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and certain monotonicity conditions.

Keywords: fractional differential inclusion, left-sided mixed Riemann-Li-
ouville integral, Caputo fractional order derivative, upper solution, lower
solution, extremal solution, fixed point, Banach algebras, not instantaneous
impulses.

2010 Mathematics Subject Classification: 26A33, 34A37, 34D10.

http://dx.doi.org/10.7151/dmdico.1184


156 S. Abbas, M. Benchohra and M.A. Darwish

1. Introduction

The theory of fractional order differential equations and inclusions represents a
powerful tool in applied mathematics to study a lot of problems from different
fields of science and engineering, with many break-through results found in math-
ematical physics, finance, hydrology, biophysics, thermodynamics, control theory,
statistical mechanics, astrophysics, cosmology and bioengineering. Recently, nu-
merous research papers and monographs have appeared devoted to fractional
differential equations and inclusions, for example see the monographs of Abbas
et al. [8, 9], Kilbas et al. [24], the papers of Abbas et al. [1, 7, 10, 11], Darwish
et al. [14, 15, 16], Diethelm [19], Kilbas and Marzan [23], Vityuk et al. [28, 29]
and the references therein.

The method of upper and lower solutions has been successfully applied to
study the existence of solutions for ordinary and partial differential equations
and inclusions. See the monographs by Benchohra et al. [12], Heikkila and
Lakshmikantham [20], Ladde et al. [25], the papers of Abbas and Benchohra
[2, 3, 4, 5], Benchohra and Ntouyas [13] and the references therein.

Recently, in [7], Abbas et al. used the upper and lower solutions method
to investigate the existence of solutions and extremal solutions to the following
class of discontinuous fractional partial differential inclusions at fixed moments
of impulse of the form

(1)



















cDr
θk

(

u(x,y)
f(x,y,u(x,y))

)

∈ G(x, y, u(x, y)); (x, y) ∈ Jk; k = 0, . . . ,m,

u(x+k , y) = u(x−k , y) + Īk(u(x
−

k , y)); y ∈ [0, b], k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b], ϕ(0) = ψ(0),

where a, b > 0, J0 = [0, x1] × [0, b], Jk := (xk, xk+1] × [0, b]; k = 1, . . . ,m, θk =
(xk, 0); k = 0, . . . ,m, 0 = x0 < x1 < · · · < xm < xm+1 = a, cDr

θk
is the fractional

Caputo derivative of order r = (r1, r2) ∈ (0, 1] × (0, 1], G : J × R → P(R),
J = [0, a] × [0, b], P(R) is the class of all nonempty subsets of R, f : J × R →
R
∗, Īk : R → R; k = 1, . . . ,m, are given continuous functions, R

∗ = R\{0},
ϕ : [0, a] → R and ψ : [0, b] → R are given absolutely continuous functions.

In pharmacotherapy, the above instantaneous impulses can not describe the
certain dynamics of evolution processes. For example, one considers the hemody-
namic equilibrium of a person, the introduction of the drugs in the bloodstream
and the consequent absorption for the body are gradual and continuous process.
From the viewpoint of general theories, in [6, 21, 27] the authors studied some
new classes of differential equations with not instantaneous impulses.

In this paper, we use the method of upper and lower solutions for the existence
of solutions of the following partial discontinuous fractional differential inclusions
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with not instantaneous impulses

(2)







































cDr
θk

(

u(x,y)
f(x,y,u(x,y))

)

∈ G(x, y, u(x, y)); if (x, y) ∈ Ik, k = 0, . . . ,m,

u(x, y) = gk(x, y, u(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

where a, b > 0, I0 = [0, x1]× [0, b], Ik := (sk, xk+1]× [0, b], Jk := (xk, sk] × [0, b],
k = 1, . . . ,m, θk = (sk, 0); k = 0, . . . ,m, r = (r1, r2) ∈ (0, 1]×(0, 1], 0 = s0 < x1 ≤
s1 ≤ x2 < · · · < sm−1 ≤ xm ≤ sm ≤ xm+1 = a, G : Ik × R → P(R); k = 0, . . . ,m
is a compact valued multi-valued map, f : Ik × R → R

∗, gk : Jk × R → R are
given continuous functions, and ϕ,ψ are as in problem (1). Our approach in
this paper is based on a combination of a fixed-point theorem for multivalued
maps in Banach Algebras due to Dhage [17] with the concept of upper and lower
solutions. Next, we study the existence of extremal solutions under Lipschitz,
Carathéodory and certain monotonicity conditions.

This paper initiates the application of upper and lower solutions for such
class of problems.

2. Preliminaries

Let J := [0, a]×[0, b]. Denote by L1(J) the space of Lebesgue-integrable functions
u : J → R with the norm

‖u‖L1 =

∫ a

0

∫ b

0
|u(x, y)|dydx.

By L∞(J) we denote the Banach space of measurable functions u : J → R which
are essentially bounded, equipped with the norm

‖u‖L∞ = inf{c > 0 : |u(x, y)| ≤ c, a.e. (x, y) ∈ J}.

As usual, by AC(J) we denote the space of absolutely continuous functions from
J into R, and C := C(J) is the Banach space of all continuous functions from J

into R with the supremum (uniform) norm ‖ · ‖∞.

In all what follows consider the Banach space

PC :=

{

u : J → R : u ∈ C
(

I0 ∪
m
⋃

k=1

(xk, xk+1)× [0, b]
)

;

(x−k , y) = u(xk, y), y ∈ [0, b]

}

,
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with the norm
‖u‖PC = sup

(x,y)∈J
|u(x, y)|.

Define a multiplication “ · ” by

(u · v)(x, y) = u(x, y)v(x, y) for each (x, y) ∈ J.

Then PC is a Banach algebra with the above norm and multiplication.

Let (X, d) be a metric space induced from the normed space (X, ‖ · ‖).
Denote Pcl(X) = {Y ∈ P(X) : Y closed}, Pbd(X) = {Y ∈ P(X) : Y bounded},
Pcp(X) = {Y ∈ P(X) : Y compact} and Pcp,cv(X) = {Y ∈ P(X) : Y compact
and convex}.

Definition 2.1. A multivalued map T : X → P(X) is convex (closed) valued if
T (x) is convex (closed) for all x ∈ X, T is called upper semi-continuous (u.s.c.)
on X if for each x0 ∈ X, the set T (x0) is a nonempty closed subset of X, and if
for each open set N of X containing T (x0), there exists an open neighborhood
N0 of x0 such that T (N0) ⊆ N. T is lower semi-continuous (l.s.c.) if the set
{t ∈ X : T (t) ∩ B 6= ∅} is open for any open set B in X. T is said to be
completely continuous if T (B) is relatively compact for every B ∈ Pbd(X). T
has a fixed point if there is x ∈ X such that x ∈ T (x). The fixed point set of
the multivalued operator T will be denoted by Fix(T ). The graph of T will be
denoted by Graph(T ) := {(u, v) ∈ X ×X : v ∈ T (u)}.

Consider Hd : P(X) × P(X) → [0,∞) ∪ {∞} given by

Hd(A,B) = max

{

sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}

,

where d(A, b) = infa∈A d(a, b), d(a,B) = infb∈B d(a, b). Then (Pbd,cl(X),Hd) is a
Hausdorff metric space.

Definition 2.2. For each u ∈ C, define the set of selections of the multivalued
F ◦ u : J × C → P(C) by

SF◦u =
{

v :∈ L1(J) : v(x, y) ∈ F (x, y, u(x, y)); (x, y) ∈ J
}

.

Definition 2.3. A multivalued map G : J → Pcl(R), is said to be measurable if
for every v ∈ R the function (x, y) → d(v,G(x, y)) = inf{|v − z| : z ∈ G(x, y)} is
measurable.

Definition 2.4. A multivalued map G : J×R → P(R) is said to be Carathéodory
if

(i) (x, y) 7−→ G(x, y, u) is measurable for each u ∈ R;
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(ii) u 7−→ G(x, y, u) is upper semicontinuous for almost all (x, y) ∈ J.

G is said to be L1-Carathéodory if (i), (ii) are satisfied and the following condition
holds.

(iii) For each c > 0, there exists a positive function σc ∈ L1(J) such that

‖G(x, y, u)‖P = sup {|g| : g ∈ G(x, y, u)}

≤ σc(x, y) for all |u| ≤ c and for a.e. (x, y) ∈ J.

Lemma 2.5 [22]. Let G be a completely continuous multivalued map with non-

empty compact values, then G is u.s.c. if and only if G has a closed graph (i.e.,
un → u, wn → w, wn ∈ G(un) imply w ∈ G(u)).

Lemma 2.6 [26]. Let X be a Banach space. Let G : J × X → P(X) be an

L1-Carathéodory multivalued mapping with SG◦u 6= ∅, and let L be a linear con-

tinuous mapping from L1(J,X) into C(J,X), then the operator

L ◦ SG◦(·) : C(J,X) → Pcp,cv(C(J,X)),

u 7→ L(SG◦u),

is a closed graph operator in C(J,X)× C(J,X).

Let us recall now some basic definitions and facts on the theory of Banach
algebras. Let X be a Banach algebra.

Definition 2.7. An operator T : X → X is called compact if T (S) is a relatively
compact subset of X for any S ⊂ X. Similarly T : X → X is called totally

bounded if T maps a bounded subset of X into the relatively compact subset of
X. Finally T : X → X is called completely continuous operator if it is continuous
and totally bounded operator on X.

It is clear that every compact operator is totally bounded, but the converse may
not be true.

A non-empty closed set K in a Banach algebra X is called a cone if

(i) K +K ⊆ K,

(ii) λK ⊆ K for λ ∈ R, λ ≥ 0 and

(iii) {−K} ∩K = 0, where 0 is the zero element of X.

The cone K is called to be positive if

(iv) K ◦K ⊆ K, where “◦” is a multiplication composition in X.



160 S. Abbas, M. Benchohra and M.A. Darwish

We introduce an order relation ≤, in X as follows. Let u, v ∈ X. Then u ≤ v

if and only if v − u ∈ K. A cone K is called to be normal if the norm ‖ · ‖ is
monotone increasing on K. It is known that if the cone K is normal in X, then
every order-bounded set in X is norm-bounded.

Now, we introduce notations and definitions concerning to partial fractional
calculus theory.

Definition 2.8 [8, 28]. Let θ = (0, 0), r1, r2 ∈ (0,∞) and r = (r1, r2). For
f ∈ L1(J), the expression

(Irθf)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1f(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r, where Γ(·) is
the (Euler’s) gamma function defined by Γ(ξ) =

∫

∞

0 tξ−1e−tdt; ξ > 0.

In particular,

(Iθθf)(x, y) = f(x, y), (Iσθ f)(x, y) =

∫ x

0

∫ y

0
f(s, t)dtds; for almost all (x, y) ∈ J,

where σ = (1, 1).

For instance, Irθf exists for all r1, r2 ∈ (0,∞), when f ∈ L1(J). Note also
that when u ∈ C, then (Irθf) ∈ C, moreover

(Irθf)(x, 0) = (Irθf)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.9. Let λ, ω ∈ (−1, 0) ∪ (0,∞) and r = (r1, r2) ∈ (0,∞) × (0,∞),
then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 ; for almost all (x, y) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
xy := ∂2

∂x∂y
,

the mixed second order partial derivative.

Definition 2.10 [8, 28]. Let r ∈ (0, 1] × (0, 1] and f ∈ L1(J). The Caputo
fractional-order derivative of order r of f is defined by the expression

cDr
θf(x, y) = (I1−r

θ D2
xyf)(x, y) =

1

Γ(1− r1)Γ(1− r2)

∫ x

0

∫ y

0

D2
stf(s, t)

(x− s)r1(y − t)r2
dtds.

The case σ = (1, 1) is included and we have

(cDσ
θ f)(x, y) = (D2

xyf)(x, y); for almost all (x, y) ∈ J.
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Example 2.11. Let λ, ω ∈ (−1, 0)∪ (0,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

cDr
θx

λyω =
Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 ; for almost all (x, y) ∈ J.

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = (a1, a]×[0, b], r1, r2 > 0 and r = (r1, r2).
For u ∈ L1(Jz), the expression

(Irz+u)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+
1

∫ y

0
(x− τ)r1−1(y − ξ)r2−1u(τ, ξ)dξdτ,

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.12 [8, 28]. For u ∈ L1(Jz) whereD
2
txu is Lebesgue integrable on Jz,

the Caputo fractional order derivative of order r of u is defined by the expression

(cDr
z+u)(x, y) = (I1−r

z+
D2

xyu)(x, y).

Set

µ(x, y) =
ϕ(x)

f(x, 0, ϕ(x))
+

ψ(y)

f(0, y, ψ(y))
−

ϕ(0)

f(0, 0, ϕ(0))
.

Lemma 2.13 [1, 8]. Let g ∈ SG◦u. Then the Cauchy problem

(3)



























cDr
θk

(

u(x,y)
f(x,y,u(x,y))

)

= g(x, y); if (x, y) ∈ J,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

has the following unique solution

(4) u(x, y) = f(x, y, u(x, y))
(

µ(x, y) + (Irθkg)(x, y)
)

.

As a consequence of the previous lemma and Lemma 3.4 in [1], we have the
following Lemma

Lemma 2.14. A function u ∈ PC is a solution of problem (2) if and only if there

exists g ∈ SG◦u such that u is a solution of the fractional integral equations
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

































































u(x, y) = f(x, y, u(x, y))[µ(x, y)

+
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

; if (x, y) ∈ I0,

u(x, y) = f(x, y, u(x, y))
[

ϕ(x)
f(x,0,ϕ(x)) +

gk(sk,y,u(x
−

k
,y))

f(sk,y,u(sk,y))
−

gk(sk,0,u(x
−

k
,0))

f(sk,0,u(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

; if (x, y) ∈ Ik, k = 1, . . . ,m,

u(x, y) = gk(x, y, u(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a], u(0, y) = ψ(y); y ∈ [0, b] and ϕ(0) = ψ(0).

3. Upper and lower solutions method result

Definition 3.1. A function w ∈ PC such that its mixed derivative D2
xy exists

and is integrable on Ik; k = 0, . . . ,m, is said to be a solution of the problem (2)
if and only if there exists g ∈ SG◦w such that

(i) the function (x, y) 7→ w(x,y)
f(x,y,w(x,y)) is absolutely continuous, and

(ii) w satisfies cDr
θk

( w(x,y)
f(x,y,w(x,y))

)

= g(x, y) on Ik and the conditions

{

w(x, y) = gk(x, y, w(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

w(x, 0) = ϕ(x); x ∈ [0, a], w(0, y) = ψ(y); y ∈ [0, b], ϕ(0) = ψ(0),

are satisfied.

Definition 3.2. A function v ∈ PC such that its mixed derivative D2
xy exists

and is integrable on Ik; k = 0, . . . ,m, is said to be a lower solution of the problem
(2) if and only if there exists g1 ∈ SG◦v such that

(i) the function (x, y) 7→ v(x,y)
f(x,y,v(x,y)) is absolutely continuous, and

(ii) w satisfies cDr
θk

(

v(x,y)
f(x,y,v(x,y))

)

≤ g1(x, y) on Ik and the conditions

{

v(x, y) ≤ gk(x, y, v(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

v(x, 0) ≤ ϕ(x); x ∈ [0, a], v(0, y) ≤ ψ(y); y ∈ [0, b], ϕ(0) ≤ ψ(0),

are satisfied.
A function w ∈ PC such that its mixed derivative D2

xy exists and is integrable
on Ik; k = 0, . . . ,m, is said to be an upper solution of the problem (2) if and only
if there exists g2 ∈ SG◦w such that
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(i) the function (x, y) 7→ w(x,y)
f(x,y,w(x,y)) is absolutely continuous, and

(ii) w satisfies cDr
θk

(

w(x,y)
f(x,y,w(x,y))

)

≥ g2(x, y) on Ik and the conditions

{

w(x, y) ≥ gk(x, y, w(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

w(x, 0) ≥ ϕ(x); x ∈ [0, a], w(0, y) ≥ ψ(y); y ∈ [0, b], ϕ(0) ≥ ψ(0),

are satisfied.

We use the following fixed point theorem by Dhage [17] for proving the existence
of solutions for our problem.

Theorem 3.3. Let X be a Banach algebra, A : X → X be an operator and

B : X → P(X) be a multivalued operator. Assume that A and B satisfy

(a) A is Lipschitz with a Lipschitz constant α,

(b) B is compact and upper semicontinuous, and

(c) 2Mα < 1, where M = ‖B(X)‖ := sup
u∈X

‖B(u)‖P .

Then either

(i) the operator inclusion u ∈ AuBu has a solution, or

(ii) the set {u ∈ X : λu ∈ AuBu; λ > 1} is unbounded.

Consider the following modified problem

(5)







































cDr
θk

(

u(x,y)
f(x,y,u(x,y))

)

∈ G(x, y, (hu)(x, y)); (x, y) ∈ Ik; k = 0, . . . ,m,

u(x, y) = gk(x, y, (hu)(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

where h : PC → PC is the truncation operator defined by

(hu)(x, y) =











v(x, y), u(x, y) < v(x, y)

u(x, y), v(x, y) ≤ u(x, y) ≤ w(x, y)

w(x, y), w(x, y) < u(x, y).
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A solution to (5) is a fixed point of the operator N : PC −→ P(PC) defined by:

(Nu)(x, y) =























































































z ∈ PC :























































































z(x, y) = f(x, y, u(x, y))

×
[

µ(x, y) +
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

;

if (x, y) ∈ I0,

z(x, y) = f(x, y, u(x, y))

×
[

ϕ(x)
f(x,0,ϕ(x)) +

gk(sk,y,(hu)(x
−

k
,y))

f(sk ,y,u(sk,y))
−

gk(sk ,0,(hu)(x
−

k
,0))

f(sk ,0,u(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

;

if (x, y) ∈ Ik, k = 1, . . . ,m,

z(x, y) = gk(x, y, (hu)(x
−

k , y)) ;

if (x, y) ∈ Jk, k = 1, . . . ,m,























































































where

g ∈ S̃1
G◦h◦u =

{

g ∈ S1
G◦h◦u : g(x, y) ≥ g1(x, y) on A1,

and g(x, y) ≤ g2(x, y) on A2

}

,

A1 = {(x, y) ∈ Ik; k = 0, . . . ,m : u(x, y) < v(x, y) ≤ w(x, y)},

A2 = {(x, y) ∈ Ik; k = 0, . . . ,m : v(x, y) ≤ w(x, y) < u(x, y)},

and
S1
G◦h◦u =

{

g ∈ L1(Ik) : g(x, y) ∈ G(x, y, (hu)(x, y)),

for (x, y) ∈ Ik; k = 0, . . . ,m
}

.

The following hypotheses will be used in the sequel.

(H1) There exists a strictly positive function α ∈ C such that for each u, u ∈ R,

we have

|f(x, y, u)− f(x, y, u)| ≤ α(x, y)|u − u|; (x, y) ∈ Ik; k = 0, . . . ,m,

(H2) The multifunction G is L1-Carathéodory, and G(x, y, u) has compact and
convex values for each (x, y, u) ∈ Ik × R; k = 0, . . . ,m,

(H3) There exist v and w ∈ PC, lower and upper solutions for the problem (2)
such that v(x, y) ≤ w(x, y) for each (x, y) ∈ J,

(H4) For each (x, y) ∈ Jk; k = 1, . . . ,m we have
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v(x, y)

|f(sk, y, v(x, y))|
≤ min

u∈[v,w]

gk(x, y, h(u)(x
−

k , y))

|f(sk, y, u(x, y))|

≤ max
u∈[v,w]

gk(x, y, h(u)(x
−

k , y))

|f(sk, y, u(x, y))|
≤

w(x, y)

|f(sk, y, w(x, y))|
.

Remark 3.4. (A) For each u ∈ PC, the set S̃G◦h◦u is nonempty. In fact, (H2)
implies that there exists g3 ∈ SG◦h◦u. So we set

g = g1χA1
+ g2χA2

+ g3χA3
,

where χAi
is the characteristic function of Ai; i = 1, 2, 3 and

A3 = {(x, y) ∈ J : v(x, y) ≤ u(x, y) ≤ w(x, y)}.

Then, by decomposability, g ∈ S̃G◦h◦u.

(B) By the definition of h it is clear that G(·, ·, (hu)(·, ·)) is an L1-Carathéodory
multi-valued map with compact convex values and there exists φ ∈ L∞(J,R+)
such that

‖G(x, y, (hu)(x, y))‖P ≤ φ(x, y); for each u ∈ PC and (x, y) ∈ Ik; k = 0, . . . ,m.

(C) By the definition of h and from (H4), for each (x, y) ∈ Jk; k = 1, . . . ,m, we
have

v(x, y)

|f(sk, y, v(x, y))|
≤
gk(x, y, h(u)(x

−

k , y))

|f(sk, y, u(x, y))|
≤

w(x, y)

|f(sk, y, w(x, y))|
.

Set

β := max
k=1,...,m

max
(x,y)∈Jk

(
∣

∣

∣

∣

v(x, y)

f(sk, y, v(x, y))

∣

∣

∣

∣

,

∣

∣

∣

∣

w(x, y)

f(sk, y, w(x, y))

∣

∣

∣

∣

)

.

Theorem 3.5. Assume that hypotheses (H1)–(H4) hold. If

(6) M := ‖α‖∞

[

‖µ‖∞ + 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)

]

<
1

2
,

then the problem (2) has at least one solution u such that

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ J.
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Proof. From Lemma 2.14 and the fact that h(u) = u for all v ≤ u ≤ w, the
problem of finding the solutions of (5) is reduced to finding the solutions of the
inclusion u ∈ N(u). Let A : PC → PC be the operator defined by

(7)







(Au)(x, y) = f(x, y, u(x, y)); if (x, y) ∈ Ik, k = 0, . . . ,m,

(Au)(x, y) = f(sk, y, u(sk, y)); if (x, y) ∈ Jk, k = 1, . . . ,m,

and B : PC → Pcp,cv(PC) be the multivalued operator defined by

(8) (Bu)(x, y) =



























































































z ∈ PC :



























































































z(x, y) = µ(x, y)

+
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds;

if (x, y) ∈ I0,

z(x, y) = ϕ(x)
f(x,0,ϕ(x))

+
gk(sk,y,(hu)(x

−

k
,y))

f(sk,y,u(sk,y))
−

gk(sk,0,(hu)(x
−

k
,0))

f(sk,0,u(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds;

if (x, y) ∈ Ik, k = 1, . . . ,m,

z(x, y) =
gk(x,y,(hu)(x

−

k
,y))

f(sk,y,u(sk,y))
;

if (x, y) ∈ Jk, k = 1, . . . ,m,



























































































where g ∈ S̃1
G◦h◦u. Clearly (Nu)(x, y) = (Au)(x, y)(Bu)(x, y); (x, y) ∈ J. Solving

the problem (5) is equivalent to solving the operator inclusion

(9) u(x, y) ∈ (Au)(x, y)(Bu)(x, y); (x, y) ∈ J.

We show that operators A and B satisfy all the assumptions of Theorem 3.3.
The proof will be given in several steps and claims.

Step 1. A is a Lipschitz operator.

Let u1, u2 ∈ PC. Then by (H1), for each (x, y) ∈ J, we have

|(Au1)(x, y)− (Au2)(x, y)| = |f(x, y, u1(x, y))− f(x, y, u2(x, y))|

≤ α(x, y)|u1(x, y)− u2(x, y)| ≤ ‖α‖∞‖u1 − u2‖PC .

Thus,

‖Au1 −Au2‖PC ≤ ‖α‖∞‖u1 − u2‖PC .

Hence, A is a Lipschitz with a Lipschitz constant ‖α‖∞.
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Step 2. B is compact and upper semicontinuous with convex values on PC.

The proof of this step will be given in several claims.

Claim 1. B has convex values on PC.

Let z1, z2 ∈ B(u). Then there exist g01, g02 ∈ S̃1
G◦h◦u such that for each (x, y) ∈ I0

we have

zl(x, y) = µ(x, y) +

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g0l(s, t) dt ds; l ∈ {1, 2},

and for each (x, y) ∈ Ik; k = 1, . . . ,m, we have

zl(x, y) =
ϕ(x)

f(x, 0, ϕ(x))
+
gk(sk, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
−
gk(sk, 0, (hu)(x

−

k , 0))

f(sk, 0, u(sk, 0))

+

∫ x

sk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g0l(s, t)dtds; l ∈ {1, 2},

and for each (x, y) ∈ Jk; k = 1, . . . ,m, we have

zl(x, y) =
gk(x, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
; l ∈ {1, 2}.

Let 0 ≤ λ ≤ 1. Then, for each (x, y) ∈ I0, we have

[λz1 + (1− λ)z2](x, y) = µ(x, y)

+

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
[λg01 + (1− λ)g02](s, t) dt ds,

and, for each (x, y) ∈ Ik; k = 1, . . . ,m, we have

[λz1 + (1− λ)z2](x, y) =
ϕ(x)

f(x, 0, ϕ(x))

+
gk(sk, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
−
gk(sk, 0, (hu)(x

−

k , 0))

f(sk, 0, u(sk, 0))

+

∫ x

sk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
[λg01 + (1− λ)g02](s, t) dt ds.

Since S̃1
G◦h◦u is convex (because G has convex values), we have that

[λz1 + (1− λ)z2](x, y) ∈ B(u); (x, y) ∈ Ik; k = 0, . . . ,m.
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Also, for each (x, y) ∈ Jk; k = 1, . . . ,m, we have

[λz1 + (1− λ)z2](x, y) =
gk(x, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
∈ B(u).

Hence
[λz1 + (1− λ)z2](x, y) ∈ B(u); (x, y) ∈ J.

Claim 2. B maps bounded sets into bounded sets of PC.

Let z ∈ B(u) for some u ∈ S, where S is a bounded set of PC. Then there exists
g ∈ S̃1

G◦h◦u such that for each (x, y) ∈ I0

z(x, y) = µ(x, y) +
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0
(x− s)r1−1(y − t)r2−1g(s, t) dt ds,

and for each (x, y) ∈ Ik; k = 1, . . . ,m, we have

z(x, y) =
ϕ(x)

f(x, 0, ϕ(x))
+
gk(sk, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
−
gk(sk, 0, (hu)(x

−

k , 0))

f(sk, 0, u(sk, 0))

+

∫ x

sk

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds,

and for each (x, y) ∈ Jk; k = 1, . . . ,m, we have

z(x, y) =
gk(x, y, (hu)(x

−

k , y))

f(sk, y, u(sk, y))
.

Set

L := sup
x∈[0,b]

∣

∣

∣

∣

ϕ(x)

f(x, 0, ϕ(x))

∣

∣

∣

∣

.

From (H2) and (H3), for each (x, y) ∈ I0, we get

‖z‖PC ≤ ‖µ‖∞ +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
≤ ‖µ‖∞ + 2β +

ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
,

and for each (x, y) ∈ Ik; k = 1, . . . ,m, we get

‖z‖PC ≤ L+ 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
≤ ‖µ‖∞ + 2β +

ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
,

and for each (x, y) ∈ Jk; k = 1, . . . ,m, easily we get

‖z‖PC ≤ β ≤ ‖µ‖∞ + 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
.
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Hence, for each (x, y) ∈ J, we get

‖z‖PC ≤ ‖µ‖∞ + 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)
=

M

‖α‖∞
:= ℓ.

Claim 3. B maps bounded sets into equicontinuous sets of PC.

Let z ∈ B(u) for some u ∈ S, where S is a bounded set of PC, and let (τ1, y1),
(τ2, y2) ∈ J, with τ1 < τ2 and y1 < y2. Then there exists g ∈ S̃1

G◦h◦u such that for
each (x, y) ∈ I0, we have

|z(τ2, y2)− z(τ1, y1)| ≤ |µ(τ1, y1)− µ(τ2, y2)|

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0
[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]

× |g(s, t)| dt ds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0
(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds

≤ |µ(τ1, y1)− µ(τ2, y2)|+
‖φ‖L∞

1 + Γ(r1)Γ(1 + r2)
[2yr22 (τ2 − τ1)

r1 + 2τ r12 (y2 − y1)
r2

+ τ r11 y
r2
1 − τ r12 y

r2
2 − 2(τ2 − τ1)

r1(y2 − y1)
r2 ] −→ 0, as τ1 → τ2 and y1 → y2.

Again, for each (x, y) ∈ Ik; k = 1, . . . ,m, we have

|z(τ2, y2)− z(τ1, y1)| ≤

∣

∣

∣

∣

ϕ(τ2)

f(τ2, 0, ϕ(τ2))
−

ϕ(τ1)

f(τ1, 0, ϕ(τ1))

∣

∣

∣

∣

+

∣

∣

∣

∣

gk(sk, y2, (hu)(x
−

k , y2))

f(sk, y2, u(sk, y2))
−
gk(sk, y1, (hu)(x

−

k , y1))

f(sk, y1, u(sk, y1))

∣

∣

∣

∣

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y1

0
[(τ2 − s)r1−1(y2 − t)r2−1 − (τ1 − s)r1−1(y1 − t)r2−1]

× |g(s, t)| dt ds

+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds

+
1

Γ(r1)Γ(r2)

∫ τ1

0

∫ y2

y1

(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds
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+
1

Γ(r1)Γ(r2)

∫ τ2

τ1

∫ y1

0
(τ2 − s)r1−1(y2 − t)r2−1|g(s, t)| dt ds.

Thus, for each (x, y) ∈ Ik; k = 1, . . . ,m, we get

|z(τ2, y2)− z(τ1, y1)| ≤

∣

∣

∣

∣

ϕ(τ2)

f(τ2, 0, ϕ(τ2))
−

ϕ(τ1)

f(τ1, 0, ϕ(τ1))

∣

∣

∣

∣

+

∣

∣

∣

∣

gk(sk, y2, (hu)(x
−

k , y2))

f(sk, y2, u(sk, y2))
−
gk(sk, y1, (hu)(x

−

k , y1))

f(sk, y1, u(sk, y1))

∣

∣

∣

∣

+
‖h‖L∞

1 + Γ(r1)Γ(1 + r2)
[2yr22 (τ2 − τ1)

r1 + 2τ r12 (y2 − y1)
r2

+ τ r11 y
r2
1 − τ r12 y

r2
2 − 2(τ2 − τ1)

r1(y2 − y1)
r2 ] −→ 0, as τ1 → τ2 and y1 → y2.

Also, for each (x, y) ∈ Jk; k = 1, . . . ,m, we get

|z(τ2, y2)− z(τ1, y1)| ≤

∣

∣

∣

∣

gk(τ2, y2, (hu)(x
−

k , y2))

f(sk, y2, u(sk, y2))
−
gk(τ1, y1, (hu)(x

−

k , y1))

f(sk, y1, u(sk, y1))

∣

∣

∣

∣

−→ 0, as τ1 → τ2 and y1 → y2.

As a consequence of Claims 1 to 3 together with the Arzelá-Ascoli theorem, we
can conclude that B is compact. Moreover, from Claim 2, we get

ℓ = ‖B(PC)‖ ≤
M

‖α‖∞
.

Then, by assumption (6), we get

2ℓ‖α‖∞ ≤ 2M < 1.

Step 3. B has a closed graph.

Let un → u∗, zn ∈ B(un) and zn → z∗. We need to show that z∗ ∈ B(u∗).
zn ∈ B(un) means that there exists g̃n ∈ S̃1

G◦h◦u such that



















































zn(x, y) = µ(x, y)

+
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g̃n(s, t)dtds; if (x, y) ∈ I0,

zn(x, y) =
ϕ(x)

f(x,0,ϕ(x)) +
gk(sk ,y,(hun)(x

−

k
,y))

f(sk ,y,un(sk,y))
−

gk(sk,0,(hun)(x
−

k
,0))

f(sk,0,un(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g̃n(s, t)dtds; if (x, y) ∈ Ik, k = 1, . . . ,m,

zn(x, y) =
gk(x,y,(hun)(x

−

k
,y))

f(sk,0,un(sk,0))
; if (x, y) ∈ Jk, k = 1, . . . ,m.
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We must show that there exists g∗ ∈ S̃1
G◦h◦u such that,



















































z∗(x, y) = µ(x, y)

+
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g∗(s, t)dtds; if (x, y) ∈ I0,

z∗(x, y) =
ϕ(x)

f(x,0,ϕ(x)) +
gk(sk,y,(hu∗)(x

−

k
,y))

f(sk,y,u∗(sk,y))
−

gk(sk ,0,(hu∗)(x
−

k
,0))

f(sk ,0,u∗(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g∗(s, t)dtds; if (x, y) ∈ Ik, k = 1, . . . ,m,

z∗(x, y) =
gk(x,y,(hu∗)(x

−

k
,y))

f(sk,0,u∗(sk,0))
; if (x, y) ∈ Jk, k = 1, . . . ,m.

Clearly, for each (x, y) ∈ I0, we have

‖(zn − µ)− (z∗ − µ)‖PC = ‖zn − z∗‖PC → 0 as n→ ∞,

and for each (x, y) ∈ Ik; k = 1, . . . ,m, we have

∣

∣

∣

∣

(

zn(x, y)−
ϕ(x)

f(x, 0, ϕ(x))

)

−

(

z∗(x, y)−
ϕ(x)

f(x, 0, ϕ(x))

)∣

∣

∣

∣

≤ ‖zn − z∗‖PC → 0 as n→ ∞.

Thus we have (zn − µ) → (z∗ − µ), and
(

zn(x, y) −
ϕ(x)

f(x,0,ϕ(x))

)

→
(

z∗(x, y) −

ϕ(x)
f(x,0,ϕ(x))

)

as n→ ∞. Now, consider the continuous linear operator L : L1(J) →

PC; g 7→ (Lg)(x, y) such that







































(Lg)(x, y) =
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds; if (x, y) ∈ I0,

(Lg)(x, y) =
gk(sk,y,(hu)(x

−

k
,y))

f(sk,y,u(sk,y))
−

gk(sk,0,(hu)(x
−

k
,0))

f(sk,0,u(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds; if (x, y) ∈ Ik, k = 1, . . . ,m,

(Lg)(x, y) =
gk(x,y,(hu)(x

−

k
,y))

f(sk ,0,u∗(sk,0))
; if (x, y) ∈ Jk, k = 1, . . . ,m,

From Lemma 2.6, it follows that L◦ S̃1
G◦h◦u is a closed graph operator. Moreover,

we have

(zn(x, y)− µ(x, y)) ,

(

zn(x, y)−
ϕ(x)

f(x, 0, ϕ(x))

)

∈ L
(

S̃1
G◦h◦u

)

.

Since un → u∗, we have that (z∗(x, y) − µ(x, y)),
(

z∗(x, y) − ϕ(x)
f(x,0,ϕ(x))

)

∈

L(S̃1
G◦h◦u∗

). Therefore, there exists g∗ ∈ S̃1
G◦h◦u∗

such that
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













































z∗(x, y) = µ(x, y)

+
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g∗(s, t)dtds; if (x, y) ∈ I0,

z∗(x, y) =
ϕ(x)

f(x,0,ϕ(x)) +
gk(sk,y,(hu∗)(x

−

k
,y))

f(sk,y,u∗(sk,y))
−

gk(sk ,0,(hu∗)(x
−

k
,0))

f(sk ,0,u∗(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g∗(s, t)dtds; if (x, y) ∈ Ik, k = 1, . . . ,m,

z∗(x, y) =
gk(x,y,(hu∗)(x

−

k
,y))

f(sk,0,u∗(sk,0))
; if (x, y) ∈ Jk, k = 1, . . . ,m.

Thus the multivalued operator B has closed graph. Consequently, in view of com-
pactness of B, it is (u.s.c.) on PC.

Step 4. The conclusion (ii) of Theorem 3.3 is not possible.

Set

f∗ = sup{|f(x, y, 0)| : (x, y) ∈ Ik; k = 1, . . . ,m, }.

Let u ∈ PC be any solution to (5), such that for any λ > 1 we have λu ∈ N(u).
Then, there exists g ∈ S̃1

G◦h◦u, such that



























































λu(x, y) = f(x, y, u(x, y))

×
[

µ(x, y) +
∫ x

0

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

; if (x, y) ∈ I0,

λu(x, y) = f(x, y, u(x, y))

×
[

ϕ(x)
f(x,0,ϕ(x)) +

gk(sk,y,(hu)(x
−

k
,y))

f(sk,y,u(sk,y))
−

gk(sk,0,(hu)(x
−

k
,0))

f(sk ,0,u(sk,0))

+
∫ x

sk

∫ y

0
(x−s)r1−1(y−t)r2−1

Γ(r1)Γ(r2)
g(s, t)dtds

]

; if (x, y) ∈ Ik, k = 1, . . . ,m,

λu(x, y) = gk(x, y, (hu)(x
−

k , y)); if (x, y) ∈ Jk, k = 1, . . . ,m.

Therefore,

|u(x, y)| ≤ |f(x, y, u(x, y))|

(

|µ(x, y)|+ 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)

)

≤ [|f(x, y, u(x, y)) − f(x, y, 0)|+ |f(x, y, 0)|]

×

(

|µ(x, y)| + 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)

)

≤ [‖α‖∞|u(x, y)|+ f∗]

(

‖µ‖∞ + 2β +
ar1br2‖φ‖L∞

Γ(1 + r1)Γ(1 + r2)

)

.
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Hence

‖u‖PC ≤
f∗L

‖α‖∞(1− L)
:=M∗.

Thus the conclusion (ii) of Theorem 3.3 does not hold for λ > 1. Consequently,
the problem (5) has a solution on J.

Step 5. The solution u of (5) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ J.

Case 1. If (x, y) ∈ Jk; k = 1, . . . ,m, Then from (H4) it is clear that

v(x, y) ≤ u(x, y) = gk(x, y, (hu)(x
−

k , y)) ≤ w(x, y); k = 1, . . . ,m.

Case 2. Now, we prove that the solution u of (5) satisfies

v(x, y) ≤ u(x, y) ≤ w(x, y); for all (x, y) ∈ Ik, k = 0, . . . ,m.

First, we prove that

u(x, y) ≤ w(x, y) for all (x, y) ∈ Ik, k = 0, . . . ,m.

Assume that u−w attains a positive maximum on (s+k , x
−

k+1]× [0, b] at (xk, y) ∈

(s+k , x
−

k+1]× [0, b], for some k = 0, . . . ,m, that is,

(u− w)(xk, y) = max{u(x, y)− w(x, y) : (x, y) ∈ (s+k , x
−

k+1]× [0, b]} > 0,

for some k = 0, . . . ,m. There exists (x∗k, y
∗) ∈ (s+k , x

−

k+1)× [0, b] such that

[

u(x, y∗)

f(x, y∗, u(x, y∗))
−

w(x, y∗)

f(x, y∗, w(x, y∗))

]

+

[

u(x∗k, y)

f(x∗k, y, u(x
∗
k, y))

−
w(x∗k, y)

f(x∗k, y, w(x
∗
k, y))

]

(10) −

[

u(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))
−

w(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))

]

≤ 0;

for all (x, y) ∈ ([x∗k, xk]× {y∗}) ∪ ({x∗k} × [y∗, b]), and

(11)
u(x, y)

f(x, y, u(x, y))
−

w(x, y)

f(x, y, w(x, y))
> 0;

for all (x, y) ∈ (x∗k, xk]× (y∗, b]. By the definition of g one has

(12) cDr
θk

( u(x, y)

f(x, y, u(x, y))

)

∈ G(x, y, w(x, y)); for all (x, y) ∈ [x∗k, xk]× [y∗, b].
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An integration of (12) on [x∗k, x]× [y∗, y] for each (x, y) ∈ [x∗k, xk]× [y∗, b] yields

u(x, y)

f(x, y, u(x, y))
+

u(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))
−

u(x, y∗)

f(x, y∗, u(x, y∗))
−

u(x∗k, y)

f(x∗k, y, u(x
∗
k, y))

(13) =
1

Γ(r1)Γ(r2)

∫ x

x∗

k

∫ y

y∗
(x− s)r1−1(y − t)r2−1g(s, t)dtds,

where g(x, y) ∈ G(x, y, w(x, y)). From (13) and using the fact that w is an upper
solution to (2), we get

u(x, y)

f(x, y, u(x, y))
+

u(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))
−

u(x, y∗)

f(x, y∗, u(x, y∗))
−

u(x∗k, y)

f(x∗k, y, u(x
∗
k, y))

≤
w(x, y)

f(x, y, w(x, y))
+

w(x∗k, y
∗)

f(x∗k, y
∗, w(x∗k, y

∗))
−

w(x, y∗)

f(x, y∗, w(x, y∗))
−

w(x∗k, y)

f(x∗k, y, w(x
∗
k, y))

.

Then, we get,

[

u(x, y)

f(x, y, u(x, y))
−

w(x, y)

f(x, y, w(x, y))

]

≤

[

u(x, y∗)

f(x, y∗, u(x, y∗))
−

w(x, y∗)

f(x, y∗, w(x, y∗))

]

+

[

u(x∗k, y)

f(x∗k, y, u(x
∗
k, y))

−
w(x∗k, y)

f(x∗k, y, w(x
∗
k, y))

]

(14) −

[

u(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))
−

w(x∗k, y
∗)

f(x∗k, y
∗, w(x∗k, y

∗))

]

.

Thus, from (10), (11) and (14) we obtain the following contradiction

0 <

[

u(x, y)

f(x, y, u(x, y))
−

w(x, y)

f(x, y, w(x, y))

]

≤

[

u(x, y∗)

f(x, y∗, u(x, y∗))
−

w(x, y∗)

f(x, y∗, w(x, y∗))

]

+

[

u(x∗k, y)

f(x∗k, y, u(x
∗
k, y))

−
w(x∗k, y)

f(x∗k, y, w(x
∗
k, y))

]

−

[

u(x∗k, y
∗)

f(x∗k, y
∗, u(x∗k, y

∗))
−

w(x∗k, y
∗)

f(x∗k, y
∗, w(x∗k, y

∗))

]

≤ 0; for all (x, y) ∈ [x∗k, xk]× [y∗, b].

Thus
u(x, y) ≤ w(x, y) for all (x, y) ∈ Ik, k = 0, . . . ,m.
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Analogously, we can prove that

u(x, y) ≥ v(x, y), for all (x, y) ∈ Ik, k = 0, . . . ,m.

From cases 1 and 2 we get

v(x, y) ≤ u(x, y) ≤ w(x, y), for all (x, y) ∈ J.

This shows that the problem (5) has a solution u satisfying v ≤ u ≤ w which is
solution of (2).

4. Existence of extremal solutions

We need the following definitions and preliminary facts for proving the existence
of extremal solutions for our problem

Definition 4.1. A multivalued mapping G(x, y, w) is called strictly monotone
increasing in w almost everywhere for (x, y) ∈ J if G(x, y, w) ≤ G(x, y, w) a.e.
(x, y) ∈ J, for all w,w ∈ R with w < w. Similarly, G(x, y, w) is called strictly
monotone decreasing in w almost everywhere for (x, y) ∈ J if G(x, y, w) ≥
G(x, y, w) a.e. (x, y) ∈ J, for all w,w ∈ R with w > w.

Definition 4.2. Let X be an ordered Banach space. A multivalued operator
G : X → Pcl(X) is called strict monotone increasing if u, v ∈ X with u < v, then
we have that G(u) ≤ G(v). Similarly, G is called strict monotone decreasing if
G(u) ≥ G(v) whenever u < v.

We equip the space PC with the order relation ≤ with the help of the cone
defined by

K = {u ∈ PC : u(x, y) ≥ 0; ∀(x, y) ∈ J}.

Thus u ≤ ū if and only if u(x, y) ≤ ū(x, y) for each (x, y) ∈ J.

It is well-known that the cone K is positive and normal in PC (see [20]). If
u, ū ∈ C(J) and u ≤ ū, we put

[u, u] = {u ∈ PC : u ≤ u ≤ ū}.

Definition 4.3. A solution uM of the problem (2) is said to be maximal if for any
other solution u to the problem (2) one has u(x, y) ≤ uM (x, y), for all (x, y) ∈ J.

Again a solution um of the problem (2) is said to be minimal if um(x, y) ≤ u(x, y),
for all (x, y) ∈ J where u is any solution of the problem (2) on J.

Lemma 4.4. [18] Let K be a positive cone in a real Banach algebra X and let

u1, u2, v1, v2 ∈ K be such that u1 ≤ v1 and u2 ≤ v2. Then u1u2 ≤ v1v2.
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For any v,w ∈ X, v ≤ w, the order interval [v,w] is a set in X given by

[v,w] = {u ∈ X : v ≤ u ≤ w}.

We use the following fixed point theorem by Dhage [18] for proving the ex-
istence of extremal solutions for our problem under certain monotonicity condi-
tions.

Theorem 4.5. Let K be a cone in a Banach algebra X and let v,w ∈ X. Suppose

that A : [v,w] → K and B : [v,w] → Pcl(K) are two operators such that

(a) A is Lipschitz with a Lipschitz constant α,

(b) B is completely continuous,

(c) AuBu ⊂ [v,w] for all u ∈ [v,w], and

(d) A is nondecreasing and B is strict monotone increasing on [v,w],

(e) 2Mα < 1, where M = ‖B([v,w])‖.

Further if the cone K is positive and normal, then the operator inclusion u ∈
AuBu has a least and a greatest positive solutions in [v,w].

The following hypotheses will be used in the sequel.

(H5) f : J × R+ → R
∗
+,

ϕ(y)
f(0,y,ϕ(y)) ≥ 0 on [0, b] and

ϕ(x)

f(x, 0, ϕ(x))
≥

ϕ(0)

f(0, 0, ϕ(0))
for all x ∈ [0, a].

(H6) f(x, y, w) is nondecreasing in w almost everywhere for (x, y) ∈ J,

(H7) G : J × R+ → Pcp(R+),

(H8) G(x, y, w) is strictly monotone increasing in w almost everywhere for
(x, y) ∈ J,

(H9) The problem (2) has a lower solution u and an upper solution u with u ≤ u.

Theorem 4.6. Assume that hypotheses (H3), (H4) and (H5)–(H9) hold. If the

condition (6) is satisfied, then (2) has a minimal and a maximal positive solution

on J.

Proof. Consider a closed interval [u, u] in PC. Define the operator A : [u, u] →
PC and the multivalued operator B : [u, u] → Pcp,cv(PC) by (7) and (8), respec-
tively. We show that operators A and B satisfy all the assumptions of Theorem
4.5. As in Theorem 3.5 we can prove that A is Lipschitz with a Lipschitz constant
‖α‖∞ and B is completely continuous operator on [u, u]. We shall show that A
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is nondecreasing and B strictly monotone increasing on [u, u]. To see this, let
u1, u2 ∈ [u, u] be such that u1 ≤ u2. Then by (H6), we have

(Au1)(x, y) =f(x, y, u1(x, y)) ≤f(x, y, u2(x, y)) = (Au2)(x, y); for all (x, y) ∈ J,

and by (H3) and (H6), we get

(Bu1)(x, y) ≤ (Bu2)(x, y); for all (x, y) ∈ J.

So A is nondecreasing and B strictly monotone increasing on [u, u]. By Lemma
4.4, we get

Au(x, y)Bu(x, y) ≤ Au(x, y)Bu(x, y) ≤ u(x, y),

and

u(x, y) ≤ Au(x, y)Bu(x, y) ≤ Au(x, y)Bu(x, y),

for all (x, y) ∈ J and u ∈ [u, u]. As a result

u(x, y) ≤ Au(x, y)Bu(x, y) ≤ u(x, y), ∀(x, y) ∈ J and u ∈ [u, u].

Hence AuBu ∈ [u, u], for all u ∈ [u, u]. Notice for any u ∈ [u, u],

ℓ = ‖B([u, u])‖ ≤ ‖µ‖∞ + 2β +
ar1br2‖h‖L∞

Γ(1 + r1)Γ(1 + r2)
.

Then

‖α‖∞ℓ ≤M <
1

2
.

Thus the operators A and B satisfy all the conditions of Theorem 4.5 and so the
inclusion (9) has a least and a greatest solution in [u, u]. This further implies that
the problem (2) has a minimal and a maximal positive solution on J.
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