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Abstract

In this paper we study the existence of nontrivial solutions for a nonlinear
boundary value problem posed on the half-line. Our approach is based on
Ekeland’s variational principle.
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1. Introduction

We consider the problem,
{

−u
′′

(x) + u(x) = λq(x)f(x, u(x)), x ∈ [0,+∞),

u(0) = u(+∞) = 0,
(1)

where f : [0,+∞)×R −→ R is a continuous function and λ is a positive param-
eter.
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Because of the importance of second order differential equations in physics,
existence and multiplicity of solutions to boundary value problems on the half-
line were studied by many authors. These results were obtained using upper and
lower solution techniques, fixed point theory and topological degree theory; see
for example, [6, 7, 8] and [11]. There are only a few papers on boundary value
problems on the half-line using variational methods; see [3] and [4].

We assume the following are satisfied:

(H0) there exist constants a, b ∈ R
+ \ {0} and θ ∈ (0, 1) such that

|f(x, u)| ≤ a|u|θ + b, ∀x ∈ R
+,∀u ∈ R,

(H1) p : [0,+∞) −→ (0,+∞) is continuously differentiable and bounded, q :
[0,+∞) −→ R

+, with q ∈ L1[0,+∞) ∩ L∞[0,+∞), q
pθ
, q
p2

∈ L1[0,+∞),

M0 =
∫ +∞
0 q(x)

(∫ +∞
x

ds
p(s)

)
dx < +∞, and M = max(‖p‖L2 , ‖p′‖L2) <+∞.

(H2) f(x, 0) = 0, limu→0
f(x,u)

u
= +∞ and limu→∞

f(x,u)
u

= 0, uniformly for
x ∈ [0,+∞).

Let the space H1
0 (0,+∞) be defined by

H1
0 (0,+∞) =

{
u measurable : u, u′ ∈ L2(0,+∞), u(0) = u(+∞) = 0

}

endowed with its natural norm

‖u‖ =

(∫ +∞

0
u2(x)dx+

∫ +∞

0
u′2(x)dx

) 1

2

,

associated with the scalar product

(u, v) =

∫ +∞

0
u(x)v(x)dx +

∫ +∞

0
u′(x)v′(x)dx.

Note that if u ∈ H1
0 (0,+∞), then u(0) = u(+∞) = 0, (see [2], Corollary 8.9).

Let

Cl,p[0,+∞) =

{
u ∈ C([0,+∞),R) : lim

x→+∞
p(x)u(x) exists

}

endowed with the norm

‖u‖∞,p = sup
x∈[0,+∞)

p(x)|u(x)|.

Consider the space

L2
q(0,+∞) = {u : (0,+∞) → R measurable such that

√
qu ∈ L2(0,+∞)},
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equipped with the norm

‖u‖L2
q
=

(∫ +∞

0
q(x)u2(x)dx

) 1

2

.

We need the following lemmas.

Lemma 1.1 [10]. H1
0 (0,+∞) embeds continuously in Cl,p[0,+∞).

Lemma 1.2 [10]. The embedding H1
0 (0,+∞) →֒ Cl,p[0,+∞) is compact.

Lemma 1.3. Cl,p[0,+∞) is continuously embedded in L2
q(0,+∞).

Proof. For all u ∈ Cl,p[0,+∞) we have

‖u‖2L2
q
=

∫ +∞

0
q(x)u2(x)dx =

∫ +∞

0

q(x)

p2(x)
p2(x)u2(x)dx ≤ c‖u‖2∞,p ,

where c = ‖ q
p2
‖L1 . Then ‖u‖L2

q
≤ √

c‖u‖∞,p.

Corollary 1.1. H1
0 (0,+∞) is compactly embedded in L2

q(0,+∞).

We consider the first eigenvalue λ1 of the linear problem:

{
−u′′(x) + u(x) = λq(x)u(x), x ≥ 0;

u(0) = u(+∞) = 0,
(2)

namely

λ1 = inf
u∈H1

0
\{0}

‖u‖2
‖u‖2

L2
q

.

Lemma 1.4. λ1 is positive and is achieved for some positive function ϕ1 ∈
H1

0 (0,+∞) \ {0}.

Proof. We proceed as in [1]. For u ∈ H1
0 (0,+∞), let I1(u) = ‖u‖2, I2(u) =

‖u‖2
L2
q
, and define the quotient functional Q : H1

0 (0,+∞) \ {0} → R by

Q(u) =
I1(u)

I2(u)
.

Then

λ1 = inf
u∈H1

0
\{0}

Q(u).
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Let u ∈ H1
0 (0,+∞). From Corollary 1.1, we have that λ1 ≥ 1

‖p‖L∞M0
> 0.

Indeed, for x > 0, note

|u(x)|2 =

∣∣∣∣
∫ +∞

x

u′(s)ds

∣∣∣∣
2

=

∣∣∣∣∣

∫ +∞

x

√
p(s)u′(s)

1√
p(s)

ds

∣∣∣∣∣

2

≤
(∫ +∞

x

p(s)u′2(s)ds

)(∫ +∞

x

ds

p(s)

)

≤
(∫ +∞

0
p(s)u′2(s)ds

)(∫ +∞

x

ds

p(s)

)
,

and so,

q(x)u(x)2 ≤
(∫ +∞

0
p(s)u′2(s)ds

)(
q(x)

∫ +∞

x

ds

p(s)

)
,

which yields

‖u‖2L2
q
≤ ‖p‖L∞M0‖u‖2,

and

λ1 = inf
u∈H1

0
\{0}

‖u‖2
‖u‖2

L2
q

≥ 1

‖p‖L∞M0
> 0.

Let (un) be a minimizing sequence. Since (|un|) is a minimizing sequence for
Q, we may suppose that un(x) ≥ 0, for x ∈ [0,+∞). Moreover the functional Q
satisfies Q(αu) = Q(u), for every α ∈ R. By setting ũn = un

‖u‖
L2
q

, for every n, we

can assume that ‖un‖L2
q
= 1. Note limn→+∞Q(un) = infu∈H1

0
\{0} Q(u) = λ1, so

the sequence (Q(un)) is bounded. From this and since Q(un) = ‖un‖2, we deduce
that (un) is bounded inH1

0 . ¿From Lemma 1.2 and the reflexivity and separability
of H1

0 , there exists a subsequence (unk
) of (un) such that, as k → +∞,

{
unk

⇀ u, in H1
0 ;

unk
→ u, in Cl,p,

so unk
(x) → u(x), for all x ∈ [0,+∞). ¿From Lemma 1.3, (unk

) converges in
norm to u in L2

q. Thus ‖u‖L2
q
= 1 and u(x) ≥ 0, for x ∈ [0,+∞). Finally, the

weak lower semi-continuity of the norm guarantees that

Q(u) = I1(u) ≤ lim inf
k
I1(unk

) = lim inf
k
Q(unk

) = λ1,

so u ∈ H1
0 \ {0} and Q(u) = λ1.
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To prove our main result, we need the following variational principle.

Theorem 1.1 ([9]). (Weak Ekeland variational principle) Let (E, d) be a com-

plete metric space and let J : E → R a functional that is lower semi-continuous,

bounded from below. Then, for each ε > 0, there exists uε ∈ E with

J(uε) ≤ inf
E

J + ε,

and whenever w ∈ E with w 6= uε, then

J(uε) < J(w) + εd(uε, w).

2. Main Result

We denote by F the primitive of f with respect to its second variable, i.e.,
F (x, u) =

∫ u

0 f(x, s)ds. The functional corresponding to (1) is

J(u) =
1

2

∫ +∞

0

(
u′2(x)+u2(x)

)
dx−λ

∫ +∞

0
q(x)F (x, u(x))dx, u ∈ H1

0 (0,+∞).

Proposition 2.1. Suppose that condition (H0) holds. Then the functional J is

continuously differentiable. The Fréchet derivative of J has the form

〈J ′(u), ϕ〉 =
∫ +∞

0

(
u′(x)ϕ′(x) + u(x)ϕ(x)

)
dx− λ

∫ +∞

0
q(x)f(x, u(x))ϕ(x)dx.

Proof. First we show J is Gâteaux-differentiable. Indeed, for all v ∈ H1
0 (0,+∞),

and for any t > 0, we have

J(u+ tv)− J(u) =
1

2

∫ +∞

0
(|(u+ tv)′|2 + |u+ tv|2)dx−λ

∫ +∞

0
q(x)F (x, u+ tv)dx

− 1

2

∫ +∞

0
(|u′|2 + |u|2)dx+ λ

∫ +∞

0
q(x)F (x, u)dx

=
t2

2

∫ +∞

0
|v′|2dx+

t2

2

∫ +∞

0
|v|2dx+ t

∫ +∞

0
u′v′dx

+ t

∫ +∞

0
uvdx− λ

∫ +∞

0
q(x)

[
F (x, u+ tv)− F (x, u)

]
dx

=
t2

2

∫ +∞

0
|v′|2dx+

t2

2

∫ +∞

0
|v|2dx+ t

∫ +∞

0
u′v′dx

+ t

∫ +∞

0
uvdx− tλ

∫ +∞

0
q(x)f(x, u+ tθv)vdx,
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where 0 < θ < 1 (from the mean value theorem). Then

J(u+ tv)− J(u)

t
=

1

2

∫ +∞

0
|v′|2dx+

1

2

∫ +∞

0
|v|2dx+

∫ +∞

0
u′v′dx

+

∫ +∞

0
uvdx− λ

∫ +∞

0
q(x)f(x, u+ tθv)vdx.

Let t → 0. Note assumption (H0) and the Lebesgue dominated convergence
theorem guarantees that

〈J ′(u), v〉 =
∫ +∞

0

(
u′v′ + uv

)
dx− λ

∫ +∞

0
q(x)f(x, u)vdx, ∀v ∈ H1

0 (0,+∞).

Next we show J ′ is continuous. Indeed, let (un) ⊂ H1
0 (0,+∞), where un → u,

when n → +∞. It follows from (H0), that

q(x)|f(x, un(x))| ≤ aq(x)|u(x)|θ + bq(x)

≤ a sup
x∈[0,+∞)

|(pu)(x)|θ
∣∣∣ q(x)
pθ(x)

∣∣∣+ bq(x)

= a‖u‖θ∞,p

∣∣∣ q(x)
pθ(x)

∣∣∣+ bq(x) ∈ L1(0,+∞).

Then from the Lebesgue dominated convergence theorem we obtain

lim
n→+∞

∫ +∞

0
q(x)f(x, un(x))dx =

∫ +∞

0
q(x)f(x, u(x))dx,

so, we have

〈J ′(un)− J ′(u), v〉 =

∫ +∞

0

(
u′nv

′ + unv
)
dx− λ

∫ +∞

0
q(x)f(x, un)vdx

−
∫ +∞

0

(
u′v′ + uv

)
dx+ λ

∫ +∞

0
q(x)f(x, u)vdx

=

∫ +∞

0

[
(u′n − u′)v′ + (un − u)v

]
dx

− λ

∫ +∞

0
q(x)(f(x, un)− f(x, u))vdx.

Passing to the limit in 〈J ′(un)−J ′(u), v〉 when n → +∞, using assumption (H0)
and the Lebesgue dominated convergence theorem, we obtain that J ′(un) →
J ′(u), as n → +∞.
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Definition 2.1. We say that u ∈ H1
0 (0,+∞) is a weak solution of problem (1)

if for any ϕ ∈ H1
0 (0,+∞) we have

〈J ′(u), ϕ〉 =
∫ +∞

0

(
u′(x)ϕ′(x)+u(x)ϕ(x)

)
dx−λ

∫ +∞

0
q(x)f(x, u(x))ϕ(x)dx = 0.

Remark 1. Since the nonlinear term f is continuous, then a weak solution of
problem (1) is a classical solution.

Theorem 2.1. Suppose (H0), (H1) and (H2) hold. Then problem (1) possesses

at least one solution uλ for every λ ∈ (0, 1
‖p‖L∞M0

).

Proof. It follows from (H2) that ∃δ1 > 0 such that

|F (x, u)| ≤ 1

2
u2, for all |u| > δ1;

and from (H0) that ∃M1 > 0 such that

|F (x, u)| ≤ M1, for all u ∈ [−δ1, δ1] and x ∈ (0,+∞).

Therefore, we deduce that

|F (x, u)| ≤ M1 +
1

2
u2, for all u ∈ R and x ∈ [0,+∞).(3)

Now (3) together with (H1) (also note the continuous embedding of H1
0 (0,+∞)

in L2
q(0,+∞) (i.e., note ‖u‖2

L2
q
≤ ‖p‖L∞M0‖u‖2 for u ∈ H1

0 (0,+∞), see Lemma

1.4)) yields

J(u) =
1

2
‖u‖2 − λ

∫ +∞

0
q(x)F (x, u(x))dx

≥ 1

2
‖u‖2 − λ

∫ +∞

0
q(x)

(
M1 +

1

2
u2(x)

)
dx

=
1

2
‖u‖2 − λM1

∫ +∞

0
q(x)dx− λ

2
‖u‖2L2

q

≥ 1

2
(1− λ‖p‖L∞M0)‖u‖2 − λM1‖q‖L1 .

Thus there exist ρ >
(

2λM1‖q‖L1

1−λ‖p‖L∞M0

) 1

2

> 0 with

J(u) > 0 if ‖u‖ = ρ, and then inf
u∈∂Bρ(0)

J(u) > 0,
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and J(u) ≥ −C2 if ‖u‖ ≤ ρ, where C2 = λM1‖q‖L1 . Then the functional J is
bounded from below on Bρ(0). Let ϕ1 ∈ H1

0 (0,+∞) be defined as in Lemma 1.4.
Fix λ in (0, 1

‖p‖L∞M0
), and let M2 =

λ1

λ
. From (H2), there exists δ2 > 0 such that

F (x, u) ≥ M2|u|2, for all − δ2 < u < δ2.(4)

The function ϕ1 is continuous on [0,+∞) (note ϕ1 ∈ H1
0 (0,+∞)) and ϕ1(0) =

ϕ1(+∞) = 0 so supx∈[0,+∞)ϕ1(x) ≤ c⋆ for some c⋆ > 0. Hence for every 0 < t <
δ2
c⋆
, and (4), we have

J(tϕ1) =
t2

2
‖ϕ1‖2 − λ

∫ +∞

0
q(x)F (x, tϕ1(x))dx

≤ t2

2
‖ϕ1‖2 − λM2t

2

∫ +∞

0
q(x)ϕ2

1(x)dx

=
t2

2
‖ϕ1‖2 −

λM2t
2

λ1
‖ϕ1‖2 =

t2

2
‖ϕ1‖2 − t2‖ϕ1‖2 = − t2

2
‖ϕ1‖2 < 0.

Thus, when t → 0, we have J(tϕ1) < 0. Then we deduce that

inf
u∈Bρ(0)

J(u) < 0 < inf
u∈∂Bρ(0)

J(u).(5)

By applying Ekeland’s variational principle (Theorem 1.1) in the complete metric
space Bρ(0), there is a sequence (un) ⊂ Bρ(0) such that

J(un) ≤ inf
u∈Bρ(0)

J(u) +
1

n
, J(un) ≤ J(w) +

1

n
‖w − un‖, ∀w ∈ Bρ(0).

From (5), un 6∈ ∂Bρ(0). Thus, ∀n ∈ N, un ∈ Bρ(0) and if we put, w = un + th,
for all t > 0, h ∈ H1

0 (0,+∞), and n ∈ N, then w = un + th belongs to the open
ball Bρ(0) when t → 0, and then J(un) ≤ J(un + th) + 1

n
t‖h‖, so

J(un)− J(un + th)

t
≤ 1

n
‖h‖,

and we have

−〈J ′(un), h〉 ≤
1

n
‖h‖, for all n ∈ N

∗.

If we put w = un − th, then we obtain 〈J ′(un), h〉 ≤ 1
n
‖h‖, ∀n ∈ N

∗. Thus

sup
‖h‖≤1

|〈J ′(un), h〉| ≤
1

n
, for all n ∈ N

∗.
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Therefore, we have

‖J ′(un)‖ → 0, and J(un) → cλ as n → +∞,

where cλ stands for the infimum of J(u) on Bρ(0). Since (un) is bounded and

Bρ(0) is a closed convex set, there exists a subsequence still denoted by (un), and

there exists uλ ∈ Bρ(0) ⊂ H1
0 (0,+∞) such that





un → uλ weakly in H1
0 (0,+∞);

un(x) → uλ(x) for x in (0,+∞);

un → uλ strongly in Cl,p[0,+∞).

Consequently, passing to the limit in 〈J ′(un), ϕ〉, as n → +∞, we have using the
Lebesgue dominated convergence theorem that

∫ +∞

0

(
u′λ(x)ϕ

′(x) + uλ(x)ϕ(x)
)
dx− λ

∫ +∞

0
q(x)f(x, uλ(x))ϕ(x)dx = 0,

for all ϕ ∈ H1
0 (0,+∞). That is, 〈J ′(uλ), ϕ〉 = 0 for all ϕ ∈ H1

0 (0,+∞). Thus uλ is
a critical point of the functional J , which is a classical solution of our problem.

3. Example

Let f(x, u) = u
1

5 , q(x) = e−kx, p(x) = e−
1

3
kx, where k > 0 is a constant. Then

we get

∀x ∈ R
+,∀u ∈ R : |f(x, u)| =

∣∣∣u
1

5

∣∣∣ ≤ |u|θ + 1, where θ ∈
(
1

2
, 1

)
.

Also
( q

p
1

2

)
(x) = e−

5

6
kx,

( q

p2

)
(x) = e−

1

3
kx ∈ L1, and q ∈ L1[0,+∞) ∩ L∞[0,+∞).

Note conditions (H0), (H1) and (H2) hold. Theorem 2.1 can now be applied.
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