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Abstract

In this paper we are concerned with the existence and uniqueness of the
weak solution for the weighted p-Laplacian. The purpose of this paper is
to discuss in some depth the problem of solvability of Dirichlet problem,
therefore all proofs are contained in some detail. The main result of the
work is the existence and uniqueness of the weak solution for the Dirichlet
problem provided that the weights are bounded. Furthermore, under this
assumption the solution belongs to the Sobolev space W 1,p

0
(Ω).

Keywords: weighted p-Laplacian, weak solutions, solvability, semi-inner
product spaces.

2010 Mathematics Subject Classification: 35A15, 35J20, 35J60.

1. Introduction

Boundary value problems for the p-Laplace operator subject to zero Dirichlet
boundary conditions on a bounded domain have been studied extensively during
the past two decades and many interesting results have been obtained. In this
respect we record the Dirichlet problem that lead us to considering generalizations
of the weighted Dirichlet problem.

Let Ω be a bounded domain in R
N . Consider the following Dirichlet problem

for the Hilbert space case:

(1.1) D(Ω) :

{

−∆v + cv = f in Ω,
v = 0 on ∂Ω,
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Let c ∈ L∞(Ω) and f ∈ L2(Ω). Then a function v ∈ H1
0 (Ω) is a weak solution of

Dirichlet problem provided that for all φ ∈ H1
0 (Ω)

(∇φ,∇v)L2(Ω,RN ) +

∫

Ω
cvφdx = (φ, f)L2(Ω).

A well known theorem states as follows:

Theorem 1.1. Suppose that 0 ≤ c ∈ L∞(Ω). For f ∈ L2(Ω), the Dirichlet

problem (1.1) has a unique weak solution v ∈ H1
0 (Ω).

In this paper we develop the issues contained in [10]. Thus we are concerned
with the existence and uniqueness of the weak solution to the following boundary
value problem:

D(Ω) :

{

−∆a,pv + a0|v|
p−2v = f in Ω,

v = 0 on ∂Ω,

in which ∆a,p, with 1 < p < ∞, denotes the p-Laplacian weighted by a diagonal
matrix a = (a1, . . . , aN ), that can be (formally) given by

(∆a,pv) (x) =
N
∑

i=1

∂

∂xi

(

ai(x)

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi

)

,

and a0 is an arbitrary function. It must be emphasized that ∆a,p is just a
symbol, and may not be a differential operator at all, since the coefficients ai
(i = 1, . . . , N) are not assumed to be differentiable.

We treat the generalized Dirichlet problem under general conditions on the
weight function a, namely, we suppose that the components ai (i = 0, 1, . . . , N)
of a are measurable functions on Ω such that

ai(x) > 0 for x ∈ Ω a.e., ai ∈ L1
loc(Ω)

and 1/ai ∈ L∞(Ω) (i = 1, . . . , N).

Moreover, we assume that the weight

a0 ≥ 0 and a0 ∈ L∞(Ω).

We established the existence and uniqueness of weak solutions for a non-linear
boundary value problem involving the weighted p-Laplacian. Our approach is
based on variational principles and representation properties of the associated
spaces. In order to carry over Hilbert space type arguments to the theory of
nonlinear elliptic equations in Banach spaces, we used on Sobolev space a type of
inner product, called a semi-inner product. Moreover, we specify precisely under
what conditions on the weights the integral in Theorem 2.2 in [10] makes sense,
and when it is just a symbol.
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2. Auxiliary results

In this section the reader will be reminded of some important properties of semi-
inner product spaces, and some auxiliary results will be quoted or derived.

To apply Hilbert space type methods to the theory of Banach spaces, Lumer
[8] constructed a semi-inner product (s.i.p.) on a complex vector space X as a
complex function [·, ·] on X ×X with the following properties:

(2.1) [αx+ βy, z] = α[x, z] + β[y, z], x, y, z ∈ X, α, β ∈ C,

(2.2) [x, λy] = λ[x, y], x, y ∈ X, λ ∈ C.

(2.3) [x, x] > 0 for x 6= 0,

(2.4) |[x, y]|2 ≤ [x, x][y, y], x, y ∈ X.

(X, [·, ·]) is called a complex space with semi-inner product.
The importance of a semi-inner product space (s.i.p.s.) is that every normed

vector space can be represented as a semi-inner product space so that the theory of
operators on a Banach space can be penetrated by Hilbert space type arguments.

Theorem 2.1 [5, 8]. A semi-inner product space (X, [·, ·]) is a normed linear

space with the norm

‖x‖ = [x, x]1/2, x ∈ X.

Every normed linear space can be made into a semi-inner product space (in gen-

eral, in infinitely many different ways).

As an example, consider the real Banach space Lp(Ω) where 1 < p < ∞. It can
readily be expressed as a s.i.p. space with s.i.p. defined by

[x, y]p =







‖y‖2−p
Lp(Ω)

∫

Ω
x|y|p−2y dµ, y 6= 0,

0, y = 0,

where ‖y‖Lp(Ω) =
(∫

Ω |y|pdµ
)1/p

.
In a normed vector space X we set

S = {x ∈ X : ‖x‖ = 1} .

We introduce additional properties of semi-inner product that will help us to move
some arguments of Hilbert space. Note that a semi-inner product is continuous
with the respect to the first component. A very convenient property of s.i.p. is
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continuity with respect to the second variable. First discussion concerning the
continuity due to the second variable can be found in paper [5]. Giles made the
following definition.

A s.i.p. is called a continuous s.i.p. when the following additional condition
is satisfied:

For every x, y ∈ S,

(2.5) Re[y, x+ λy] → Re[y, x] for all real λ → 0.

A s.i.p. space X has the representation property when to every continuous func-
tional f ∈ X∗ there exists a unique element y ∈ X such that

f(x) = [x, y] for all x ∈ X.

In Hilbert spaces the representation theorem for continuous linear functionals
shows the natural relationship between vectors and continuous linear functionals
using the inner product. The following theorem, which was proved by Giles, is a
modification of the representation theorem of Riesz-Fréchet for continuous linear
functional.

Theorem 2.2 [5]. Let X be a uniformly convex Banach space with a continuous

semi-inner product. Then for each f ∈ X∗ there exists a unique vector y ∈ X
such that

f(x) = [x, y] for all x ∈ X

and ‖f‖ = ‖y‖.

Now we construct a space, which will be used for solving boundary value problem
by examining the properties of a certain s.i.p. space.

Let M be a vector space and let Y be a uniformly convex Banach space with
a semi-inner product [·, ·]Y . Consequently, Y is a reflexive space. Furthermore,
let semi-inner product [·, ·]Y satisfy the semi-Lipschitz condition, i.e., there exists
a constant L > 0 such that

(2.6) |[x, y]Y − [x, z]Y | ≤ L‖x‖Y ‖y − z‖Y .

for x, y, z ∈ Y , where ‖y‖Y = ‖z‖Y = 1.
Note that the Lp(Ω) space (1 < p < ∞) satisfies the semi-Lipschitz condition,

i.e.,
|[x, y]p − [x, z]p| ≤ 2(p − 1)‖x‖Lp(Ω)‖y − z‖Lp(Ω),

where ‖y‖Lp(Ω) = ‖z‖Lp(Ω) = 1 (cf. [5]).
Let T : M → Y be an injective linear operator. Consider the functional

x 7→ ‖x‖a := ‖Tx‖Y for x ∈ M,
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which is the norm on M .

We define a semi-inner product on the space M given by the formula:

[x, y]a = [Tx, Ty]Y for x, y ∈ M.

Note that the semi-inner product [·, ·]a also satisfies semi-Lipschitz condition with
the constant L > 0. Indeed, let x, y, z ∈ M and ‖y‖a = ‖z‖a = 1. Then

|[x, y]a − [x, z]a| = |[Tx, Ty]Y − [Tx, Tz]Y |

≤ L‖Tx‖Y ‖Ty − Tz‖Y = L‖x‖a‖y − z‖a.

We denote the complement of the space (M, ‖ · ‖a) by X1. We show that the
norm in the space X1 is derived from the semi-inner product [·, ·]a.

Theorem 2.3. Let the mapping [·, ·]a : X1 ×X1 → R be given by the formula

(2.7) [x, y]a = lim
n→∞

[xn, yn]a,

where (xn)
∞

n=1, (yn)
∞

n=1 ⊂ M such that xn → x, yn → y, as n → ∞, in the norm

‖ · ‖a. Then the mapping [·, ·]a is a semi-inner product on the space X1.

Proof. We show that the mapping, given by formula (2.7), is well defined. Let
x, y ∈ X1. Then there exist (xn)

∞

n=1, (yn)
∞

n=1 ⊂ M such that xn → x and yn → y,
as n → ∞, in the norm ‖ · ‖a. Using the inequality (2.6), it follows

|[xn, yn]a − [xm, ym]a| =

∣

∣

∣

∣

[

xn‖yn‖a,
yn

‖yn‖a

]

a

−

[

xm‖ym‖a,
ym

‖ym‖a

]

a

∣

∣

∣

∣

≤

∣

∣

∣

∣

[

xn‖yn‖a,
yn

‖yn‖a

]

a

−

[

xn‖yn‖a,
ym

‖ym‖a

]

a

∣

∣

∣

∣

+

∣

∣

∣

∣

[

xn‖yn‖a,
ym

‖ym‖a

]

a

−

[

xm‖ym‖a,
ym

‖ym‖a

]

a

∣

∣

∣

∣

≤ L‖xn‖a‖yn‖a

∥

∥

∥

∥

yn
‖yn‖a

−
ym

‖ym‖a

∥

∥

∥

∥

a

+ ‖xn‖yn‖a − xm‖ym‖a‖a

Thus, it is a Cauchy sequence in R. Consequently, the limit limn→∞[xn, yn]a
exists.

Subsequently, we show that the limit does not depend on the choice of rep-
resentative. Let x, y ∈ X1 and let (x

′

n)
∞

n=1, (y
′

n)
∞

n=1 ⊂ M such that x
′

n → x and
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y
′

n → y, as n → ∞, in norm ‖ · ‖a. Then

∣

∣

∣
[xn, yn]a − [x

′

n, y
′

n]a

∣

∣

∣
=

∣

∣

∣

∣

∣

[

xn‖yn‖a,
yn

‖yn‖a

]

a

−

[

x
′

n‖y
′

n‖a,
y
′

n

‖y′

n‖a

]

a

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

[

xn‖yn‖a,
yn

‖yn‖a

]

a

−

[

xn‖yn‖a,
y
′

n

‖y′

n‖a

]

a

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

[

xn‖yn‖a,
y
′

n

‖y′

n‖a

]

a

−

[

x
′

n‖y
′

n‖a,
y
′

n

‖y′

n‖a

]

a

∣

∣

∣

∣

∣

≤ L‖xn‖a‖yn‖a

∥

∥

∥

∥

∥

yn
‖yn‖a

−
y
′

n

‖y′

n‖a

∥

∥

∥

∥

∥

a

+
∥

∥

∥
xn‖yn‖a − x

′

n‖y
′

n‖a

∥

∥

∥

a
→ 0.

The defined mapping [·, ·]a fulfills the conditions of a semi-inner product. More-
over, semi-inner product [·, ·]a satisfies the semi-Lipschitz condition with a con-
stant L > 0. Indeed, set x, y, z ∈ X1 such that ‖y‖a = ‖z‖a = 1. Let (yn)

∞

n=1,
(zn)

∞

n=1 ⊂ M such that yn → y and zn → z, as n → ∞, in norm ‖ · ‖a. By the
previous reasoning it suffices to suppose that ‖yn‖a = ‖zn‖a = 1 for n ∈ N. Then

|[x, y]a − [x, z]a| = lim
n→∞

|[xn, yn]a − [xn, zn]a|

= lim
n→∞

|[Txn, T yn]Y − [Txn, T zn]Y | ≤ L lim
n→∞

‖xn‖a‖yn − zn‖a

= L‖x‖a‖y − z‖a.

The semi-inner product [·, ·]a is consistent with the norm in X1. Indeed,

[x, x]a = lim
n→∞

[xn, xn]a = lim
n→∞

‖xn‖
2
a = ‖x‖2a,

which completes the proof.

We will need some properties of the space X1. Therefore, it should be noted that
X1 is a uniformly convex space.

Lemma 2.1. Let Y be a uniformly convex space. Then the space X1 is a uni-

formly convex space.

Proof. Let ε ∈ (0, 2], x, y ∈ M such that

‖x‖a ≤ 1, ‖y‖a ≤ 1 and ‖x− y‖a > ε.

Hence, we obtain that

‖Tx‖Y ≤ 1, ‖Ty‖Y ≤ 1 and ‖Tx− Ty‖Y > ε.
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By uniform convexity of the space Y , there exists δ(ε) > 0 such that

‖Tx+ Ty‖Y
2

≤ 1− δ(ε).

Consequently,
‖x+ y‖a

2
≤ 1− δ(ε).

Under the assumption of density of the set M and continuity of the norm it
follows that for ε ∈ (0, 2] and arbitrary x, y ∈ X1 such that

‖x‖a ≤ 1, ‖y‖a ≤ 1, ‖x− y‖a > ε

there exists δ(ε) > 0 such that

‖x+ y‖a
2

≤ 1− δ(ε).

Thus, the space X1 is a uniformly convex space, which completes the proof.

Furthermore, we show that there is a representation theorem for continuous linear
functionals in the space X1.

Lemma 2.2. Let Y be a uniformly convex Banach space such that the semi-inner

product satisfies the semi-Lipschitz inequality with a constant L > 0. Then the

space X1 has the representation property.

Moreover, for every y ∈ X1 and for every sequence (yn)
∞

n=1 ⊂ X1 converging

to y it follows

lim
n→∞

[x, yn]a = [x, y]a for all x ∈ X1.

Proof. We prove first that [·, ·]a is a continuous semi-inner product. Let x,
y ∈ X1 such that ‖x‖a = ‖y‖a = 1. From (2.6) we have

∣

∣

∣

∣

[

x,
y + λx

‖y + λx‖a

]

a

− [x, y]a

∣

∣

∣

∣

≤ L‖x‖a

∥

∥

∥

∥

y + λx

‖y + λx‖a
− y

∥

∥

∥

∥

a

→ 0

for all real λ → 0. As a consequence of continuity of the norm we obtain that

|[x, y + λx]a − [x, y]a| → 0

for all real λ → 0. By virtue of Theorem 2.2, it follows that the space X1 has the
representation property.
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To prove the second statement, let a sequence (yn)
∞

n=1 ⊂ X1 converge to y. Then

|[x, yn]a − [x, y]a| =

∣

∣

∣

∣

[

x‖yn‖a,
yn

‖yn‖a

]

a

−

[

x‖y‖a,
y

‖y‖a

]

a

∣

∣

∣

∣

≤

∣

∣

∣

∣

[

x‖yn‖a,
yn

‖yn‖a

]

a

−

[

x‖y‖a,
yn

‖yn‖a

]

a

∣

∣

∣

∣

+

∣

∣

∣

∣

[

x‖y‖a,
yn

‖yn‖a

]

a

−

[

x‖y‖a,
y

‖y‖a

]

a

∣

∣

∣

∣

≤ ‖x‖yn‖a − x‖y‖a‖a + L ‖x‖y‖a‖a

∥

∥

∥

∥

yn
‖yn‖a

−
y

‖y‖a

∥

∥

∥

∥

a

.

Clearly, the right-hand side expression tends to zero, which completes the proof.

Consider the following problem.

For a given functional f ∈ X∗

1 we seek y ∈ X1 such that

(2.8) [x, y]a = 〈x, f〉 for all x ∈ X1.

Then y is called a weak solution of the problem (2.8).

It follows from homogeneity property of the semi-inner product that if y is
a weak solution of the problem (2.8) for f , then λy is a weak solution of the
problem (2.8) for λf . Indeed,

(2.9) 〈x, λf〉 = λ 〈x, f〉 = λ[x, y]a = [x, λy]a for all x ∈ X1.

The theorem to be proved is the following.

Theorem 2.4. Let M be a vector space and let Y be a uniformly convex Banach

space such that the semi-inner product satisfies the semi-Lipschitz inequality with

a constant L > 0. For every f ∈ X∗

1 , the variational problem (2.8) has a unique

weak solution y ∈ X1, i.e.,

[x, y]a = 〈x, f〉

for all x ∈ M (or, equivalently, for any x ∈ X1).

Moreover, the set of all weak solutions, where f runs through X∗

1 , is the entire

space X1.

Proof. By Lemma 2.2 for any functional f ∈ X∗

1 there exists a unique element
y ∈ X1 satisfying the identity (2.8).

Theorem 2.4 will form the basis for our subsequent results.
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3. Dirichlet problem

Let Ω be a bounded domain in R
N . Consider the following boundary problem

(the generalized Dirichlet problem for second order)

(3.1) D(Ω) :

{

−∆a,pv + a0|v|
p−2v = f in Ω,

v = 0 on ∂Ω,

in which ∆a,p, with 1 < p < ∞, denotes the p-Laplacian weighted by a diagonal
matrix a = (a1, . . . , aN ) and a0 is an arbitrary function.

Let a0 ≡ 0. It is a particular case of the problem (3.1). Then we obtain the
following boundary problem

(3.2) D(Ω) :

{

−∆a,pv = f in Ω,

v = 0 on ∂Ω,

where ∆a,p, 1 < p < ∞, denotes as previously weighted p-Laplacian with weights
given by the diagonal matrix a = (a1, . . . , aN ).

We treat the generalized Dirichlet problem under general conditions on the
weight function a, namely, we suppose that the components ai (i = 0, 1, . . . , N)
of a are measurable functions on Ω such that

(3.3)
ai(x) > 0 for x ∈ Ω a.e., ai ∈ L1

loc(Ω)

and 1/ai ∈ L∞(Ω) (i = 1, . . . , N).

Moreover, we assume that the weight

a0 ≥ 0 and a0 ∈ L∞(Ω).(3.4)

We shall establish the existence and uniqueness of weak solutions for a non-linear
boundary value problem involving the weighted p-Laplacian. We start by writing
the integral identity, which will contribute to define the notion of a weak solution
for this particular issue.

In addition, we assume that Ω is a bounded domain in R
N with C1 boundary

∂Ω. Let f ∈ W−1,p
0 (Ω). Assuming that the functions ai (i = 0, 1, . . . , N) are

sufficiently smooth and using the Green–Gauss–Ostrogradzki formula for u, v ∈
C∞

0 (Ω) we obtain

(3.5)

〈u, f〉 =

∫

Ω
a0(x)u|v|

p−2vdx−

∫

Ω
u∆a,pvdx

=

∫

Ω
a0(x)u|v|

p−2vdx+
N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx

+

N
∑

i=1

∫

∂Ω
u ai(x)

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂n
ds,
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where ∂v
∂n denotes the outer normal derivative of v with respect to ∂Ω. We consider

the Dirichlet problem with zero condition on the boundary. Taking into account
this condition, we demand that the trace of the function v on the boundary of
the domain be zero. Then we obtain the following integral identity

〈u, f〉 =

∫

Ω
a0(x)u|v|

p−2vdx+

N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx.

Note that the particular integrals are well defined for all functions which have
first order weak derivatives, such that the integrands are integrable functions.

Moreover, if f ∈ W−1,p
0 (Ω), then there exist functions f0, f1, . . . , fN ∈ Lq(Ω)

such that

〈u, f〉 =

∫

Ω
f0udx+

N
∑

i=1

∫

Ω
fi

∂u

∂xi
dx, u ∈ W 1,p

0 (Ω).

¿From the above considerations, we obtain that f0 = a0|v|
p−2v, fi = ai

∣

∣

∣

∂v
∂xi

∣

∣

∣

p−2
∂v
∂xi

(i = 1, . . . , N).
We now prove a lemma which is interesting in its own right.

Lemma 3.1. Under the conditions (3.3), (3.4) there holds the following inequality
(3.6)
∫

Ω
|u|p dx+

N
∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx ≤ c

(

∫

Ω
a0(x) |u|

p dx+
N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

)

for all u ∈ C∞

0 (Ω).

Proof. Under the assumption ai ∈ L1
loc(Ω) (i = 0, 1, . . . , N) the integral

∫

Ω
a0(x) |u|

p dx+

N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

exists and is finite for all u ∈ C∞

0 (Ω). Using Friedrichs inequality it follows

∫

Ω
|u|p dx+

N
∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx ≤ m

N
∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

= m
N
∑

i=1

∫

Ω

1

ai(x)
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

≤ c

(
∫

Ω
a0(x) |u|

p dx +

N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

)

,

in which a constant c > 0 does not depend on u.
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Taking into account this fact, we can formulate.

Corollary 3.1. Under the assumptions (3.3), (3.4) the functional

‖ · ‖a : C∞

0 (Ω) → R given by

‖u‖a =

(

∫

Ω
a0(x) |u|

p dx+
N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

)

1
p

is a norm on C∞

0 (Ω). This is due to Lemma 3.1.

We will denote the completion of C∞

0 (Ω) with respect to the metric of this norm
‖ · ‖a by W 1,p

a (Ω).

Next, we consider the mapping T : C∞

0 (Ω) → Lp(Ω,RN+1) given by

Tu =

(

a
1/p
0 u, a

1/p
1

∂u

∂x1
, . . . , a

1/p
N

∂u

∂xN

)

.

By virtue of Lemma 3.1, T is an injective linear operator. Moreover, ‖u‖a =
‖Tu‖Lp(Ω,RN+1) for all u ∈ C∞

0 (Ω).

Due to Theorem 2.3 the mapping [·, ·]a : C∞

0 (Ω)× C∞

0 (Ω) → R given by

[u, v]a = ‖v‖2−p
a

(

∫

Ω
a0(x)u |v|

p−2 vdx+
N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx

)

is a semi-inner product on the space C∞

0 (Ω). Moreover, the semi-inner product
[·, ·]a : W 1,p

a (Ω)×W 1,p
a (Ω) → R given by

(3.7) [u, v]a = lim
n→∞

[un, vn]a,

for (un)
∞

n=1, (vn)
∞

n=1 ⊂ C∞

0 (Ω) such that un → u and vn → v, as n → ∞, in norm
‖ · ‖a, is consistent with the norm in W 1,p

a (Ω).

Norm of any element u of the space W 1,p
a (Ω) can be approximated by a

sequence of functions of class C∞

0 (Ω), i.e., there exists a sequence (un)
∞

n=1 ⊂
C∞

0 (Ω) such that

‖u‖a = lim
n→∞

(

∫

Ω
a0(x)|un|

pdx+

N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂un
∂xi

∣

∣

∣

∣

p

dx

)

1
p

.

Next, we denote by W−1,p
a (Ω) the dual space of W 1,p

a (Ω).

On the basis of the considerations in Section (3.5) we give now the definition
of a weak solution.
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A function v is a weak solution of the Dirichlet problem (3.1), where f is a given
functional of W−1,p

a (Ω), provided that

[u, v]a = 〈u, f〉 for all u ∈ W 1,p
a (Ω).

We will need some properties of the obtained space W 1,p
a (Ω). In this context,

note that it is a uniformly convex space and there holds a representation theorem
for linear continuous functionals defined on it (see Lemma 2.2).

Our main result is the following.

Theorem 3.1. Suppose that the conditions (3.3) and (3.4) are fulfilled. For

f ∈ W−1,p
a (Ω), the Dirichlet problem (3.1) has a unique weak solution v ∈ W 1,p

a (Ω),
i.e.,

[u, v]a = 〈u, f〉

for all u ∈ C∞

0 (Ω) (or, equivalently, for any u ∈ W 1,p
a (Ω)).

Moreover, the set of all weak solutions, where f runs through f ∈ W−1,p
a (Ω)

is the entire space W 1,p
a (Ω).

Proof. See Theorem 2.4.

¿From Theorem 3.1 we infer a useful corollary.

Corollary 3.2. Under the conditions (3.3), (3.4) for any f ∈ W−1,p
0 (Ω) there

exists a sequence of functions (vn)
∞

n=1 ⊂ C∞

0 (Ω) such that

lim
n→∞

‖vn‖
2−p
a

(

∫

Ω
a0(x)u|vn|

p−2vndx+

N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂vn
∂xi

∣

∣

∣

∣

p−2 ∂vn
∂xi

dx

)

= 〈u, f〉

for all u ∈ C∞

0 (Ω).

Suppose additionally that the weights ai ∈ L∞(Ω) (i = 0, . . . , N). Then, obvi-
ously W 1,p

a (Ω) becomes the Sobolev space W 1,p
0 (Ω) and we can look for a weak

solution in W 1,p
0 (Ω). The significance of this fact for our purposes is captured by

Theorem 3.2.

Theorem 3.2. Suppose that the conditions (3.3) and (3.4) are fulfilled. If the

weights ai ∈ L∞(Ω) (i = 0, . . . , N), then for any f ∈ W−1,p
0 (Ω) there exists a

unique weak solution v ∈ W 1,p
0 (Ω) such that

‖v‖2−p
a

(

∫

Ω
a0(x)u|v|

p−2vdx+

N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx

)

= 〈u, f〉

for all u ∈ C∞

0 (Ω).
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Proof. Let the weights ai ∈ L∞(Ω) (i = 0, . . . , N). Then under the inequality
(3.6) the space W 1,p

a (Ω) becomes the Sobolev space W 1,p
0 (Ω). Moreover, the

operator T : C∞

0 (Ω) → Lp(Ω,RN+1) is bounded. Indeed, for u ∈ C∞

0 (Ω)

‖Tu‖p
Lp(Ω,RN+1)

=

∫

Ω
a0(x) |u|

p dx+

N
∑

i=1

∫

Ω
ai(x)

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

≤ c

(

∫

Ω
|u|p dx+

N
∑

i=1

∫

Ω

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

p

dx

)

.

Furthermore, by continuity the operator T can be uniquely extended to a con-
tinuous linear operator T̃ on the whole space W 1,p

0 (Ω) and

T̃ u =

(

a
1/p
0 u, a

1/p
1

∂u

∂x1
, . . . , a

1/p
N

∂u

∂xN

)

for all u ∈ W 1,p
0 (Ω).

Due to Theorem 3.1, there exists a unique v ∈ W 1,p
0 (Ω) such that

[u, v]a = 〈u, f〉

for all u ∈ W 1,p
0 (Ω). This is equivalent that there exists a sequence (vn)

∞

n=1 ⊂
C∞

0 (Ω) such that vn → v as n → ∞ and

lim
n→∞

‖vn‖
2−p
a

(

∫

Ω
a0(x)u|vn|

p−2vndx+

N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂vn
∂xi

∣

∣

∣

∣

p−2∂vn
∂xi

dx

)

= 〈u, f〉

for all u ∈ C∞

0 (Ω). By continuity of the operator T̃ and continuity of the semi-
inner product in Lp(Ω,RN+1) (cf. Lemma 2.2), it follows

〈u, f〉 = lim
n→∞

[Tu, Tvn]Lp(Ω,RN+1) = [Tu, T̃ v]Lp(Ω,RN+1)

= ‖v‖2−p
a

(

∫

Ω
a0(x)u|v|

p−2vdx+
N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx

)

for u ∈ C∞

0 (Ω).

Due to Theorem 3.2 it follows that for every f̃ there exist vf̃ such that

(3.8)
〈

u, f̃‖vf̃‖
p−2
a

〉

=

∫

Ω
a0(x)u|vf̃ |

p−2vf̃dx+

N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂vf̃
∂xi

∣

∣

∣

∣

p−2 ∂vf̃
∂xi

dx.
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Let f̃ = f‖vf‖
2−p

p−1
a . Then by the equality (2.9) the left-hand side of expression

(3.8) can be suitably modified, i.e.,

〈

u, f̃‖vf̃‖
p−2
a

〉

=

〈

u, f‖vf‖
2−p

p−1
a ‖vf̃‖

p−2
a

〉

=

〈

u, f‖vf‖
2−p

p−1 ‖vf‖
(2−p)(p−2)

p−1 ‖vf‖
p−2
a

〉

= 〈u, f〉 .

Therefore,

〈u, f〉 =

∫

Ω
a0(x)u|vf̃ |

p−2vf̃dx+
N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂vf̃
∂xi

∣

∣

∣

∣

p−2 ∂vf̃
∂xi

dx.

We conclude this section with a useful corollary.

Corollary 3.3. Suppose that the conditions (3.3) and (3.4) are fulfilled. Suppose

that the weights ai ∈ L∞(Ω) (i = 0, . . . , N). Then to every f ∈ W−1,p
0 (Ω) there

exists a unique weak solution v ∈ W 1,p
0 (Ω) such that

∫

Ω
a0(x)u|v|

p−2vdx+
N
∑

i=1

∫

Ω
ai(x)

∂u

∂xi

∣

∣

∣

∣

∂v

∂xi

∣

∣

∣

∣

p−2 ∂v

∂xi
dx = 〈u, f〉

for all u ∈ C∞

0 (Ω).
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