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1. Introduction

It is known that many of dynamical systems of the universe are nonlinear in
nature and involve jumps or discontinuities in their behavior and so, such
processes are governed by differential equations involving jumps or discon-
tinuities in the state as well as in phase variable. There are mainly two
approaches for dealing with such phenomena modeled on discontinuous dif-
ferential equations. Firstly, we study such differential problems via algebraic
fixed point theorems such as those of Tarski [30], Amann [2] and Heikkilä
and Lakshmikantham [25]. Secondly, we study the differential inclusions
corresponding to the given discontinuous differential equations by apply-
ing various topological fixed point theorems of multi-valued operators for
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proving the existence results for a given discontinuous differential equation
(see Aubin and Cellina [4] and the reference therein). A most up-to-date
and comprehensive discussion on the topic appears in the monograph of
Aubin and Cellina [4], Deimling [7] and Hu and Papageorgiou [26]. We note
that in this second approach one needs a certain kind of continuity of the
multi-valued functions involved in differential inclusions.

Attempts have been made to remove the continuity conditions of the
multi-functions of differential inclusions. Therefore, the fixed point theory
for discontinuous multi-valued operators is being developed for the purpose
and the author in [9] has proved a first fixed point theorem in this area
of research. Later on a few interesting fixed point theorems dealing with
discontinuous multi-valued operators have appeared in the literature. See,
for example, Dhage and Regan [18], Agarwal et al. [1] and Dhage [13] etc.
The monotonicity condition used in the above references is very strong and
therefore it is desirable to replace it with a mild one following Heikkilä and
Hu [24]. In this article, we present some algebraic fixed point theorems for
multi-valued operators on ordered spaces and discuss some of their applica-
tions to operator inclusions involving two multi-valued operators as well as
to first order discontinuous differential inclusions for proving the existence
theorems under generalized monotonicity conditions.

2. Preliminaries

As our approach is more applied than merely theoretical, we keep refrain
from an abstract treatment of the topic, however, the results presented here
can be the abstract setting in a natural way.

In what follows, let X denote an ordered metric space with a metric
d and an order relation ≤. Then X becomes an ordered topological space,
where the topology on X is induced by the metric d on it. A sequence {xn}
of points of X is called monotone increasing if

x1 ≤ x2 ≤ ... ≤ xn ≤ ... .

Similarly, a sequence {xn} of points of X is called monotone decreasing

if
x1 ≥ x2 ≥ ... ≥ xn ≥ ... .

Finally, a sequence {xn} is called monotone if it is either monotone
increasing or monotone decreasing on X. Again the sets [a) and (b] are
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defined by

[a) = {x ∈ X | a ≤ x} and (b] = {x ∈ X | x ≤ b}.

Obviously, [a) and (b] are closed in X. An order interval [a, b] in an or-
dered metric space X is a set defined by [a, b] = [a)

⋂

(b] (see Heikkila and
Lakshmikantham [25]).

The following result is crucial for the rest of the paper.

Lemma 2.1 (Heikkilä and Hu [24]). If a monotone increasing (resp. mono-

tone decreasing) sequence {xn} of points in X has a cluster point, then it is

the sup
n

xn (resp. inf
n

xn).

Let P(X) and Pp(X) denote respectively the class of all subsets and the class
of all non-empty subsets of X with the property p. Thus Pcl(X), Pbd(X) and
Pcp(X) denote respectively the classed of all closed, bounded and compact
subsets of X. A mapping Q : X → Pp(X) is called a multi-valued mapping
or a multi-valued operator on X and a point u ∈ X is called a fixed point

of Q if u ∈ Qu.
We consider the following notations in the sequel.

Let

L = {x ∈ X | y ≤ x for some y ∈ Qx},

L− = {x ∈ X | y < x for some y ∈ Qx},

M = {x ∈ X | x ≤ y for some y ∈ Qx}

and

M+ = {x ∈ X | x < y for some y ∈ Qx}.

If M 6= ∅, then for each x ∈ M we have a choice function f : M → X such
that x ≤ f(x) = y ∈ Qx. Similarly, if L 6= ∅, then there is choice function
g : L → X satisfying x ≥ g(x) = y ∈ Qx for x ∈ L.

Let a ∈ M . Then a well ordered (w.o.) chain C of generalized Q-
iterations of a in X is defined as follows.

Let

(2.1) a = min C and a < x ∈ C if and only if x = sup f
(

C<x
)

,

where C<x = {y ∈ C | y < x}.
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It is clear that a well ordered chain C of Q-iterations of a contains elements
of the following form. The element a is the least element of C. The next
possible elements of C are of the form xn = sup f({x0, . . . , xn−1}) as long
as xn is defined and xn−1 < xn for n ∈ N . If xω = sup f({xn}

∞
0 ) exists

and is a strict upper bound of {xn}∞0 , then xω is the next element of C, and
so on.

Similarly, an inversely well ordered chain (i.w.o.) C of the function g of
the point b ∈ L is defined as

(2.2) b = max C and b > x ∈ C if and only if x = inf g
(

C>x
)

,

where C>x = {y ∈ C | y > x}.

It can be shown as in Heikkilä and Lakshmikantham [25] that ordinary
Q-iterations are inadequate to describe the well ordered chains of generalized
Q-iterations, however transfinite sequences are useful to generate the well
ordered chains of generalized Q-iterations of some point a ∈ X.

The following result is useful in the sequel.

Lemma 2.2. Let X be an ordered metric space and let f : X → X be a

mapping such that x ≤ fx for each x ∈ X. Suppose that C is a well ordered

chain in X at some point a ∈ X defined by (2.1). Then f(C) is again a

well ordered chain in X with f(C) ⊂ C. Further if sup f(C) exists, then

sup f(C) = sup C.

Proof. The assertions that f(C) is again a well ordered chain in X and
f(C) ⊂ C follow respectively from Theorem 1.1.1 of Heikkilä and Lak-
shmikantham [25] and Corollary 12 of Heikkilä [23]. We only prove that
sup f(C) = sup C. Since f(C) ⊂ C, one has sup f(C) ≤ supC. Again
by nature of f , we get sup C = x∗ ≤ fx∗ ≤ sup f(C). Hence sup f(C) =
sup C.

Similarly, we have

Lemma 2.3. Let X be an ordered metric space and let g : X → X be a

mapping such that x ≥ gx for each x ∈ X. Suppose that C is an inversely

well ordered chain in X at some point b ∈ X defined by (2.2). Then g(C)
is again an inversely well ordered chain in X with g(C) ⊂ C. Further if

inf g(C) exists, then inf g(C) = inf C.
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The following generalized lemma which is an improvement of Lemma 2.1 of
Heikkilä and Hu [24] forms the basis of our multi-valued fixed point theory
in ordered spaces. We give the proof by using the arguments similar to those
in Heikkilä and Lakshmikantham [25]. It seems that Lemma 2.1 of Heikkilä
and Hu [24] is not correct since the proof of the lemma involves the use of
transfinite sequences generated by the choice function f on M +.

Lemma 2.4. Let Q : X → Pp(X). Assume that

(a) M 6= ∅ and a ∈ M , and

(b) the well ordered chain C of generalized Q-iterations of a, if it exists,

has a supremum x∗ in M .

Then x∗ is a fixed point of Q.

Proof. Let a ∈ M and let C be a well ordered chain of generalized Q-
iterations of a in X. If C contains only one point a, then obviously it is
a fixed point of Q. Assume that the well ordered chain C of generalized
Q-iterations of a exists and supC = x∗. Now by Lemma 2.2, sup C =
sup f(C) = x∗, where f is a choice function of Q. Suppose that x∗ 6= fx∗.
Since x∗ in M , one has x∗ < fx∗ ≤ sup f(C) = x∗. This is a contradiction
and hence x∗ = fx∗ ∈ Qx∗. Thus x∗ is a fixed point of Q. This completes
the proof.

Similarly, we have

Lemma 2.5. Let Q : X → Pp(X). Assume that

(a) L 6= ∅ and b ∈ L, and

(b) the inversely well ordered chain of generalized Q-iterations of b, if it

exists, has an infimum y∗ ∈ M .

Then y∗ is a fixed point of Q.

The following example shows that Lemma 2.4 fails to hold if either of the
conditions (a) or (b) does not hold.

Example 2.1. Let X = [0, 1]∪{2} and define a multi-valued map Q : X →
Pcp(X) by

Qx =















[

n+1
n+2 , n+2

n+3

]

, n
n+1 ≤ x < n+1

n+2 , n ∈ N ∪ {0},

{2} x = 1,

{1} x = 2,
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and

f(x) =

{

n+1
n+2 , n

n+1 ≤ x < n+1
n+2 , n ∈ N,

2, x ∈ {1, 2}.

Choosing a = 0 in (2.1), we obtain C = {0, 1
2 , 2

3 , . . . , 1, 2} so that sup C = 2.
Now Q has no fixed point in X, because 2 6∈ M .

In the following section we prove the main results of the paper.

3. Multi-valued fixed point theory

3.1. Ordered metric spaces

First of all, we obtain some basic fixed point theorems in ordered metric
spaces and then derive some of their interesting consequences in ordered
Banach spaces. The following lemma is useful in the sequel.

Lemma 3.1. Let C be a well ordered chain of generalized Q-iterations at

some point a in an ordered metric space X. If every monotone increasing

subsequence of C has a cluster point, then C has a monotone increasing

subsequence which converges to the supremum of C.

Proof. The proof appears in Heikkilä and Lakshmikantham [25]. Also see
Heikkila and Hu [24]. We omit the details.

Similarly, we have

Lemma 3.2. Let C be an inversely well ordered chain of generalized Q-

iterations at some point b in an ordered metric space X. If every monotone

decreasing subsequence of C has a cluster point, then C has a monotone

decreasing subsequence which converges to the infimum of C.

Theorem 3.1. Let X be an ordered metric space and let Q : X → Pcp(X).
Assume that

(Q0) the set M 6= ∅,

(Q1) x1 ≤ y1 ∈ Qx1 implies y1 ≤ y2 for some y2 ∈ Qy1,

(Q2) every monotone increasing sequence {yn} defined by yn ∈ Qxn, n =
0, 2, . . . ; has a cluster point, whenever {xn} is a monotone increasing

sequence in X.

Then Q has a fixed point.
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Proof. Let a ∈ M and let C be a well ordered chain of generalized Q-
iterations of a in X. By Lemma 2.2 it suffices to show that f(C) and
consequently C has a supremum in M . Now every monotone increasing
subsequence of the sequence in f(C) is of the form {yn}, where yn ∈ Qxn

for n = 0, 1, . . . ; and {xn} and {yn} are monotone increasing sequences in
X. Therefore by hypothesis (Q2), every subsequence of the sequence {yn}
has a cluster point which further in view of Lemma 2.3 implies that there
is a monotone increasing sequence {yn} ∈ f(C) ⊂ C converging to the
supremum y of f(C) which is also the supremum of C in X. We show that
y ∈ M . If a is the only term of C, then y = a ∈ M . Now by the definition
of {yn}, there is an xn in C such that

xn ≤ yn ∈ Qxn and so, xn ≤ y ∀n ∈ N.

Next by (Q1), there exists a zn ∈ Qy such that yn ≤ zn. Therefore, [yn) ∩
Qy 6= ∅ for all n ∈ N. Again [ym)∩Qy ⊂ [yn)∩Qy for all m ≥ n ∈ N. Thus
{[yn) ∩ Qy | n ∈ N} is a family of closed non-empty subsets of Qy having
the finite intersection property. Since Qy is compact, we have

∞
⋂

n=1

{

[yn) ∩ Qy
}

6= ∅.

Thus there is a z ∈ Qy such that yn ≤ z for all n ∈ N. As y is the least
upper bound of {yn} one has y ≤ z. This shows that y ∈ M . Now the
desired conclusion follows from applying Lemma 2.4. This completes the
proof.

As a special case of Theorem 3.1 we obtain the following fixed point theorem
for multi-valued mappings on ordered spaces of Heikkilä and Hu [24].

Corollary 3.2. Let X be an ordered metric space and let Q : X → Pcp(X).
Assume that

(Q0) the set M is nonempty,

(Q1) x1 ≤ y1 ∈ Qx1 and x1 ≤ x2 imply that y1 ≤ y2 for some y2 ∈ Qx2,

(Q2) each monotone increasing sequence in
⋃

Q(X) has a cluster point.

Then Q has a fixed point.

Similarly, we have
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Theorem 3.3. Let X be an ordered metric space and let Q : X → Pcp(X).
Assume that

(Q0) the set L is nonempty,

(Q1) x1 ≥ y1 ∈ Qx1 implies y1 ≥ y2 for some y2 ∈ Qy1,

(Q2) every monotone decreasing sequence {yn} defined by yn ∈ Qxn, n =
0, 2, . . . ; has a cluster point, whenever {xn} is a monotone decreasing

sequence in X.

Then Q has a fixed point.

Proof. The proof is similar to Theorem 3.1 with appropriate modifications.
Now the conclusion follows from applying Lemma 2.5.

Corollary 3.4. Let X be an ordered metric space and let Q : X → Pcp(X).
Assume that

(Q0) the set L is nonempty,

(Q1) x1 ≥ y1 ∈ Qx1 and x1 ≥ x2 imply that y1 ≥ y2 for some y2 ∈ Qx2,

(Q2) each monotone decreasing sequence in
⋃

Q(X) has a cluster point.

Then Q has a fixed point.

Note that the hypothesis (Q1) of Corollary 3.2 implies the hypothesis (Q1)
of Theorem 3.1, but the following simple example shows that the converse
may not be true.

Example 3.5. Define a multi-valued map Q : [0, 1] → Pcp([0, 1]) by

Qx =







































1
2 if x ∈

[

0, 1
4

)

[

0, 1
3

]

if x = 1
4

[

2
5 , 2

3

]

if x ∈
(

1
4 , 1

2

)

1 − 1
n+2 if 1 − 1

n+1 ≤ x < 1 − 1
n+2 , n ∈ N

{3
4 , 1} if x = 1.

Now for any x ∈ [0, 1
4) one has x < 1

4 , but there is not y ∈ Q( 1
4) = [0, 1

3 ]
such that 1

2 ≤ y. However, the condition (Q1) of Theorem 3.1 is satisfied
with x1 = x for all x ∈ [0, 1

4) and the multi-valued map Q has a fixed point
in [0, 1], viz., 1.
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3.2. Ordered Banach spaces

Let R denote a real line and X a real Banach space. A closed subset K of
X is called a cone if it satisfies

(i) K + K ⊆ K

(ii) λK ⊆ K for all λ ∈ R
+ and

(iii) {−K} ∩ K = {θ}, where θ is a zero element of X.

A cone K in X is said to be normal if the norm is semi-monotone on X,
that is, if x, y ∈ X, and x ≤ y implies ‖x‖ ≤ N‖y‖ for some constant N > 0.
A cone K is regular if every monotone and order bounded sequence in X
is convergent in norm. Again a cone K is said to be fully regular if every
monotone and norm-bounded sequence in X is convergent in norm. The de-
tails of cones and their properties may be found in Guo and Lakshmikanthm
[20] and Heikkilä and Lakshmikantham [25]. We define an order relation ≤
with the help of the cone K in X as follows. Let x, y ∈ X. Then

(3.1) x ≤ y ⇔ y − x ∈ K.

The Banach space X together with the order relation ≤ is called an ordered
Banach space and it is denoted by (X,≤). Let a, b ∈ (X,≤) be such that
a ≤ b. Then the order interval [a, b] is a set in X to be defined by

(3.2) [a, b] = {x ∈ X | a ≤ x ≤ b}.

In what follows, we define different types of order relations in Pp(X). Let
A,B ∈ Pp(X). Then

(3.3) A
i
≤ B ⇔ for each a ∈ A ∃ a b ∈ B such that a ≤ b,

(3.4) A
d
≤ B ⇔ for each b′ ∈ B ∃ an a′ ∈ A such that a′ ≤ b′,

(3.5) A
id
≤ B ⇔ A

i
≤ B and A

d
≤ B

and

(3.6) A ≤ B ⇔ a ≤ b for all a ∈ A and b ∈ B.
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The above order relation (3.5) defined in Pp(X) has been used in Dhage
[12, 13] in the study of extremal solutions for differential and integral equa-
tions and it is an improvement upon the order relation defined in (3.6) by
Dhage [9], Dhage and Regan [18] and Agarwal et al. [1].

Definition 3.1. A multi-valued mapping Q : X → Pp(X) is called right

monotone increasing if x ≤ y, then Qx
i
≤ Qy for all x, y ∈ X. Similarly, Q

is called left monotone increasing if x ≤ y, then Qx
d
≤ Qy for all x, y ∈ X.

Finally, the multi-valued mapping Q is simply called monotone increasing if

x ≤ y, then Qx
id
≤ Qy for all x, y ∈ X.

Definition 3.2. A multi-valued mapping Q : X → Pp(X) is called right

monotone decreasing if x ≤ y, then Qy
i
≤ Qx for all x, y ∈ X. Similarly, Q

is called left monotone decreasing if x ≤ y, then Qy
d
≤ Qx for all x, y ∈ X.

Finally, the multi-valued mapping Q is simply called monotone decreasing

if x ≤ y, then Qy
id
≤ Qx for all x, y ∈ X.

Note that if Q is a single-valued mapping, then the monotone increasing
multi-valued operator is the same as the monotone increasing operator and
the monotone decreasing multi-valued operator is the same as the monotone
decreasing operator on X.

Definition 3.3. A multi-valued mapping Q : X → Pp(X) is called strictly
monotone increasing if x < y, then Qx ≤ Qy for all x, y ∈ X. Similarly,
Q is called strictly monotone decreasing if x < y, then Qx ≥ Qy for all
x, y ∈ X. Finally, the multi-valued mapping Q is simply called strictly
monotone on X if it is either strictly monotone increasing or strictly mono-
tone increasing X.

Example 3.6. Let R denote the set of real numbers and let R
+ denote

the set of nonnegative real numbers. Define two multi-valued mappings
Q1, Q2 : R

+ → Pcp(R) by

Q1(x) = [−x, x] and Q2(x) = [0, x + 1].

It is very easy to verify that the multi-valued map Q1 is right monotone in-
creasing, but not left monotone increasing on R

+. However, the multi-valued
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map Q2 is right monotone increasing as well as left monotone increasing on
R

+. Note that neither Q1 nor Q2 is strictly monotone increasing or strictly
monotone decreasing on R.

Thus it is clear that every strictly monotone increasing multi-valued map-
ping is monotone increasing on X, but the converse is not true. The following
example illustrates this fact more clearly.

Example 3.7. Let R
+ denote the set of reals and define a strictly monotone

increasing multi-valued map Q3 : R
+ → Pcp(R) by Q3(x) = [x, x + 1].

It is easy to verify that Q3 is also right monotone increasing as well as
left monotone increasing, that is, a monotone increasing multi-valued map
on R

+.

Theorem 3.8. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a right monotone increas-

ing multi-valued mapping. If every monotone increasing sequence {yn} ⊂
⋃

Q([a, b]) defined by yn ∈ Qxn, n ∈ N converges, whenever {xn} is a mono-

tone increasing sequence in [a, b], then Q has a fixed point.

Proof. We only need to show that hypotheses (Q0) and (Q1) of Theorem
3.1 are satisfied. Since Qx ⊂ [a, b] for each x ∈ [a, b], we have that a ≤ Qa
and so M 6= ∅. Next Q is monotone increasing, therefore the hypothesis (Q1)
holds. Now the desired conclusion follows by Theorem 3.1. This completes
the proof.

Let X be a metric space. A multi-map Q : X → Pcp(X) is called totally

compact if
⋃

Q(X) is a compact subset of X. Q is called compact if
⋃

Q(S) is a relatively compact subset of X for all bounded subsets S of
X. Again Q is called totally bounded if for any bounded subset S of X,
⋃

Q(S) is a totally bounded subset of X. It is clear that every compact
multi-valued map is totally bounded, but the converse may not be true.
However, these two notions are equivalent on bounded subsets of a complete
metric space X.

Corollary 3.9. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a right monotone in-

creasing multi-valued mapping. Then Q has a fixed point if any one of the

following conditions is satisfied.
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(a) Q is a totally compact multi-valued mapping.

(b) The cone K in X is normal and Q is compact.

(c) The cone K is regular.

Proof. Let {xn} be a monotone increasing sequence in [a, b] and let {yn} be
a monotone increasing sequence in

⋃

Q([a, b]) defined by yn ∈ Txn for each
n ∈ N. Clearly such a sequence {yn} exists since the multi-map Q is right
monotone increasing on [a, b]. Suppose that the hypothesis (a) holds. Then
⋃

Q([a, b]) is compact and the sequence {yn} has a convergent subsequence.
Since {yn} is monotone increasing, it converges to a point in [a, b]. Again if
the hypothesis (b) holds, then the order interval [a, b] is bounded in norm
and

⋃

Q([a, b]) is a relatively compact set in X. Therefore the sequence
{yn} ⊂

⋃

Q([a, b]) has a convergent subsequence and so the whole sequence
converges to a point in

⋃

Q([a, b]). Finally, if the hypothesis (c) holds,
then by definition of the cone, the sequence {yn} converges to a point in
⋃

Q([a, b]). Thus all the conditions of Theorem 3.1 are satisfied under every
hypothesis (a) or (b) or (c). Hence an application of it yields that Q has at
least a fixed point in [a, b]. This completes the proof.

Similarly, we have

Theorem 3.10. Let [a, b] be an order interval in a subset Y of an or-

dered Banach space X and let Q : [a, b] → Pcp([a, b]) be a left monotone

increasing multi-valued mapping. If every monotone decreasing sequence

{yn} ⊂
⋃

Q([a, b]) defined by yn ∈ Qxn, n ∈ N converges, whenever {xn} is

a monotone decreasing sequence in [a, b], then Q has a fixed point.

Corollary 3.11. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a left monotone increasing

multi-valued mapping. Then Q has a fixed point if any one of the following

conditions is satisfied.

(a) Q is a totally compact multi-map.

(b) The cone K in X is normal and Q is compact.

(c) The cone K is regular.

The proofs of Theorem 3.10 and Corollary 3.11 are similar to Theorem 3.8
and Corollary 3.9 with appropriate modifications. We omit the details.

A slightly stronger form of Theorem 3.8 useful in applications to differ-
ential inclusions is the following result.
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Theorem 3.12. Let [a, b] be an order interval in a subset Y of an or-

dered Banach space X and let Q : [a, b] → Pcp([a, b]) be a right mono-

tone increasing mapping. If every sequence {yn} ⊂
⋃

Q([a, b]) defined by

yn ∈ Qxn, n ∈ N has a cluster point, whenever {xn} is a monotone increas-

ing sequence in [a, b], then Q has a fixed point.

Proof. Suppose that {yn} is a monotone increasing sequence in [a, b] de-
fined by yn ∈ Qxn, n ∈ N. This is possible in view of the fact that {xn}
is monotone increasing and that Q is a monotone increasing multi-valued
mapping on [a, b]. Since {yn} has a cluster point, the desired conclusion
follows from applying Theorem 3.1.

Again a fixed point theorem for monotone increasing operators in the appli-
cable form to differential integral inclusions is

Theorem 3.13. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let Q : [a, b] → Pcp([a, b]) be a monotone increasing

multi-valued mapping. If every sequence {yn} ⊂
⋃

Q([a, b]) defined by yn ∈
Qxn, n ∈ N has a cluster point, whenever {xn} is a monotone sequence in

[a, b], then Q has a fixed point.

Remark 3.1. We note that some fixed point theorems for right monotone
increasing multi-valued operators have been proved in Dhage [12] under up-
per semi-continuity of the multi-valued mappings in ordered Banach spaces.
In this case the multi-valued operators are not required to have compact
values, but it is enough to have closed values on the domains of definition.

4. Multi-valued hybrid fixed point theory

In this section, we shall prove some fixed point theorems for operator inclu-
sions involving the sum and the product of two multi-valued operators in
a Banach space under mixed compactness and monotonicity conditions. It
seems that some of the results of this section are also new even to the fixed
point theory of single-valued mappings in abstract spaces. The results of
this section also have a wide range of applications to perturbed differential
equations and inclusions.

4.1. Topo-algebraic hybrid fixed point theorems

In this section, we combine a topological fixed point theorem with an al-
gebraic fixed point theorem to derive a hybrid fixed point theorem called
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the topo-algebraic hybrid fixed point theorems for multi-valued operators in
Banach spaces. Before going to the main results we give some preliminaries
needed in the sequel.

Let X and Y be two metric spaces and let T : X → Pc(Y ). Then
T is called upper semi-continuous (u.s.c.) if for each x0 ∈ X, the set
T (x0) is a nonempty and closed subset of Y , and for each open set N ⊂ X
containing T (x0), there exists an open neighborhood M of x0 such that
⋃

T (M) = T (M) ⊂ N. The multi-valued mapping T : X → Pcp(Y ) is called
completely continuous if it is upper semi-continuous and compact on X.
If T is non-empty and compact, then T is u.s.c. if and only if T has a closed
graph, i.e., given sequences {xn}

∞
n=1 → x0, {yn}

∞
n=1 → y0, and yn ∈ T (xn)

for every n = 1, 2, . . . imply y0 ∈ T (x0). Note that the complete continuity
of T from a metric space X into the complete metric space Y is equivalent
to upper semi-continuity together with the totally boundedness of T on X.

Theorem 4.1. Let [a, b] be a norm-bounded order interval in a subset Y
of an ordered Banach space X and let T : [a, b] × [a, b] → Pcp([a, b]) be a

multi-valued mapping satisfying

(a) y 7→ T (x, y) is right monotone increasing and completely continuous

and has convex values for each x ∈ [a, b],

(b) x 7→ T (x, y) is right monotone increasing for each y ∈ [a, b] and

(c) every monotone increasing sequence {yn} ⊂
⋃

T ([a, b] × [a, b]) defined

by yn ∈ T (xn, y), n ∈ N converges for each y ∈ [a, b], whenever {xn} is

a monotone increasing sequence in [a, b].

Then the operator inclusion x ∈ T (x, x) has a solution in [a, b].

Proof. Define the multi-valued operator Q : [a, b] → Pp([a, b]) by

(4.1) Qx =
{

y ∈ [a, b] | y ∈ T (x, y)
}

.

Let x ∈ [a, b] be fixed and define the operator Tx(y) : [a, b] → Pcp([a, b]) by
Tx(y) = T (x, y). Then Tx is a completely continuous multi-valued operator
which maps a closed convex and bounded subset [a, b] of the Banach space
X into itself. Therefore an application of the multi-valued analogue of a
fixed point theorem of Schauder [21] yields that Tx has a fixed point in [a, b]
and consequently the set Qx is non-empty for each x ∈ [a, b]. Moreover,
Qx is compact for each x ∈ [a, b]. Further, hypothesis (c) implies that Q
satisfies all the conditions of Theorem 3.12 on [a, b] and hence an application
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of it yields that Q has a fixed point. This further implies that the operator
inclusion x ∈ T (x, x) has a solution in [a, b]. This completes the proof.

As a consequence of Theorem 4.1 we obtain

Corollary 4.2. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X and let T : [a, b] × [a, b] → Pcp,cv([a, b]) be a multi-valued

mapping satisfying

(a) y 7→ T (x, y) is right monotone increasing and completely continuous

for each x ∈ [a, b] and

(b) x 7→ T (x, y) is right monotone increasing for each y ∈ [a, b].

Then the operator inclusion x ∈ T (x, x) has a solution if any one of the

following conditions is satisfied.

(a) [a, b] is norm-bounded and T is compact multi-valued mapping.

(b) The cone K in X is normal and x 7→ T (x, y) is compact for each

y ∈ [a, b].

(c) The cone K is regular.

The origin of the fixed point theorems involving the sum of two operators in
Banach spaces lies in the works of a Russian mathematician, Krasnoselskii
[28]. In this case one operator happens to be a contraction and another one
happens to be a completely continuous on the domain of their definition.
Since every contraction is continuous, both the operators in such theorems
are continuous. Below we relax the continuity of one of the mappings in such
hybrid fixed point theorems, instead we assume monotonicity and prove a
fixed point theorem on ordered Banach spaces.

Theorem 4.3. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X. Let A,B : [a, b] → Pcp,cv(X) be two multi-valued operators

satisfying

(a) A is compact and right monotone increasing,

(b) B is right monotone increasing and completely continuous and

(c) Ax + By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion

x ∈ Ax + Bx has a solution in [a, b].
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Proof. Define an operator T on [a, b] × [a, b] by T (x, y) = Ax + By. From
hypothesis (c) it follows that T defines a multi-valued mapping T : [a, b] ×
[a, b] → Pcp,cv([a, b]). Now the desired conclusion follows by Corollary 4.2.

Remark 4.1. Note that hypothesis (c) holds if A and B are both right
monotone increasing multi-valued operators and there exist elements a and

b in [a, b] such that a
d
≤ Aa + Ba and Ab + Bb

i
≤ b.

When A and B are single-valued operators, Theorem 4.3 reduces to

Corollary 4.4. Let [a, b] be an order interval in a subset Y of an ordered

Banach space X. Let A,B : [a, b] → X be two single-valued operators satis-

fying

(a) A is monotone increasing and compact,

(b) B is monotone increasing and completely continuous and

(c) Ax + By ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion

Ax + Bx = x has a solution in [a, b].

Remark 4.2. Note that hypothesis (c) holds if A and B are both monotone
increasing single-valued operators and there exist elements a and B in [a, b]
such that a ≤ Aa+Ba and Ab+Bb ≤ b. In this case the operator equation
Ax + Bx = x has the least and the greatest solution in [a, b].

The hybrid fixed point theory involving the product of two operators in
a Banach algebra is initiated by the author in [8] and shall be developed
further in various directions in due course of time (see Dhage [11, 14] and
the references therein). The main feature of these fixed point theorems is
again that both the operators are continuous on their domain of definition.
Below we remove the continuity of one of the operators and prove a fixed
point theorem involving the product of two operators in a Banach algebra.
We need the following preliminaries in the sequel.

A cone K in a Banach algebra X is called positive if

(iv) K ◦ K ⊆ K, where “ ◦ ” is a multiplicative composition in X.

Lemma 4.1 (Dhage [14]). If u1, u2, v1, v2 ∈ K are such that u1 ≤ v1 and

u2 ≤ v2, then u1u2 ≤ v1v2, provided K in a positive cone in X.
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Theorem 4.5. Let [a, b] be an order interval in a subset Y of an ordered

Banach algebra X with a cone K. Let A,B : [a, b] → Pcp(K) be two multi-

valued operators satisfying

(a) A is compact and right monotone increasing,

(b) B is right monotone increasing and completely continuous, and

(c) Ax · By ∈ Pcv([a, b]) for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal, then the operator inclu-

sion x ∈ Ax · Bx has a solution in [a, b].

Proof. Define an operator T on [a, b] × [a, b] by T (x, y) = Ax · By. From
hypothesis (c) it follows that T defines a multi-valued mapping T : [a, b] ×
[a, b] → Pcp,cv([a, b]). Now the desired conclusion follows by applying
Corollary 4.2.

Remark 4.3. Note that hypothesis (c) holds if (i) A and B are both right
monotone increasing multi-valued operators (ii) the cone K in X is positive

and (iii) there exist elements a and B in [a, b] such that a
d
≤ Aa · Ba and

Ab · Bb
i
≤ b.

When A and B are single-valued operators, Theorem 4.5 reduces to

Corollary 4.6. Let [a, b] be an order interval in a subset Y of an ordered

Banach algebra X. Let A,B : [a, b] → X be two single-valued operators

satisfying

(a) A is compact and monotone increasing,

(b) B is monotone increasing and completely continuous and

(c) Ax · By ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal, then the operator inclu-

sion Ax · Bx = x has a solution in [a, b].

Remark 4.4. Note that hypothesis (c) holds if (i) A and B are both positive
and monotone increasing multi-valued operators (ii) the cone K in X is
positive and (iii) there exist elements a and b in X such that a ≤ Aa · Ba
and Ab · Bb ≤ b. In this case the operator equation Ax · Bx = x has the
least and the greatest solution in [a, b].
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The study of operator equations involving three operators in a Banach al-
gebras is initiated by the author and for the recent work the reader is re-
ferred to Dhage [15]. Below we prove a result concerning the existence of
a solution of operator inclusions involving three multi-valued operators in
Banach algebras and two of which are discontinuous on the domain of their
definitions.

Theorem 4.7. Let [a, b] be an order interval in a subset Y of an ordered

Banach algebra X with a cone K. Let A,B : [a, b] → Pcp(K) and C :
[a, b] → Pcp(X) be three multi-valued operators satisfying

(a) A and C are compact and right monotone increasing,

(b) B is right monotone increasing and completely continuous, and

(c) Ax · By + Cx ∈ Pcv([a, b]) for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal, then the operator inclu-

sion x ∈ Ax · Bx + Cx has a solution in [a, b].

Proof. Define an operator T on [a, b] × [a, b] by T (x, y) = Ax · By + Cx.
From hypothesis (c) it follows that T defines a multi-valued mapping
T : [a, b] × [a, b] → Pcp,cv([a, b]). Now the desired conclusion follows by
Corollary 4.2.

Remark 4.5. Note that hypothesis (c) holds if (i) A, B and C are right
monotone increasing multi-valued operators (ii) the cone K in X is positive

and (iii) there exist elements a and b in X such that a
d
≤ Aa · Ba + Ca and

Ab · Bb + Cb
i
≤ b.

When A, B and C are single-valued operators, Theorem 4.5 reduces to

Corollary 4.8. Let [a, b] be an order interval in a subset Y of an ordered

Banach algebra X. Let A,B : [a, b] → K and C : [a, b] → X be three

single-valued operators satisfying

(a) A and C are compact and monotone increasing,

(b) B is monotone increasing and completely continuous and

(c) Ax · By + Cx ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal, then the operator inclu-

sion Ax · Bx + Cx = x has a solution in [a, b].
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Remark 4.6. Note that hypothesis (c) holds if (i) A and B are both mono-
tone increasing multi-valued operators (ii) the cone K in X is positive and
(iii) there exist elements a and b in X such that a ≤ Aa · Ba + Ca and
Ab · Bb + Cb ≤ b. In this case the operator equation Ax · Bx + Cx = x has
the least and the greatest solution in [a, b].

4.2. Geome-algebraic hybrid fixed point theorems

In this section, we combine a geometrical fixed point theorem with an alge-
braic fixed point theorem in Banach algebras to yield a hybrid fixed point
theorem with mixed conditions called the Geome-algebraic hybrid fixed
point theorem for multi-valued operators in Banach spaces. Before going
to the main results we give some preliminaries needed in the sequel.

Define a function H : Pbd,cl(X) ×Pbd,cl(X) → R
+ by

H(A,B) = max{ρ(A,B) , ρ(B,A)}.

where ρ(A,B) = supa∈A d(a,B) and d(a,B) = inf{d(a, b) : b ∈ B}.

The function H is called a Hausdorff metric on X. Note that ‖Y ‖ =
H(Y, {0}) = sup{‖y‖ : y ∈ Y }. The details of the properties of the Hausdorff
metric are given in Hu and Papageorgiou [26].

Definition 4.1. Let T : X → Pf (X) be a multi-valued operator. Then T
is called a multi-valued contraction if there exists a constant λ ∈ (0, 1) such
that

H(T (x), T (y)) ≤ λ‖x − y‖

for all x, y ∈ X. The constant λ is called a contraction constant of T .

Theorem 4.9 (Covitz and Nadler [6]). Let T : X → Pcl(X) be a multi-

valued contraction. Then the fixed point set FT of T is non-empty and closed

in X.

Remark 4.7. It the multi-valued map T in Theorem 4.9 is compact-valued,
then the fixed point set FT of T is compact in X.

Theorem 4.10. Let [a, b] be an order interval in an ordered Banach space

X and let T : [a, b] × [a, b] → Pcp([a, b]) be a mapping satisfying

(a) y 7→ T (x, y) is right monotone increasing and multi-valued contraction

for each x ∈ [a, b],
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(b) x 7→ T (x, y) is right monotone increasing for each y ∈ [a, b] and

(c) every monotone increasing sequence {yn} ⊂
⋃

T ([a, b] × [a, b]) defined

by yn ∈ T (xn, y), n ∈ N converges for each y ∈ [a, b], whenever {xn} is

a monotone increasing sequence in [a, b].

Then the operator inclusion x ∈ T (x, x) has a solution in [a, b].

Proof. Define the multi-valued operator Q : [a, b] → Pp([a, b]) by

(4.2) Qx =
{

y ∈ [a, b] | y ∈ T (x, y)
}

.

Let x ∈ [a, b] be fixed and define the operator Tx(y) : [a, b] → Pcp([a, b])
by Tx(y) = T (x, y). Then Tx is a multi-valued contraction which maps a
closed convex and bounded subset [a, b] into itself. Therefore an application
of the fixed point theorem of Covitz and Nadler [6] yields that the set Qx is
non-empty for each x ∈ [a, b]. Moreover, Qx is compact for each x ∈ [a, b].
Further, hypothesis (c) implies that Q satisfies all the conditions of Theorem
3.12 on [a, b] and hence an application of it yields that Q has a fixed point.
This further implies that the operator inclusion x ∈ T (x, x) has a solution
in [a, b]. This completes the proof.

As a consequence of Theorem 4.9 we obtain

Corollary 4.11. Let [a, b] be an order interval in an ordered Banach space

X and let T : [a, b] × [a, b] → Pcp([a, b]) be a mapping satisfying

(a) y 7→ T (x, y) is right monotone increasing and multi-valued contraction

for each x ∈ [a, b],

(b) x 7→ T (x, y) is right monotone increasing for each y ∈ [a, b].

Then the operator inclusion x ∈ T (x, x) has a solution if any one of the

following conditions is satisfied.

(a) x 7→ T (x, y) is compact multi-map for each y ∈ [a, b].

(b) The cone K in X is normal and x 7→ T (x, y) is totally bounded for each

y ∈ [a, b].

(c) The cone K is regular.

Below we prove a fixed point theorem involving the sum of two operators
in ordered Banach spaces with hybrid conditions. We need the following
lemma in the sequel.
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Lemma 4.2. For any A,B ∈ Pcl(X), we have

H(A + C,B + C) ≤ H(A,B).

Theorem 4.12. Let [a, b] be an order interval in an ordered Banach space

X. Let A,B : [a, b] → Pcp(X) be two multi-valued operators satisfying

(a) A is totally bounded and right monotone increasing,

(b) B is right monotone increasing and multi-valued contraction with the

contraction constant k, and

(c) Ax + By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion

x ∈ Ax + Bx has a solution in [a, b].

Proof. Let x ∈ [a, b] be fixed and define a multi-valued operator
Tx : [a, b] → Pcp([a, b]) by Tx(y) = Ax + By. Then for any y1, y2 ∈ [a, b] we
have by Lemma 4.2,

H(Tx(y1), Tx(y2)) = H(Ax + By1, Ax + By2)

≤ H(Ax + By1, Ax + By2)

≤ k‖y1 − y2‖.

This shows that y 7→ Ax+By = Tx(y) is a multi-valued contraction on [a, b]
with a contraction constant k. From hypothesis (c) it follows that T defines
a multi-valued mapping T : [a, b] × [a, b] → Pcp([a, b]). Now the desired
conclusion follows by Corollary 4.11.

Remark 4.8. Note that hypothesis (c) of Theorem 4.10 holds if A and B
satisfy the conditions of Remark 4.3.

Definition 4.2. A single-valued mapping T : X → X is called Lipschitz if
there exists a constant k > 0 such that

‖Tx − Ty‖ ≤ k‖x − y‖

for all x, y ∈ X. The constant k is called the Lipschitz constant of T on X.
Further, if k < 1, then T is called a contraction on X with a contraction
constant k.
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Remark 4.9. It is known that a Lipschitz map with a Lipschitz constant
k is not a multi-valued Lipschitz map with a Lipschitz constant k, but a
multi-valued Lipschitz map with the Lipschitz constant 2k. In particular,
a contraction map T with a contraction constant k < 1/2 is a multi-valued
contraction with the contraction constant k.

Corollary 4.13. Let [a, b] be an order interval in an ordered Banach space

X. Let A : [a, b] → Pcp(X) be a multi-valued and B : [a, b] → X be a

single-valued operators satisfying

(a) A is totally bounded and right monotone increasing,

(b) B is monotone increasing single-valued contraction with a contraction

constant k < 1
2 , and

(c) Ax + By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator inclusion x ∈
Ax + Bx has a solution in [a, b].

When A and B are single-valued operators, we obtain some interesting corol-
laries to Theorem 4.10 applicable to nonlinear differential and integral equa-
tions involving discontinuous nonlinearities. Before these results we need the
following preliminaries in the sequel.

Corollary 4.14. Let [a, b] be an order interval in an ordered Banach space

X. Let A,B : [a, b] → X be two single-valued operators satisfying

(a) A is totally bounded and monotone increasing,

(b) B is monotone increasing and contraction with a contraction constant

k, and

(c) Ax + By ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal, then the operator equation Ax+Bx =
x has a solution in [a, b].

Proof. Define a mapping T : [a, b] × [a, b] → X by T (x, y) = Ax + By. By
hypothesis (c), T maps [a, b] × [a, b] into itself. Since the cone K is normal,
the order interval [a, b] is a closed convex and bounded subset of X. Let
x ∈ [a, b] be fixed. Then for any y1, y2 ∈ [a, b], one has

‖Tx(y1) − Tx(y2)‖ ≤ ‖By1 − By2‖ ≤ k‖y1 − y2‖
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where k < 1. This shows that the operator Tx is a contraction on [a, b] and
hence by the Banach fixed point theorem, Tx has a unique fixed point in
[a, b]. Thus there is a unique point z ∈ [a, b] such that Tx(z) = Ax+Bz = z.
Define a mapping Q : [a, b] → X by Qx = z, where z is a unique solution
to the operator equation Ax + Bz = z. We show that Q is a nondecreasing
mapping on [a, b]. Let x1, x2 ∈ [a, b] be such that x1 ≤ x2. Then there are
unique elements z1, z2 ∈ [a, b] such that

Qx1 = z1 = Ax1 + Bz1 = Tx1
(z1)

and
Qx2 = z2 = Ax2 + Bz2 = Tx2

(z2).

From the monotonicity of A, it follows that

Tx1
(y) = Ax1 + By ≤ Ax2 + By = Txx1

(y)

for all y ∈ [a, b]. Hence for any y ∈ [a, b]

T n
x1

(y) ≤ T n
x2

(y)

for all n ∈ N. Since Tx1
and Tx2

are contractions, by the Banach fixed point
theorem,

z1 = lim
n→∞

T n
x1

(y) ≤ T n
x2

(y) = z2.

This shows that Q defines a nondecreasing totally bounded operator Q :
[a, b] → [a, b]. Now the desired conclusion follows by Theorem 1.1.1 of
Heikkilä and Lashmikantham [25].

Remark 4.10. Note that hypothesis (c) of Corollary 4.11 holds if A and B
satisfy the conditions of Remark 4.4.

To prove a hybrid fixed point theory involving the product of two operators
in an ordered Banach algebra, we need the following definition.

Definition 4.3. A multi-valued mapping T : X → Pp(X) is Lipschitz if
there is a constant k > 0 such that

H(Tx, Ty) ≤ k ‖x − y‖

for all x, y ∈ X. The constant k is called the Lipschitz constant of T .
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Lemma 4.3 (Dhage [14]). Let X be a Banach algebra and let

A,B,C ∈ Pp(X). Then

H(AC,BC) ≤ H(0, C) H(A,B).

Theorem 4.15. Let [a, b] be an order interval in an ordered Banach algebra

X with a cone K. Let A : [a, b] → Pcp(K) and B : [a, b] → Pcp(K) be two

multi-valued operators satisfying

(a) A is totally bounded and right monotone increasing,

(b) B is right monotone increasing and multi-valued Lipschitz with a Lip-

schitz constant k, and

(c) Ax · By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal and kM < 1, then

the operator inclusion x ∈ Ax · Bx has a solution in [a, b] where M =
‖A([a, b])‖ = sup{‖Ax‖ : x ∈ [a, b]}.

Proof. Let x ∈ [a, b] be fixed and define a multi-valued operator Tx :
[a, b] → Pcp([a, b]) by Tx(y) = Ax · By. Then for any y1, y2 ∈ [a, b], by
Lemma 4.3 we have

H(Tx(y1), Tx(y2) = H(Ax · By1, Ax · By2)

≤ H(Ax, 0)H(By1, By2)

≤ λ‖y1 − y2‖

where λ = kM < 1. This shows that y 7→ Ax ·By = Tx(y) is a multi-valued
contraction on [a, b] with a contraction constant kM . From hypothesis (c) it
follows that T defines a multi-valued mapping T : [a, b]× [a, b] → Pcp([a, b]).
Now the desired conclusion follows by Corollary 4.11.

Remark 4.11. Note that hypothesis (c) of Theorem 4.12 holds if A and B
satisfy all the conditions of Remark 4.1.

Corollary 4.16. Let [a, b] be an order interval in an ordered Banach algebra

X with a cone K. Let A : [a, b] → Pcp(K) and B : [a, b] → K be two

operators satisfying

(a) A is totally bounded and right monotone increasing,
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(b) B is monotone increasing and single-valued Lipschitz with a Lipschitz

constant k, and

(c) Ax · By ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is normal and 2kM < 1, then the operator

inclusion x ∈ Ax · Bx has a solution in [a, b] where M = ‖A([a, b])‖ =
sup{‖Ax‖ : x ∈ [a, b]}.

When A and B are single-valued operators, Theorem 4.12 reduces to

Corollary 4.17. Let [a, b] be an order interval in an ordered Banach algebra

X. Let A,B : [a, b] → K be two single-valued operators satisfying

(a) A is totally bounded and monotone increasing,

(b) B is monotone increasing and Lipschitz with the Lipschitz constant k,

and

(c) Ax · By ∈ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal and Mk < 1, then

the operator inclusion Ax · Bx = x has a solution in [a, b] where M =
‖A([a, b])‖ = sup{‖Ax‖ : x ∈ [a, b]}.

Proof. Define a mapping T : [a, b] × [a, b] → X by T (x, y) = Ax · By. By
hypothesis (c), T maps [a, b] × [a, b] into itself. Since the cone K is normal,
the order interval [a, b] is a closed convex and bounded subset of X. Let
x ∈ [a, b] be fixed. Then for any y1, y2 ∈ [a, b], one has

‖Tx(y1) − Tx(y2)‖ ≤ ‖Ax · By1 − Ax · By2‖

≤ ‖Ax‖‖y1 − y2‖

≤ Mk‖y1 − y2‖

where Mk < 1. This shows that the operator Tx is a contraction on [a, b]
and hence by the Banach fixed point theorem, Tx has a unique fixed point in
[a, b]. Thus there is a unique point z ∈ [a, b] such that Tx(z) = Ax ·Bz = z.
Define a mapping Q : [a, b] → X by Qx = z, where z is a unique solution
to the operator equation Ax · Bz = z. We show that Q is a nondecreasing
mapping on [a, b]. Let x1, x2 ∈ [a, b] be such that x1 ≤ x2. Then there are
unique elements z1, z2 ∈ [a, b] such that

Qx1 = z1 = Ax1 · Bz1 = Tx1
(z1)
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and

Qx2 = z2 = Ax2 · Bz2 = Tx2
(z2).

From the monotonicity of A, it follows that

Tx1
(y) = Ax1 · By ≤ Ax2 · By = Txx1

(y)

for all y ∈ [a, b]. Hence for any y ∈ [a, b]

T n
x1

(y) ≤ T n
x2

(y)

for all n ∈ N. Since Tx1
and Tx1

are contractions, by the Banach fixed point
theorem,

z1 = lim
n→∞

T n
x1

(y) ≤ T n
x2

(y) = z2.

This shows that Q defines a nondecreasing totally bounded operator Q :
[a, b] → [a, b] (see also Dhage [16] and the references therein). Now the
desired conclusion follows by Theorem 1.1.1 of Heikkilä and Lashmikantham
[25].

Remark 4.12. Note that hypothesis (c) of Corollary 4.14 holds if A and B
satisfy all the conditions of Remark 4.2.

Theorem 4.18. Let [a, b] be an order interval in an ordered Banach algebra

X with a cone K. Let A,B : [a, b] → Pcp(K) and C : [a, b] → Pcp(X) be

three multi-valued operators satisfying

(a) A is totally bounded and right monotone increasing,

(b) B and C are right monotone increasing and multi-valued Lipschitz with

Lipschitz constants α and β respectively, and

(c) Ax · By + Cy ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal and αM + β < 1,
then the operator inclusion x ∈ Ax · Bx + Cx has a solution in [a, b] where

M = ‖A([a, b])‖ = sup{‖Ax‖ : x ∈ [a, b]}.

Proof. Let x ∈ [a, b] be fixed and define a multi-valued operator Tx :
[a, b] → Pcp([a, b]) by Tx(y) = Ax · By + Cy. Then for any y1, y2 ∈ [a, b], by
Lemma 4.3 we have
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H(Tx(y1), Tx(y2) = H(Ax · By1 + Cy1, Ax · By2 + Cy2)

≤ H(Ax, 0)H(By1, By2) + H(Cy1, Cy2)

≤ λ‖y1 − y2‖

where λ = αM + β < 1. This shows that y 7→ Ax · By + Cy = Tx(y) is a
multi-valued contraction on [a, b] with a contraction constant αM +β. From
hypothesis (c) it follows that T defines a multi-valued mapping T : [a, b] ×
[a, b] → Pcp([a, b]). Now the desired conclusion follows by Corollary 4.11.

Remark 4.13. Note that hypothesis (c) of Theorem 4.18 holds if A, B and
C satisfy all the conditions of Remark 4.5.

Corollary 4.19. Let [a, b] be an order interval in an ordered Banach algebra

X with a cone K. Let A : [a, b] → K, B : [a, b] → Pcp(K) and C : [a, b] → X
be three operators satisfying

(a) B is totally bounded and right monotone increasing,

(b) A and C are monotone increasing single-valued Lipschitz with Lipschitz

constants α and β respectively, and

(c) Ax · By + Cy ⊂ [a, b] for all x, y ∈ [a, b].

Further, if the cone K in X is positive and normal and 2(αM + β) < 1,
then the operator inclusion x ∈ Ax · Bx + Cx has a solution in [a, b] where

M = ‖A([a, b])‖ = sup{‖Ax‖ : x ∈ [a, b]}.

When A, B and C are single-valued operators, Theorem 4.12 reduces to

Corollary 4.20. Let [a, b] be an order interval in an ordered Banach algebra

X. Let A,B : [a, b] → K and C : [a, b] → X be three single-valued operators

satisfying

(a) B is totally bounded and monotone increasing,

(b) A and C are monotone increasing and Lipschitz with Lipschitz con-

stants α and β respectively, and

(c) Ax · By + Cy ∈ [a, b] for all x, y ∈ [a, b].
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Further, if the cone K in X is positive and normal and αM + β < 1, then

the operator inclusion Ax · Bx + Cx = x has a solution in [a, b], where

M = ‖A([a, b])‖ = sup{‖Ax‖ : x ∈ [a, b]}.

Proof. The proof is similar to Corollaries 4.14 and 4.17 and so we omit
the details.

Remark 4.14. Note that hypothesis (c) of Corollary 4.14 holds if A, B and
C satisfy all the conditions of Remark 4.6.

5. Discontinuous differential inclusions

The method of upper and lower solutions has been successfully applied to
the problems of nonlinear differential equations and inclusions. We refer
to Heikkilä and Laksmikantham [25], Halidias and Papageorgiou [22] and
Benchohra [5]. In this section, we apply the results of previous sections to
the first order initial value problem of ordinary discontinuous differential
inclusions for proving the existence of solution between the given upper and
lower solutions under monotonicity conditions.

5.1. Initial value problems

Given a closed and bounded interval J = [0, 1] in R, consider the differential
inclusion (in short DI)

(5.1)

{

x′(t) ∈ F (t, x(t)), a.e. t ∈ J

x(0) = x0

where F : J × R → Pp(R).

By a solution of DI (5.1) we mean a function x ∈ AC(J, R) such that

x′(t) = v(t), t ∈ J, x(0) = x0,

for some v ∈ L1(J, R) satisfying v(t) ∈ F (t, x(t)), a.e. for t ∈ J , where
AC(J, R) is a space of all absolutely continuous real-valued functions on J .

The DI (5.1) has been discussed in the literature very extensively for
different aspects of the solution under different continuity conditions. See
Aubin and Cellina [4], Deimling [7] and the references therein. Recently the
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DI (5.1) with discontinuous F has been discussed in Dhage [8, 9], Dhage and
O’Regan [18] and Agarwal et al. [1] for the existence of extremal solutions via
the lattice theoretic approach to differential and integral inclusions. In this
section, we shall prove the existence theorems for DI (5.1) via the functional
theoretic approach embodied in Theorem 3.1 under the weaker order relation
than in Dhage and O’Regan [18] and Agarwal [1] on the lines of Hu and
Heikkilä [24].

Define a norm ‖ · ‖ and an order relation “ ≤ ” in AC(J, R) by

(5.2) ‖x‖ = sup
t∈J

|x(t)|

and

(5.3) x ≤ y ⇐⇒ x(t) ≤ y(t) for all t ∈ J.

Here the cone K in AC(J, R) is defined by

K = {x ∈ AC(J, R) | x(t) ≥ 0},

which is obviously normal. See Amann [2] and Guo and Lakshmikantham
[20] and Heikkila and Lakshmikantham [25].

We need the following definition in the sequel.

Definition 5.1. A function a ∈ AC(J, R) is called a lower solution of the
DI (5.1) if a′(t) ≤ v(t), a.e. t ∈ J , and a(0) ≤ x0, for all v ∈ L1(J, R) with
v(t) ∈ F (t, a(t)) a.e. t ∈ J . Similarly, a function b ∈ AC(J, R) is called an
upper solution of the DI (5.1) if b′(t) ≥ v(t), for all t ∈ J , and a(0) ≤ x0,
for all v ∈ L1(J, R) with v(t) ∈ F (t, b(t)) a.e. t ∈ J .

We use the following notations in the sequel. Denote

|F (t, x)| = {|u| | u ∈ F (t, x)},

and
‖F (t, x)‖ = sup{|u| | u ∈ F (t, x)}.

Let β : J×R → R be a multifunction. Then the set of all Lebesgue integrable
selectors S1

β of β is defined by

S1
β(x) = {v ∈ L1(J, R) | v(t) ∈ β(t, x(t)) a.e. t ∈ J}
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for x ∈ AC(J, R). The problem of non-emptiness of the set S1
β(x) has been

of great interest for a long time. Some crucial results concerning S1
β(x) 6= ∅

have been given in Lasota and Opial [29], Covitz and Nadler [6] and Wagner
[31] (see also the monographs of Aubin and Cellina [4], Deimling [7] and the
references therein).

We consider the following set of assumptions:

(A1) There exists a Lebesgue integrable function m ∈ L1(J, R) such that

|F (t, x)| ≤ m(t) a.e. t ∈ J

for all x ∈ R.

(A2) F (t, x) is a closed and bounded subset of R for each (t, x) ∈ J × R.

(A3) There exists a Lebesgue integrable function h ∈ L1(J, R) such that
the function x 7→ F (t, x)+h(t)x is right monotone increasing for a.e.
t ∈ J .

(A4) S1
F+h(x) 6= ∅ and the map x 7→ S1

F+h(x) is right monotone increasing
in x ∈ AC(J, R).

(A5) There exist a lower solution a and an upper solution b of the DI (5.1)
on J such that a ≤ b.

Remark 5.1. Assume that hypothesis (A1)–(A3) hold and define a mapping
G : J × R → Pp(R) by

G(t, x) = F (t, x) + h(t)x.

Then G(t, x) is compact for each (t, x) ∈ J × R and S1
G(x) 6= ∅ for each

x ∈ AC(J, R). Again

|G(t, x)| = |F (t, x)| + h(t)x(t)

≤ m(t) + h(t)[‖a‖ + ‖b‖]

= γ(t)

for all t ∈ J and x ∈ [a, b]. Note that γ(·) = m(·)+h(·)[‖a‖+‖b‖] ∈ L1(J, R).

Theorem 5.1. Assume that hypotheses (A1)–(A5) hold. Then the DI (5.1)
has a minimal and a maximal solution on J.
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Proof. Let X = BM(J, R) and Y = AC(J, R) and consider the DI

(5.4)

{

x′ + h(t)x(t) ∈ G(t, x(t)) a.e. t ∈ J

x(0) = x0 ∈ R,

which is equivalent to the DI (5.1). Obviously, the lower solution a of the
DI (5.1) is the lower solution for the DI (5.4) and the upper solution b of
the DI (5.1) is the upper solution for the DI (5.4) with a ≤ b. Now consider
the order interval [a, b] in Y . Define a multi-map T on [a, b] by

Tx =

{

u ∈ X | u(t) = e−H(t)
(

x0 +

∫ t

0
eH(s)v(s) ds

)

, v ∈ S1
G(x)

}

= K ◦ S1
G(x)(5.5)

where H(t) =
∫ t

0 h(s) ds and the continuous operator K : L1(J, R) → C(J, R)
is defined by

(5.6) Kv(t) = x0e
−H(t) + e−H(t)

∫ t

0
eH(s)v(s) ds.

Obviously, the multi-valued operator T is well defined since S1
G(x) 6= ∅ for all

x ∈ X in view of Remark 5.1. We shall show that the multi-valued operator
T satisfies all the conditions of Theorem 3.1.

Step I. First, we show that T is a right monotone increasing on [a, b]. Let
x, y ∈ [a, b] be such that x ≤ y and let u1 ∈ Tx be arbitrary. Then there
exists an element v1 ∈ S1

G(x), that is, v1(t) ∈ G(t, x(t)) a.e. t ∈ J such that

(5.7) u1(t) = x0e
−H(t) + e−H(t)

∫ t

0
eH(s)v1(s) ds.

Since (A4) holds, there is an element v2(t) ∈ G(t, y(t)) a.e. t ∈ J, such that
v1(t) ≤ v2(t) for all t ∈ J . As a result we have an element u2 ∈ Ty such
that

(5.8) u2(t) = x0e
−H(t) + e−H(t)

∫ t

0
eH(s)v2(s) ds.

Now for any t ∈ J we have

∫ t

0
eH(s)v1(s) ds ≤

∫ t

0
eH(s)v2(s) ds.
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As a result we have from (5.7)–(5.8),

u1(t) = x0e
−H(t) + e−H(t)

∫ t

0
eH(s)v1(s) ds

≤ x0e
−H(t) + e−H(t)

∫ t

0
eH(s)v2(s) ds

= u2(t)

for all t ∈ J . Hence u1 ≤ u2. Therefore Tx
i
≤ Ty, that is, T is right

monotone increasing on X and in particular on [a, b].

Step II. Next we claim that T has compact-values and maps [a, b] into
itself. First, we show that T has compact values on [a, b]. Observe that
the operator B is equivalent to the composition L ◦ S1

G of two operators
on L1(J, R), where L : L1(J, R) → X is the continuous operator defined
(5.6). To show that B has compact values, it suffices to prove that the
composition operator L ◦ S1

G has compact values on [a, b]. Let x ∈ [a, b]
be arbitrary and let {vn} be a sequence in S1

G(x). Then, by the definition
of S1

G, vn(t) ∈ G(t, x(t)) a.e. for t ∈ J . Since G(t, x(t)) is compact, there
is a convergent subsequence of vn(t) (for simplicity call it vn(t) itself) that
converges in measure to some v(t), where v(t) ∈ G(t, x(t)) a.e. for t ∈ J .
From the continuity of L, it follows that Lvn(t) → Lv(t) pointwise on J as
n → ∞. In order to show that the convergence is uniform, we first show
that {Lvn} is an equi-continuous sequence. Let t, τ ∈ J , then

|Lvn(t) −Lvn(τ)| ≤
∣

∣

∣
x0e

−H(t) − x0e
−H(τ)

∣

∣

∣

+

∣

∣

∣

∣

e−H(t)

∫ t

0
eH(s)v(s) ds − e−H(τ)

∫ τ

0
eH(s)v(s) ds

∣

∣

∣

∣

≤ |x0|
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣
+

∣

∣

∣
e−H(t)

∣

∣

∣

∣

∣

∣

∫ t

τ

∣

∣eH(s)vn(s)
∣

∣ ds
∣

∣

∣
(5.9)

+
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣

∣

∣

∣

∫ τ

0

∣

∣eH(s)vn(s)
∣

∣ ds
∣

∣

∣
.

The function H is continuous on the compact set J , so it is uniformly con-
tinuous there. In addition, vn ∈ L1(J, R), so the right hand side of (5.9)
tends to 0 as t → τ . Hence, {Lvn} is equi-continuous, and an application of



Some algebraic fixed point theorems for ... 37

the Ascoli theorem implies that there is a uniformly convergent subsequence.
We then have Lvnj

→ Lv ∈ (L ◦ S1
G)(x) as j → ∞, and so (L ◦ S1

G)(x) is
compact. Therefore, T is a compact-valued multi-valued operator on [a, b].

Again let u ∈ Tb be arbitrary. Then there is a v ∈ S1
G(b) such that

u(t) = e−H(t)

[

x0 +

∫ t

0
eH(t)v(s) ds

]

, t ∈ J.

Since b is an upper solution of DI (5.1), we have

u(t) = e−H(t)

[

x0 +

∫ t

0
eH(s)v(s) ds

]

≤ e−H(t)

[

x0 +

∫ t

0
eH(s)

[

b′(s) + h(s)b(s)
]

ds

]

≤ e−H(t)

[

x0 +

∫ t

0
eH(s)b′(s) ds +

∫ t

0
eH(s)h(s)b(s) ds

]

≤ e−H(t)

[

x0 +
(

eH(s)b(s)
)t

0
−

∫ t

0
eH(s)h(s)b(s) ds

]

+ e−H(t)

∫ t

0
eH(s)h(s)b(s) ds

≤ e−H(t)
(

x0 + eH(t)b(t) − x0

)

= b(t)

for all t ∈ J . Hence u ≤ b and consequently Tb
i
≤ b. Similarly, it is

proved that a
d
≤ Ta. Since T is monotone increasing, we have that for any

x, a ≤ x ≤ b,

a
d
≤ Ta

i
≤ Tx

i
≤ Tb

i
≤ b.

Hence T defines a multi-map T : [a, b] → Pcp([a, b]) and the claim follows.

Step III. Let {xn} be monotone increasing sequence in [a, b] and let {yn}
be a sequence in

⋃

T ([a, b]) defined by yn ∈ Txn, n ∈ N. We shall show
that {yn} is a uniformly bounded and equi-continuous set in [a, b].
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Since yn ∈ Txn, there exists a vn ∈ S1
G(xn) such that

yn(t) = e−H(t)

(

x0 +

∫ t

0
eH(s)vn(s) ds

)

for all t ∈ J. Therefore, by Remark 5.1,

|yn(t)| =
∣

∣e−H(t)
∣

∣

∣

∣

∣

∣

(

x0 +

∫ t

0
eH(s)vn(s) ds

)
∣

∣

∣

∣

≤ |x0| +

∣

∣

∣

∣

∫ t

0
eH(s)vn(s) ds

∣

∣

∣

∣

≤ |x0| +

∫ t

0

∣

∣eH(s)vn(s)
∣

∣ ds

≤ |x0| +

∫ t

0
e‖h‖L1 |vn(s)| ds

≤ |x0| + e‖h‖L1

∫ t

0
|γ(s)| ds

≤ |x0| + e‖h‖L1‖γ‖L1

for all t ∈ J and so, {yn} is uniformly bounded.

Again let t, τ ∈ J . Then

∣

∣yn(t) − yn(τ)
∣

∣ ≤ |x0|
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣

+

∣

∣

∣

∣

e−H(t)

∫ t

0
eH(s)vn(s) ds − e−H(τ)

∫ τ

0
eH(s)vn(s) ds

∣

∣

∣

∣

≤ |x0|
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣

+

∣

∣

∣

∣

e−H(t)

∫ t

0
eH(s)vn(s) ds − e−H(t)

∫ τ

0
eH(s)vn(s) ds

∣

∣

∣

∣

+

∣

∣

∣

∣

e−H(t)

∫ τ

0
eH(s)vn(s) ds − e−H(τ)

∫ τ

0
eH(s)vn(s) ds

∣

∣

∣

∣
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≤ |x0|
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣
+

∣

∣

∣
e−H(t)

∣

∣

∣

∣

∣

∣

∫ t

τ

∣

∣eH(s)vn(s)
∣

∣ ds
∣

∣

∣

+
∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣

∣

∣

∣

∫ τ

0

∣

∣eH(s)vn(s)
∣

∣ ds
∣

∣

∣

≤
(

|x0| + e‖h‖L
1

‖γ‖L1

)

∣

∣

∣
e−H(t) − e−H(τ)

∣

∣

∣
+ |p(t) − p(τ)|

where p(t) = e‖h‖L1

∫ t

0 γ(s) ds.
Since H and p are continuous functions on a compact interval, they are

uniformly continuous on J . Hence from the above inequality it follows that
∣

∣yn(t) − yn(τ)
∣

∣ −→ 0 as t → τ.

This shows that {yn} is an equi-continuous sequence of functions in [a, b].
Now {yn} is a uniformly bounded and equi-continuous, so it has a convergent
subsequence by Arzelá-Ascoli theorem. Now we apply Theorem 3.12 to yield
that the operator inclusion x ∈ Tx has a solution which corresponds to the
solution of the DI (5.1) on J . This completes the proof.

5.2. Perturbed initial value problem

Let R denote the real line and let J = [0, 1] be a closed and bounded
interval in R. Consider the initial value problem of the first order perturbed
differential inclusion (in short PDI)

(5.10)

{

x′(t) ∈ F (t, x(t)) + G(t, x(t)) a.e. t ∈ J,

x(0) = x0 ∈ R

where F,G : J × R → Pcp,cv(R).
By a solution of PDI (5.10) we mean a function x ∈ AC(J, R) whose

first derivative x′ exists and is a member of L1(J, R) in F (t, x), i.e., there
exists a v ∈ L1(J, R) such that v(t) ∈ F (t, x(t)) + G(t, x(t)) a.e. t ∈ J, and
x′(t) = v(t), t ∈ J and x(0) = x0 ∈ R, where AC(J, R) is the space of all
absolutely continuous real-valued functions on J.

Definition 5.2. A measurable multi-valued function F : J → Pcp(R) is said
to be integrably bounded if there exists a function h ∈ L1(J, R) such that
|v| ≤ h(t) a.e. t ∈ J for all v ∈ F (t).
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Remark 5.2. It is known that if F : J → Pcl(R) is an integrably bounded
multi-function, then the set S1

F of all Lebesgue integrable selections of F is
closed and non-empty. See Hu and Papageorgiou [26].

Definition 5.3. A multi-valued map map F : J → Pcp(R) is said to be
measurable if for every y ∈ X, the function t → d(y, F (t)) = inf{‖y − x‖ :
x ∈ F (t)} is measurable.

Definition 5.4. A multi-valued map F : J × R → Pcp(R) is said to be
L1-Carathéodory if

(i) t 7→ G(t, x) is measurable for each x ∈ R,

(ii) x 7→ G(t, x) is upper semi-continuous for almost all t ∈ J, and

(iii) for each real number k > 0, there exists a function hk ∈ L1(J, R) such
that

‖G(t, x)‖ = sup{|u| : u ∈ G(t, x)} ≤ hk(t), a.e. t ∈ J

for all x ∈ R with |x| ≤ k.

Then we have the following lemmas due to Lasota and Opial [29].

Lemma 5.1. If dim(X) < ∞ and F : J ×X → Pcp(X) is L1-Carathéodory,

then S1
F (x) 6= ∅ for each x ∈ X.

Lemma 5.2. Let E be a Banach space, F an L1-Carathéodory multi-valued

map with S1
F 6= ∅ and let L : L1(J, R) → C(J,E) be a linear continuous

mapping. Then the operator

L ◦ S1
F : C(J,E) → Pcp,cv(C(J,E))

u 7→ (L ◦ S1
F )(x) := L(S1

F (x))

is a closed graph operator in C(J,E) × C(J,E).

Remark 5.3. It is known that a compact multi-valued map T : X →
Pcp(X) is upper semi-continuous if and only if it is a closed graph operator.

Definition 5.5. A function α ∈ AC(J, R) is called a lower solution of the
PDI (5.10) if for all v1 ∈ L1(J, R) with v1(t) ∈ F (t, α(t)) and v2 ∈ L1(J, R)
with v2(t) ∈ G(t, α(t)) a.e. t ∈ J we have that α′(t) ≤ v1(t) + v2(t) a.e.



Some algebraic fixed point theorems for ... 41

t ∈ J and α(0) ≤ x0. Similarly, a function β ∈ AC(J, R) is called an upper
solution of the PDI (5.10) if for all v1 ∈ L1(J, R) with v1(t) ∈ F (t, β(t))
and v2 ∈ L1(J, R) with v2(t) ∈ G(t, β(t)) a.e. t ∈ J we have that β ′(t) ≥
v1(t) + v2(t) a.e. t ∈ J and β(0) ≥ x0.

We now introduce the following hypotheses in the sequel.

(H1) The multi-function t 7→ F (t, x) is integrally bounded for each x ∈ R.

(H2) G : J × R → Pcp,cv(R) is a Carathéodory multi-function.

(H3) The multi-function F is integrably bounded and there exists a func-
tion ` ∈ L1(J, R) such that

H(G(t, x), G(t, y)) ≤ `(t)|x − y| a.e. t ∈ J,

for all , y ∈ R.

(H4) The multi-valued maps x 7→ S1
F (x) and x 7→ S1

G(x) are right mono-
tone increasing in x ∈ R for almost everywhere t ∈ J .

(H5) The PDI (5.10) has a lower solution a and an upper solution b with
a ≤ b.

Theorem 5.2. Assume that hypotheses (H1)–(H2) and (H4)–(H5) hold. Then

the PDI (5.10) has a solution in [a, b].

Proof. Define an order interval [a, b] in AC(J, R) which does exist in view
of hypothesis (H5). Now the PDI (5.10) is equivalent to the integral inclusion

(5.11) x(t) ∈ x0 +

∫ t

0
F (s, x(s)) ds +

∫ t

0
G(t, x(t)) ds, t ∈ J.

Define two multi-valued operators A,B : [a, b] → AC(J, R) by

(5.12) Ax(t) =

∫ t

0
F (s, x(s)) ds, t ∈ J,

and

(5.13) Bx(t) = x0 +

∫ t

0
G(s, x(s)) ds, t ∈ J.

Clearly, the multi-valued operators A and B are well defined on [a, b] in
view of hypotheses (H1)–(H2). We shall show that A and B satisfy all the
conditions of Theorem 4.3 on [a, b].
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Step I. We show that A and B are compact and convex-valued multi-valued
operators on [a, b]. First, we prove A and B has convex values on [a, b]. Let
u1, u2 ∈ Ax for some x ∈ [a, b]. Then there exist v1 and v2 in S1

F (x) such
that

u1(t) =

∫ t

0
v1(s) ds and u2(t) =

∫ t

0
v2(s) ds

for t ∈ J . Then for any λ ∈ [0, 1], one has

λu1(t) + (1 − λ)u2(t) = λu1(t) =

∫ t

0
v1(s) ds + (1 − λ)u2(t) =

∫ t

0
v2(s) ds

=

∫ t

0
λv1(s) ds +

∫ t

0
(1 − λ)v2(s) ds

=

∫ t

0

[

λv1(s) + (1 − λ)v2(s)
]

ds

=

∫ t

0
v3(s) ds

where v3(t) = λv1(s)+(1−λ)v2(s) ∈ F (t, x(t)) for all t ∈ J , because F (t, x)
is convex for each (t, x) ∈ J × R. Therefore the multi-valued operator A is
convex-valued on [a, b]. Similarly, it can be shown that B is also convex-
valued on [a, b].

Next we show that A has compact values on [a, b]. Now the operator A is
equivalent to the composition L ◦ S1

F of two operators on L1(J, R), where
L : L1(J, R) → X is a continuous operator defined by

(5.14) Lv(t) =

∫ t

0
v(s) ds.

To show that A has compact values, it suffices to prove that the composi-
tion operator L ◦ S1

F has compact values on [a, b]. Let x ∈ [a, b] be arbi-
trary and let {vn} be a sequence in S1

F (x). Then, by the definition of S1
F ,

vn(t) ∈ F (t, x(t)) a.e. for t ∈ J . Since F (t, x(t)) is compact, there is a con-
vergent subsequence of vn(t) (for simplicity denoted also by vn(t)) that con-
verges in measure to some v(t), where v(t) ∈ F (t, x(t)) a.e. for t ∈ J . From
the continuity of L, it follows that Lvn(t) → Lv(t) pointwise on J as n → ∞.
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In order to show that the convergence is uniform, we first show that {Lvn}
is an equi-continuous sequence. Let t, τ ∈ J , then

|Lvn(t) −Lvn(τ)| ≤

∣

∣

∣

∣

∫ t

0
v(s) ds −

∫ τ

0
v(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

|vn(s)| ds

∣

∣

∣

∣

.(5.15)

The function vn ∈ L1(J, R), so the right hand side of (5.15) tends to 0 as
t → τ . Hence, {Lvn} is equi-continuous, and an application of the Arzelá-
Ascoli theorem implies that there is a uniformly convergent subsequence.
We then have Lvnj

→ Lv ∈ (L ◦ S1
G)(x) as j → ∞, and so (L ◦ S1

G)(x) is
compact. Therefore, A is a compact-valued multi-valued operator on [a, b].

Similarly, define a continuous operator K : L1(J, R) → C(J, R) by

(5.16) Kv(t) = x0 +

∫ t

0
v(s) ds.

Then the multi-valued operator B is equivalent to the composition K ◦ S1
G

of two operators so that

Bx(t) = x0 +

∫ t

0
G(s, x(s)) ds

=
(

K ◦ S1
G

)

x(t)

for all t ∈ J . Now applying the arguments similar to the case of the multi-
valued operator A, it can be proved that B is also a compact-valued multi-
valued operator on [a, b].

Step II. Next we show that A and B are right monotone increasing on
[a, b]. Let x, y ∈ [a, b] be such that x ≤ y and let u1 ∈ Ax. Then there
is a v1 ∈ S1

F (x) such that u1(t) =
∫ t

0 v1(s) ds. Since (H4) holds, there is a
v2 ∈ S1

F (y) such that v1 ≤ v2. Therefore,

u1(t) =

∫ t

0
v1(s) ds ≤

∫ t

0
v2(s) ds = u2

for all t ∈ J , where u2 ∈ Ay. This shows that A is right monotone increasing
on [a, b]. Similarly, it is shown that B is also right monotone increasing
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on [a, b]. This in view of hypothesis (H5) and Remark 4.3 further implies
that A and B define the multi-valued operators A,B : [a, b] → Pcp,cv(X)
satisfying

Ax + By ⊂ Pcp,cv([a, b])

for all x, y ∈ [a, b].

Step III. Finally, we show that A and B are respectively compact and
completely continuous multi-valued operators on [a, b].

Let y ∈ A(S) be arbitrary. Then following the arguments as in Step I
it is proved that

‖y‖ ≤ ‖h‖L1 and |y(t) − y(τ)| → 0 as t → τ,

for all t, τ ∈ J . This shows that A(S) is a relatively compact set in ACJ, R).
As a result A is a compact multi-valued operator on [a, b].

From the definition of B it follows that

Bx(t) = x0 +

∫ t

0
G(s, x(s)) ds = x0 +

(

K ◦ S1
G

)

(x)(t)

where K is a continuous linear operator on L1(J, R) into C(J, R) defined by

Kv(t) =

∫ t

0
v(s) ds.

It is clear from Lemma 5.2 that K ◦ S1
G is a closed graph operator. Let

{xn} be a sequence in L1(J, R) such that xn → x∗ as n → ∞. Consider a
sequence {yn} in C(J, R) defined by yn ∈ x0 +K◦S1

G(xn) for each n ∈ N sch
that yn → y∗. But then {yn − x0} ∈ K ◦ S1

G(xn) and (yn − x0) → (y∗ − x0).
Since K ◦ S1

G is a closed graph operator, one has y∗ − x0 ∈ K ◦ S1
G(x∗) and

consequently y∗ ∈ x0 +K◦S1
G(x∗). As a result B is a closed graph operator

and which is further upper semi-continuous in view of Remark 5.1.

Next we show that B is compact on [a, b]. Let S be a subset of [a, b].
Since the cone K is normal in AC(J, R), S is bounded in norm, and so there
is a constant k = ‖a‖ + ‖b‖ such that ‖x‖ ≤ k for all x ∈ S. To conclude, it
is enough to show that

⋃

B(S) is a uniformly bounded and equi-continuous
set in AC(J, R). Let y ∈

⋃

B(S) be arbitrary. Then there is a v ∈ S1
G(x)
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such that

y(t) = x0 +

∫ t

0
v(s) ds, t ∈ J

for some x ∈ S. Now by (H2),

|y(t)| = |x0| +

∣

∣

∣

∣

∫ t

0
v(s) ds

∣

∣

∣

∣

≤ |x0| +

∫ t

0
|v(s)| ds

≤ |x0| +

∫ t

0
‖G(s, x)‖ ds

≤ |x0| +

∫ t

0
hk(s) ds

≤ |x0| + ‖hk‖L1 .

This shows that the set
⋃

B(S) is uniformly bounded in AC(J, R). Similarly,
let t, τ ∈ J . Then we have

|y(t) − y(τ)| =

∣

∣

∣

∣

∫ t

0
v(s) ds −

∫ τ

0
v(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

|v(s)| ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

‖G(s, x)‖ ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

hk(s) ds

∣

∣

∣

∣

≤ |p(t) − p(τ)|.

where p(t) =
∫ t

0 hk(s) ds. Since the function p is continuous on compact
interval J , it is uniformly continuous, and therefore we have

|y(t) − y(τ)| → 0 as t → τ,

for all y ∈
⋃

B(S). Hence
⋃

B(S) is an equi-continuous set in AC(J, R).
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Thus
⋃

B(S) is a compact subset of AC(J, R) in view of Arzelá-Ascoli the-
orem. Therefore B is a completely continuous multi-valued operator on
[a, b].

Thus A and B satisfy all the conditions of Theorem 4.3 and hence an
application of it yields that the operator inclusion x ∈ Ax+Bx has a solution
in [a, b]. Consequently, the PDI (4.2) has a solution in [a, b]. This completes
the proof.

Theorem 5.3. Assume that hypotheses (H1) and (H3)–(H5) hold. Then the

PDI (5.10) has a solution in [a, b].

Proof. Define an order interval [a, b] in AC(J, R) and define two multi-
valued operators A and B on [a, b] by (5.12) and (5.13) respectively. Then
proceeding as in the proof of Theorem 5.1 it is proved that A and B are right
monotone increasing and compact-valued multi-valued operators satisfying

Ax + By ∈ Pcp([a, b]).

It is clear that the operator A is totally bounded on [a, b]. To conclude
we simply show that B is Lipschitz with a Lipschitz constant k satisfying
‖`‖L1 < 1. Let x, y ∈ [a, b] be arbitrary and let u1 ∈ B(x). Then u1 ∈ [a, b]
and

u1(t) = x0 +

∫ t

0
v1(s) ds

for some v1 ∈ S1
F (x). Since

H(G(t, x(t)), G(t, y(t)) ≤ `(t)|x(t) − y(t)|,

one obtains that there exists a w ∈ G(t, y(t)) such that

|v1(t) − w| ≤ `(t)|x(t) − y(t)|.

Thus the multi-valued operator U defined by U(t) = S1
G(y)(t)∩K(t), where

K(t) = {w : |v1(t) − w| ≤ `(t)|x(t) − y(t)|}

has nonempty values and is measurable. Let v2 be a measurable selection
for U , which exists by Kuratowskii-Ryll-Nardzewski’s selection theorem.
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See Hu and Papageorgiou [26]. Then v2 ∈ G(t, y(t)) and

|v1(t) − v2(t)| ≤ `(t)|x(t) − y(t)| a.e. t ∈ J.

Define

u2(t) = x0 +

∫ t

0
v2(s) ds.

It follows that u2 ∈ B(y) and

|u1(t) − u2(t)| ≤

∣

∣

∣

∣

∫ t

0
v1(s) ds −

∫ t

0
v2(s) ds

∣

∣

∣

∣

≤

∫ t

0
|v1(s) − v2(s)| ds

≤

∫ t

0
`(s)|x(s) − y(s)| ds

≤ ‖`‖L1‖x − y‖.

Taking the supremum over t, we obtain

‖u1 − u2‖ ≤ ‖`‖L1‖x − y‖.

From this and the analogous inequality obtained by interchanging the roles
of x and y we get that

H(B(x), B(y)) ≤ ‖`‖L1‖x − y‖,

for all x, y ∈ [a, b]. This shows that B is a multi-valued contraction, since
‖`‖L1 < 1. Now the desired conclusion follows by applying of Theorem 4.12.
This completes the proof.

6. Differential inclusions in Banach algebras

Given a closed and bounded interval J = [0, 1] in R consider the first order
differential inclusion (DI)

(6.1)











(

x(t)

f(t, x(t))

)′

∈ G(t, x(t)) a.e. t ∈ J

x(0) = x0 ∈ R
+

where f : J × R → R \ {0} is continuous and G : J × R → Pf (R).
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By a solution of the DI (6.1) we mean a function x ∈ AC(J, R) such that

x′ ∈ L1(J, R) and
(

x(t)
f(t,x(t))

)′
= v(t) for all t ∈ J and x(0) = x0 ∈ R

+ for

some v ∈ L1(J, R) with v(t) ∈ G(t, x(t)), a.e. t ∈ J .

The DI (6.1) has been studied in Dhage [14] for the existence theorem
under the Carathéodory condition of the multi-function G. Again the special
case of (6.1) in the form of differential equation (DE)

(6.2)











(

x(t)

f(t, x(t))

)′

= g(t, x(t)) a.e. t ∈ J

x(0) = x0 ∈ R

has been discussed in Dhage and Regan [18] for the existence results. In
this section, we prove the existence results for the DI (6.1) under a weaker
Carathéodory condition of the multi-function G. Here we do not require
any continuity condition of the multi-function G.

We need the following definition in the sequel.

Definition 6.1. A function a ∈ AC(J, R) is called a lower solution if
(

a(t)
f(t,a(t))

)′
≤ v(t) for all t ∈ J and a(0) ≤ x0 ∈ R

+ for all v ∈ L1(J, R)

with v(t) ∈ G(t, a(t)), a.e. t ∈ J . Similarly, a function b ∈ AC(J, R) is
called an upper solution of the DI (6.1) if the above inequalities hold with
reverse sign.

We consider the following set of assumptions:

(B1) f defines the mappings f : J × R → R
+ \ {0}.

(B2) f(t, x) is monotone increasing in x almost everywhere for t ∈ J .

(B3) G defines the multi-valued mapping G : J × R → Pcp(R
+).

(B4) The multi-function G(t, x) is integrably bounded.

(B3) The multi-valued map x 7→ S1
G(x) is right monotone increasing in

x ∈ R almost everywhere for t ∈ J .

(B5) The DI (6.1) has a lower solution a and an upper solution b on J
with a ≤ b.

Theorem 6.1. Assume that hypotheses (B1)–(B5) hold. Then the DI (6.1)
has at least a solution in [a, b].
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Proof. Let X = AC(J, R) and define a norm ‖ · ‖ and an order relation ≤
in X by (5.2) and (5.3) respectively. Then X is an ordered Banach algebra
with respect to the multiplication “ · ” defined by (x.y)(t) = x(t)y(t) for
t ∈ J . Consider the order interval [a, b] in X which does exists in view of
hypothesis (B5). Define two operators A : [a, b] → X and B : [a, b] → Pp(X)
by

(6.3) Ax(t) = {f(t, x(t))}, t ∈ J

and

(6.4) Bx(t) =
{

u(t) : u(t) =
x0

f(0, x0)
+

∫ t

o

v(s) ds, v ∈ S1
G(x)

}

, t ∈ J.

We shall show that the mappings A and B satisfy all the conditions of
Theorem 4.5 on [a, b].

Step I. Next we show that AxBy is a convex subset of [a, b] for each x, y ∈ S.
Let x, y ∈ S be arbitrary. Then there are u, v ∈ SG(x) such that

w = [f(t, x(t))]

(

x0

f(0, x0)
+

∫ t

0
u(s) ds

)

and

z = [f(t, x(t))]

(

x0

f(0, x0)
+

∫ t

0
v(s) ds

)

.

Now for any λ ∈ [0, 1],

λw + (1 − λ)z = λ[f(t, x(t))]

(

x0

f(0, x0)
+

∫ t

0
v(s) ds

)

+ (1 − λ)[f(t, x(t))]

(

x0

f(0, x0)
+

∫ t

0
v(s) ds

)

= [f(t, x(t))]

(

λ
x0

f(0, x0)
+

∫ t

0
λv(s) ds

)

+ [f(t, x(t))]

(

(1 − λ)
x0

f(0, x0)
+

∫ t

0
(1 − λ)v(s) ds

)

= [f(t, x(t))]

(

x0

f(0, x0)
+

∫ t

0
[λu(s) + (1 − λ)v(s)] ds

)

.
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Since G(t, y(t)) is convex, λz + (1 − λ)w ∈ G(t, x(t)) for all t ∈ J and so
λz + (1 − λ)w ∈ S1

G(x). As a result λz + (1 − λ)w ∈ AxBy. Hence AxBy is
a convex subset of X.

Step II. Next we show that A and B are monotone increasing and AxBy ⊂
[a, b] for all x, y ∈ [a, b]. It follows from hypothesis (B1) that A and B define
the mappings A : [a, b] → K and B : [a, b] → Pcp(K). Let x, y ∈ [a, b] be
such that x ≤ y. Then by (B3),

Ax(t) = f(t, x(t)) ≤ f(t, x(t)) = Ay(t)

for all t ∈ J . Hence Ax ≤ Ay. Similarly, let u1 ∈ Bx. Then there is a
v1 ∈ S1

G(x) such that

u1(t) =
x0

f(0, x0)
+

∫ t

0
v1(s) ds, t ∈ J.

Since S1
G is right monotone increasing in R, we have S1

G(x) ≤ S1
G(y), and so

there is a v2 ∈ S1
G(y) such that v1 ≤ v2 on J . Therefore we have

u1(t) =
x0

f(0, x0)
+

∫ t

0
v1(s) ds

≤
x0

f(0, x0)
+

∫ t

0
v1(s) ds

= u2(t)

for all t ∈ J , where u2 ∈ By. Thus A and B are right monotone increasing

on [a, b]. By (B5), a
d
≤ AaBa and AbBb

i
≤ b. Since the cone K in X is

positive, an application of Remark 4.3 yields that AxBy ∈ Pcp,cv([a, b]) for
all x, y ∈ [a, b].

Step III. Next we show that A is completely continuous on [a, b]. Now
the cone K in X is normal, so the order interval [a, b] is norm-bounded.
Hence there exists a constant r > 0 such that ‖x‖ ≤ r for all x ∈ [a, b].
As f is continuous on compact J × [−r, r], it attains its maximum, say M .
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Therefore for any subset S of [a, b] we have

‖A(S)‖ = sup{‖Ax‖ : x ∈ S}

= sup
{

sup
t∈J

|f(t, x(t))| : x ∈ S
}

≤ sup
{

sup
t∈J

|f(t, x)| : x ∈ [−r, r]
}

≤ M.

This shows that A(S) is a uniformly bounded subset of X.

Next we note that the function f(t, x) is uniformly continuous on
[0, 1] × [−r, r]. Therefore for any t, τ ∈ [0, 1] we have

|f(t, x) − f(τ, x)| → 0 as t → τ

for all x ∈ [−r, r]. Similarly for any x, y ∈ [−r, r]

|f(t, x) − f(t, y)| → 0 as x → y

for all t ∈ [0, 1]. Hence any t, τ ∈ [0, 1] and for any x ∈ S one has

|Ax(t) − Ax(τ)| = |f(t, x(t)) − f(τ, x(τ))|

≤ |f(t, x(t)) − f(τ, x(t)| + |f(τ, x(t)) − f(τ, x(τ))|

→ 0 as t → τ.

This shows that A(S) is an equi-continuous set in X. Now an application of
the Arzela-Ascoli theorem yields that A is a completely continuous operator
on [a, b].

Step IV. Finally, we show that B is a compact multi-valued operator on
[a, b]. To finish, we shall show that B(S) is uniformly bounded and equi-
continuous set in X for any subset S of [a, b]. Let y ∈ B(S) be arbitrary.
Then there is a v ∈ S1

G(x) such that

y(t) =
x0

f(0, x0)
+

∫ t

0
v(s) ds
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for some x ∈ S. By hypothesis (B2) one has

|y(t)| =
∣

∣

∣

x0

f(0, x0)

∣

∣

∣
+

∫ t

0
|v(s)| ds

≤
∣

∣

∣

x0

f(0, x0)

∣

∣

∣
+

∫ t

0
|h(s)| ds

≤
∣

∣

∣

x0

f(0, x0)

∣

∣

∣
+ ‖h‖L1 .

Taking the supremum over t,

‖y‖ ≤
∣

∣

∣

x0

f(0, x0)

∣

∣

∣
+ ‖h‖L1 ,

which shows that B(S) is a uniformly bounded set in X. Similarly, let
t, τ ∈ J . Then for any y ∈ B(S),

|y(t) − y(τ)| =

∣

∣

∣

∣

∫ t

0
v(s) ds −

∫ τ

0
v(s) ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

|v(s)| ds

∣

∣

∣

∣

≤

∣

∣

∣

∣

∫ t

τ

h(s) ds

∣

∣

∣

∣

≤ |p(t) − p(τ)|

where p(t) =
∫ t

0 h(s) ds. Since the function p is continuous on a compact
interval J , it is uniformly continuous, and therefore we have

|y(t) − y(τ)| → 0 as t → τ,

for all y ∈ B(S). Hence B(S) is an equi-continuous set in X. Thus B is
totally bounded in view of the Arzela-Ascoli theorem. Now an application of
Corollary 4.16 yields that the operator inclusion x ∈ AxBx and consequently
the DI (6.1) has a solution in [a, b]. This completes the proof.
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7. Remarks and conclusion

In this paper, we have been able to extend the fixed point principles and the
generalized iteration method of single-valued mappings given in Heikkila and
Lakshmikantham [25] to monotone multi-valued mappings in ordered spaces.
Unlike Heikkilä and Lakshmikantham [25] the results proved in this paper
are only of existential nature and do not provide any information about the
qualitative behavior of the fixed points. However, in a forthcoming paper
we shall deal with discontinuous strictly monotone multi-valued mappings
and prove the existence of a greatest and a least fixed point in the given
order intervals in ordered Banach spaces. Finally, we also mention that
the results presented here have a wide range of applications to a variety of
discontinuous differential inclusions for proving the existence of solution.
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