =
∫∞
1

ν
s2 ds = ν[−1

s ]∞1 = ν < ∞.

(Kamenev) limt→∞ sup 1
tn

∫ t
t0

(t−s)nq(s)ds = limt→∞ sup 1
tn

∫ t
1 (t−s)n ν

s2 ds <

limt→∞ sup
∫ t
1

ν
s2 ds = ν < ∞, for some n > 1.

(Hartman) A(T)≤ limt→∞ inf 1
tn

∫ t
T (t− s)nq(s)ds ≤

limt→∞ sup 1
tn

∫ t
T (t− s)nq(s)ds ≤ ν

T for every T ≥ 1.

(Yan)
∫∞
1 A2(t)dt ≤ ∫∞

1
ν2

s2 ds = ν2 < ∞.

(Philos) limt→∞ sup 1
H(t,t0)

∫ t
t0

[H(t, s)q(s)− 1
4h2(t, s)]ds ≤

limt→∞ sup
∫ t
1

ν
s2 ds = ν < ∞.

That is, none of the above mentioned oscillation criteria holds. Thus,
the above mentioned oscillation criteria of Wintner, Leighton, Hartman,
Kamenev, Yan and Philos cannot be applied to the Euler equation (E). But

lim
t→∞ sup

∫ t

t0

(
sq(s)− 1

4s

)
ds = lim

t→∞ sup
∫ t

2π

(
s

ν

s2
− 1

4s

)
ds

= lim
t→∞ sup

∫ t

2π

(
4ν − 1

4s

)
ds = ∞, if ν >

1
4
.

Hence, by Corollary 2.2, every solution of (E) oscillates if ν > 1
4 .

Then Corollary 2.2 improves the results of Wintner, Leighton, Hartman,
Yan, Kamenev, Philos.

Example 2.2. Consider the following neutral delay differential equation

(2.17)
[
y(t) +

1
t + π

y(t− 2π)
]′′

+
λ

t2
y(t− π) = 0, t ≥ 2π.
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where λ > 0 is a constant. Here, f(u) = u, q(t) = λ
t2

, p(t) = 1
t+π and

p(t− π) = 1
t . Then

lim
t→∞ sup

∫ t

t0

(
sq(s)(1− p(s− σ))− 1

4s

)
ds

= lim
t→∞ sup

∫ t

2π

(
s

λ

s2
(1− 1

s
)− 1

4s

)
ds

= lim
t→∞ sup

∫ t

2π

(
4λ− 1

4s
− λ

s2

)
ds = ∞, if λ >

1
4
.

Hence, by Corollary 2.1, every solution of (2.17) oscillates. Note that the
results of Grammatikopoulos et al. [11] and Dzurina and Mihalikova [6] and
Tanaka [24] cannot be applied to (2.17). Then Corollary 2.1 improves the
results of [11], [6] and [24].

Below we obtain some Kamenev-type oscillation results for the cases
(1.1) and (1.2).

Theorem 2.3. Assume that (H1), (H2), hold and there exists a functsion
ρ ∈ C1[[t0,∞),R+] such that

(2.18)

lim
t→∞ sup

1
tn

∫ t

t0

(t − s)n

(
βρ(s)q(s)f((1− p(s− σ)))− ρ

′
(s)

4ρ(s)

)
ds = ∞.

Then every solution of (1.1) oscillates.

Proof. Assume to the contrary that (1.1) has a nonoscillatory solution.
We may assume that without loss of generality y(t) > 0 and y(t − τ) > 0
and y(t − σ) > 0 for t > t1 ≥ t0 since the substitution u = −y transforms
(1.1) into an equation of the same form subject to the assumption of the
Theorem. Defining again w(t) as in Theorem 2.1 and going through as in
the proof of Theorem 2.1, we find that w(t) is greater than 0 and it satisfies
the inequality (2.8) which can be rewritten in the form
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w
′
(t) ≤ −ρ(t)Q(t) +

ρ
′
(t)

ρ(t)
w(t)− 1

ρ(t)
w2(t)

= −ρ(t)Q(t)−
[

1√
ρ(t)

w(t)− 1
2

√
ρ′(t)
ρ(t)

]2

+
ρ
′
(t)

4ρ(t)
.

Thus

(2.19)

∫ t

t0

(t− s)nw
′
(s)ds +

∫ t

t0

(t− s)nρ(s)Q2(s)ds

≤ −
∫ t

t0

(t− s)n

[
1√
ρ(s)

w(s) +
1
2

√
ρ′(s)
ρ(s)

]2

ds,

where Q2(s) = (ρ(s)Q(s)− ρ
′
(s)

4ρ(s)). Since

∫ t

t0

(t− s)nw
′
(s)ds = n

∫ t

t0

(t− s)n−1w(s)ds− w(t0)(t− t0)n,

we get

1
tn

∫ t

t0

(t− s)n−1Q2(s)ds ≤ w(t0)
(

t− t0
t

)n

− n

tn

∫ t

t0

(t− s)n−1w(s)ds

− 1
tn

∫ t

t0

(t− s)n

[
1√
ρ(s)

w(s) +
1
2

√
ρ′(s)
ρ(s)

]2

ds ≤ w(t0)
(

t− t0
t

)n

,

where w(t) > 0. Then

lim
t→∞ sup

1
tn

∫ t

t0

(t− s)nQ2(s)ds → w(t0) ≡ finite number,

which contradicts the condition (2.18). Therefore every solution of (1.1)
oscillates.
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Theorem 2.4. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0 and there
exists a function ρ ∈ C1[[t0,∞),R+] such that

(2.18) lim
t→∞ sup

1
tn

∫ t

t0

(t − s)n

(
Q3(s)− ρ

′
(s)

4ρ(s)

)
ds = ∞,

where Q3(s) = βρ(s)q(s)f(λ(1 − p(s − σ))). Then every solution of (1.2)
oscillates.

Proof. Assume to the contrary that (1.2) has a nonoscillatory solution.
We may assume that without loss of generality y(t) > 0 and y(t − τ) > 0
and y(t − σ) > 0 for t > t1 ≥ t0, since the substitution u = −y transforms
(1.2) into an equation of the same form subject to the assumption of the
Theorem. Defining again w(t) as in Theorem 2.1 and going through as in
the proof of Theorem 2.2, we find that w(t) is greater than 0 and it satisfies
the inequality (2.16). The proof is similar to that of Theorem 2.3 and will
be omitted.

If ρ(t) = t in Theorems 2.3 and 2.4, we have immediately the following
Corollaries for oscillation of (1.1) and (1.2) respectively.

Corollary 2.3. Assume that (H1), (H2) hold. If

(2.20) lim
t→∞ sup

1
tn

∫ t

t0

(t− s)n

(
βsq(s)f(1− p(s− σ))− 1

4s

)
ds = ∞.

Then every solution of (1.1) oscillates.

Corollary 2.4. Assume that (H1)− (H3) hold, and limt→∞Θ(t) = 0. If
(2.18)

lim
t→∞ sup

1
tn

∫ t

t0

(t − s)n

(
βsq(s)f(λ(1− p(s− σ)))− ρ

′
(s)

4ρ(s)

)
ds = ∞.

Then every solution of (1.2) oscillates.

In the following theorems we will extend the Philos Theorems for oscil-
lations to (1.1) and (1.2). Following Philos [22], we introduce a class of
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functions <. Let

D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) : t ≥ s ≥ t0}.

The function H ∈ C(D,R) is said to belong to the class < if

(I) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 on D0;
(II) H has a continuous and nonpositive partial derivative on D0 with

respect to the second variable such that

− ∂H(t, s)
∂s

= h(t, s)
√

H(t, s) for all (t, s) ∈ D0.

Theorem 2.5. Assume that (H1) and (H2) hold. Let H belong to the class
<, and

(2.21) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

(
H(t, s)Q4(s)− s

4
Q2(t, s)

)
ds = ∞,

where Q4(t) = βtq(t)(1 − p(t − σ)) and Q(t, s) = h(t, s) −
√

H(t,s)

s . Then
every solution of (1.1) oscillates.

Proof. Assume to the contrary that (1.1) has a nonoscillatory solution.
We may assume that without loss of generality y(t) > 0, y(t − τ) > 0 and
y(t− σ) > 0 for t > t1 ≥ t0, since a similar argument holds also for the case
when y(t) < 0. Defining z(t) as in (2.2) and going through the proof as in
Theorem 2.1, we obtain (2.7). Let us define the function w(t) as follows

(2.22) w(t) =
tz
′
(t)

z(t− σ)
.

Differentiating (2.22) and using (2.7), we obtain

(2.23) w
′
(t) ≤ −Q4(t) +

1
t
w(t)− w2(t)

t
.
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where Q4(t) = βtq(t)f(1− p(t− σ)). Hence, by (2.23) for all t > T ≥ t2, we
have

∫ t

T
H(t, s)Q4(s)ds

≤
∫ t

T
H(t, s)

w(s)
s

ds−
∫ t

T
H(t, s)w

′
(s)ds−

∫ t

T
H(t, s)

w2(s)
s

ds

= −H(t, s)w(s)|tT −
∫ t

T

[
−∂H(t, s)

∂s
w(s)−H(t, s)

w(s)
s

+ H(t, s)
w2(s)

s

]
ds

= H(t, T )w(T )−
∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds +
∫ t

T

sQ2(t, s)
4

ds.

where Q(t, s) = h(t, s) −
√

H(t,s)

s . Thereby, for all t > T ≥ t2, we conclude
that

(2.24)

∫ t

T

[
H(t, s)Q4(s)− s

4
Q2(t, s)

]
ds

≤ H(t, T )w(T )−
∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds.

By virtue of (2.24) and (II) for all t > T ≥ t2, we obtain

(2.25)
∫ t

t2

[
H(t, s)Q4(s)− sQ2(t, s)

4

]
ds ≤ H(t, t2) |w(t2)| ≤ H(t, t0)w(t2).

Then by (2.25) and (II), we have

(2.26)
1

H(t, t0)

∫ t

t0

[
H(t, s)Q4(s)− sQ2(t, s)

4k

]
ds ≤

∫ t2

t0

Q4(s)ds + |w(t2)| .
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Inequality (2.26) yields

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

[
H(t, s)Q4(s)− sQ2(t, s)

4

]
ds

≤
∫ t2

t0

Q4(s)ds + |w(t2)| < ∞,

and the latter inequality contradicts the assumption (2.21). Hence, every
solution of (1.1) oscillates.

Corollary 2.5. Assume that the assumptions of Theorem 2.5 hold with
(2.21) replaced by

(2.27) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

H(t, s)Q4(s)ds = ∞,

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

sQ2(t, s)ds < ∞.

Then every solution of (1.1) oscillates.

For the oscillation of (1.2) we have the following oscillation results immedi-
ately.

Theorem 2.6. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0. Let H
belong to the class <, such that

(2.28) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

[
H(t, s)Q5(s)− sQ2(t, s)

4

]
ds = ∞,

where Q5(s) = βsq(s)f(λ(1− p(s− σ))). Then every solution of (1.2) oscil-
lates.

Corollary 2.6. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0. Let H
belong to the class < such that

(2.29) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

H(t, s)Q5(s)ds = ∞,

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

sQ2(t, s)ds < ∞.
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Then every solution of (1.2) oscillates.

Remark 2.2. With the appropriate choice of functions H and h, it is
possible to derive from Theorems 2.5 and 2.6 a number of oscillation criteria
for (1.1) and (1.2). Defining, for example, for some integer n > 1, the
function H(t, s) by

(2.30) H(t, s) = (t− s)n, (t, s) ∈ D.

we can easily check that H ∈ <. Furthermore, the function

(2.31) h(t, s) = n(t− s)(n−2)/2, (t, s) ∈ D

is continuous and satisfies condition (II). Therefore, as a consequence of
Theorem 2.5, we obtain the following oscillation criteria.

Corollary 2.7. Let the assumption of (H1) and (H2) hold, and

(2.32)

lim
t→∞ sup

1
tn

∫ t

t0

[
(t− s)nβsq(s)f(1− p(s− σ))

−s

4
(t− s)n−2

(
n−

(
t− s

s

))2
]
ds = ∞.

Then every solution of (1.1) oscillates.

Corollary 2.8. Assume that (H1)− (H3) hold, limt→∞Θ(t) = 0, and

lim
t→∞ sup

1
tn

∫ t

t0

[
(t− s)nβsq(s)f(λ(1− p(s− σ)))

−s

4
(t− s)n−2

(
n−

(
t− s

s

))2
]
ds = ∞.

Then every solution of (1.2) oscillates.

The following two oscillation criteria apply to the case when it is not possible
to verify easily conditions (2.21) and (2.28).
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Theorem 2.7. Assume that (H1) and (H2) hold. Let H belong to the class
<, and assume that

(2.33) 0 < inf
s≥t0

[
lim
t→∞ inf

H(t, s)
H(t, t0)

]
≤ ∞.

Let φ ∈ C[[t0,∞),R] such that for t > t0, T ≥ t0

(2.34) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

sQ2(t, s)ds < ∞,

(2.35) lim
t→∞ sup

∫ t

t0

φ2
+(s)
s

ds = ∞,

and

(2.36) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

(
H(t, s)Q4(s)− s

4
Q2(t, s)

)
ds ≥ φ(T ),

where Q(t,s) as in Theorem 2.5 and φ+ = max{φ(t), 0}. Then every solution
of (1.1) oscillates.

Proof. As above, in Theorem 2.5, we assume that (1.1) has a nonoscil-
latory solution. We may assume that without loss of generality y(t) > 0,
y(t− τ) > 0 and y(t− σ) > 0 for t > t1 ≥ t0, since a similar argument holds
also for the case when y(t) < 0 defining w(t) by (2.22), and in the same way
as in Theorem 2.5, we obtain the inequality (2.24). By (2.24) we have for
t > T ≥ T0 = t2

1
H(t, T )

∫ t

T

[
H(t, s)Q4(s)− s

4
Q2(t, s)

]
ds

≤ w(T )− 1
H(t, T )

∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds
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By (2.36), we have for T ≥ T0

(2.37)

w(T ) ≥ φ(T )+ lim
t→∞ inf

1
H(t, T )

∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds.

It follows from (2.37) that for T ≥ T0

(2.38) w(T ) ≥ φ(T ),

and

lim
t→∞ inf

1
H(t, T0)

∫ t

T0

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds

≤ w(T0)− φ(T0) = M < ∞.

Therefore, for t ≥ T0, we have

(2.39)

∞ > lim
t→∞ inf

1
H(t, T0)

∫ t

T0

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds

≥ lim
t→∞ inf

1
H(t, T0)

∫ t

T0

[
H(t, s)

s
w2(s) +

√
H(t, s)Q(t, s)w(s)

]
ds.

Define the functions α(t) and β(t) as follows

α(t) =
1

H(t, T0)

∫ t

T0

H(t, s)
s

w2(s)ds, β(t)

=
1

H(t, T0)

∫ t

T0

√
H(t, s)Q(t, s)w(s)ds.

Then (2.39) may be written as

(2.40) lim
t→∞[α(t) + β(t)] < ∞.
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Now we claim that

(2.41)
∫ ∞

T0

w2(s)
s

ds < ∞.

Suppose to the contrary that

(2.42)
∫ ∞

T0

w2(s)
s

ds = ∞.

By (2.33), there is a positive constant ζ satisfying

(2.43) inf
s≥to

[
lim
t→∞ inf

H(t, s)
H(t, t0)

]
> ζ > 0.

Let µ be any arbitrary positive number, then it follows from (2.42) that
there exists a T1 ≥ T0 such that

∫ t

T0

w2(s)
s

ds ≥ µ

ζ
for all t ≥ T1.

Therefore, for t ≥ T1, we obtain

α(t) =
1

H(t, T0)

∫ t

T0

H(t, s)d
[∫ s

T0

w2(u)
u

du

]

=
1

H(t, T0)

∫ t

T0

−∂H(t, s)
∂s

[∫ s

T0

w2(u)
u

du

]
ds

≥ 1
H(t, T0)

∫ t

T1

−∂H(t, s)
∂s

[∫ s

T1

w2(u)
u

du

]
ds

≥ µ

ζ

1
H(t, T0)

∫ t

T1

−∂H(t, s)
∂s

ds =
µ

ζ

H(t, T1)
H(t, T0)

,

for all t ≥ T1. By (2.43), there is a T2 ≥ T1 such that

H(t, T1)
H(t, T0)

≥ ζ for all t ≥ T2.
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which implies that α(t) ≥ µ for all t ≥ T2. Since µ is arbitrary,

(2.44) lim
t→∞α(t) = ∞.

Next, consider a sequence {tn}∞n=1 with limn→∞ tn = ∞ satisfying

lim
n→∞[α(tn) + β(tn)] = lim

t→∞[α(t) + β(t)].

In view of (2.40), there exists a constant M such that

(2.45) α(tn) + β(tn) ≤ M, n = 1, 2, . . . .

It follows from (2.44) that

(2.46) lim
n→∞α(tn) = ∞.

This and (2.45) give

(2.47) lim
n→∞β(tn) = −∞.

Then, by (2.45) and (2.47)

1 +
β(tn)
α(tn)

≤ M

α(tn)
<

1
2

for n large enough.

Thus
β(tn)
α(tn)

≤ −1
2

for all large n.

This implies that

(2.48) lim
n→∞

β(tn)
α(tn)

β(tn) = ∞.

On the other hand, by Schwarz’s inequality, we have
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β2(tn) =
[

1
H(tn, T0)

∫ tn

T0

√
H(tn, s)Q(tn, s)w(s)ds

]2

≤
{

1
H(tn, T0)

∫ tn

T0

sQ2(tn, s)ds

}{
1

H(tn, T0)

∫ tn

T0

H(tn, s)
s

w2(s)ds

}

≤ α(tn)
{

1
H(tn, T0)

∫ tn

T0

sQ2(tn, s)ds

}
,

for any positive integer n. But (2.43) guarantee that

lim
t→∞ inf

H(t, T0)
H(t, t0)

> ζ.

This means that there exists a T3 > T0 such that

H(t, T0)
H(t, t0)

> ζ for every t ≥ T3.

Then
H(tn, T0)
H(tn, t0)

> ζ for n large enough

and therefore
β2(tn)
α(tn)

≤ 1
ζH(tn, t0)

∫ tn

T0

sQ2(tn, s)ds.

It follows from (2.48) that

lim
n→∞

1
H(tn, t0)

∫ tn

T0

sQ2(tn, s)ds = ∞.

This gives

(2.49) lim
t→∞ sup

1
H(t, t0)

∫ t

T0

sQ2(t, s)ds = ∞,
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which contradicts (2.34). Thus, (2.41) holds. Then by (2.38) we have

∫ ∞

T0

φ2
+(s)
s

ds ≤
∫ ∞

T0

w2(s)
s

ds < ∞

which contradicts (2.35). Then every solution of (1.1) oscillates.

For the oscillation of (1.2) we have the following oscillation results immedi-
ately and the proof is similar to that of Theorem 2.7 and the details are left
to the reader.

Theorem 2.8. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0. Let H
belongs to the class <, such that

0 < inf
s≥t0

[
lim
t→∞ inf

H(t, s)
H(t, t0)

]
≤ ∞.

Let φ ∈ C[[t0,∞),R] such that for t ≥ t0, T ≥ t0

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

sQ2(t, s)ds < ∞,

lim
t→∞ sup

∫ t

t0

φ2
+(s)
s

ds = ∞,

and

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

(
H(t, s)Q5(s)− s

4
Q2(t, s)

)
ds ≥ φ(T )

where Q(t,s) as in Theorem 2.5 and φ+ = max{φ(t), 0}. Then every solution
of (1.2) oscillates.

Theorem 2.9. Assume that (H1) and (H2) hold. Let H belong to the
class <, and assume that (2.33) holds. Suppose there exists a function φ ∈
C[[t0,∞),R] such that for t ≥ t0, T ≥ t0 (2.35) holds, and

(2.50) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

H(t, s)Q4(s)ds < ∞,
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and

(2.51) lim
t→∞ sup

1
H(t, t0)

∫ t

t0

(
H(t, s)Q4(s)− s

4
Q2(t, s)

)
ds ≥ φ(T ).

where Q(t, s) as in Theorem 2.5 and φ+ = max{φ(t), 0}. Then every solution
of (1.1) oscillates.

Proof. As above, in Theorem 2.7, we assume that (1.1) has a nonoscil-
latory solution. We may assume that without loss of generality y(t) > 0,
y(t− τ) > 0 and y(t− σ) > 0 for t > t1 ≥ t0, since a similar argument holds
also for the case when y(t) < 0. defining w(t) by (2.22), and in the same
way as in Theorem 2.7, we obtain the inequality (2.24). By (2.24) we have
for t > T ≥ T0 = t2

lim
t→∞ inf

1
H(t, T )

∫ t

T

[
H(t, s)Q4(s)− s

4
Q2(t, s)

]
ds

≤ w(T )− lim
t→∞ sup

1
H(t, T )

∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds

It follows from (2.51) that T ≥ T0

w(T ) ≥ φ(T )+ lim
t→∞ sup

1
H(t, T )

∫ t

T

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds

Hence, (2.38) holds for all T ≥ T0, and

lim
t→∞ sup

1
H(t, T0)

∫ t

T0

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds

≤ w(T0)− φ(T0) = M < ∞.
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This implies that

(2.52)

lim
t→∞ sup[α(t) + β(t)]

≤ lim
t→∞ sup

1
H(t, T0)

∫ t

T0

[√
H(t, s)

s
w(s) +

1
2
√

sQ(t, s)

]2

ds,

where α(t) and β(t) are defined as in the proof of Theorem 2.7. By (2.51)

φ(T0) ≤ lim
t→∞ inf

1
H(t, T0)

∫ t

T0

[
H(t, s)Q4(s)− s

Q2(t, s)
4

]
ds

≤ lim
t→∞ inf

1
H(t, T0)

∫ t

T0

H(t, s)Q4(s)

−1
4

lim
t→∞ inf

1
H(t, T0)

∫ t

T0

sQ2(t, s)ds,

this and (2.50) imply that

lim
t→∞ inf

1
H(t, T0)

∫ t

T0

sQ2(t, s)ds < ∞.

Then, there exists a sequence {tn}∞n=1 with limn→∞ tn = ∞ satisfying

(2.53)

lim
n→∞

1
H(tn, T0)

∫ tn

T0

sQ2(tn, s)ds = lim
t→∞ inf

1
H(t, T0)

∫ t

T0

sQ2(t, s)ds < ∞.

Now suppose that (2.42) holds. Using the procedure of the proof of Theorem
2.7, we conclude that (2.44) is satisfied. It follows from (2.52) that there
exists a constant M such that (2.45) is satisfied. Thus as in the proof
of Theorem 2.7, we see that (2.49) holds, which contradicts (2.53). This
contradiction prove that (2.42) fails. Since the remainder of the proof is
similar to that of Theorem 2.7, we omit the details.
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Theorem 2.10. Assume that (H1) − (H3) hold, limt→∞Θ(t) = 0. Let H
belong to the class <, and assume that (2.33) holds. Suppose there exists a
function φ ∈ C[[t0,∞),R] such that for t ≥ t0, T ≥ t0 (2.35) holds and

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

H(t, s)Q5(s)ds < ∞,

and

lim
t→∞ sup

1
H(t, t0)

∫ t

t0

(
H(t, s)Q5(s)− s

4
Q2(t, s)

)
ds ≥ φ(T ).

where Q(t, s) as in Theorem 2.5, Q5 as in Theorem 2.6 and φ+=max{φ(t), 0}.
Then every solution of (1.2) oscillates.

Proof. The proof is left to the reader.

Remark 2.3. We point out that we can deduce corollaries similar to Corol-
lary 2.7 from Theorems 2.5 and 2.6 as well. Of course, we are not limited
only to choice of functions H and h defined, by (2.30), (2.31) respectively
which has become standard and goes back to the well known Kamenev-type
conditions. Changing these functions it is possible to derive from Theorems
2.7, 2.8, 2.9 and 2.10 other Corollaries. In fact, another possibility is to
choose the functions H and h as follows:

(2.54) H(t, s) =
(

ln
t

s

)n

, h(t, s) =
n

s

(
ln

t

s

)n/2−1

, t ≥ s ≥ t0,

One may also choose the more general forms for the functions H and h:
(2.55)

H(t, s) =
(∫ t

s

du

θ(u)

)n

, h(t, s) =
n

θ(s)

(∫ t

s

du

θ(u)

)n/2−1

t ≥ s ≥ t0,

where n > 1 is an integer, and θ : [t0,∞) → R+ is a continuous function
satisfying the condition

lim
t→∞

∫ t

t0

du

θ(u)
= ∞.
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and

(2.56) H(t, s) = (et − es)n, h(t, s) = nes
(
et − es

)(n−2)/2
t ≥ s ≥ t0,

It is a simple matter to check that in all these cases assumptions (I) and (II)
are verified.
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